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Abstract

This chapter provides a critical review of statistical methods applied in animal and plant
breeding programs, especially Bayesian methods. Classical and Bayesian procedures are
presented in pedigree-based and marker-based models. The flexibility of the Bayesian
approaches and their high accuracy of prediction of the breeding values are illustrated.
We show a tendency of the superiority of Bayesian methods over best linear unbiased
prediction (BLUP) in accuracy of selection, but some difficulties on elicitation of some
complex prior distributions are investigated. Genetic models including marker and
pedigree information are more accurate than statistical models based on markers or
pedigree alone.

Keywords: accuracy of prediction, breeding value, Bayesian methods, BLUP, pedigree,
markers

1. Introduction

Quantitative genetics result from the (connection) combination of statistics and the principles

of animal and plant breeding. In quantitative genetics, selection for economically important

traits refers to use of phenotypic values of the individual and pedigree information. Genomic

is based on the use of dense markers through the whole genome to predict the breeding

value of the individuals [1]. Linear models (univariate and multivariate) are of fundamental

importance in applied and theoretical quantitative genetics [2]. In animal breeding, two

major methods were particularly applied, restricted maximum likelihood (REML) and

Bayesian methods. REML has emerged as the method of choice in animal breeding for

variance component estimation [3]. Bayesian analysis is gaining popularity because of its

more comprehensive assumptions than those of classical approaches and its flexibility in
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



resolving a wide range of biological problems [4, 5]. In the Bayesian approach, the idea is to

combine what is known about the statistical ensemble before the data are observed (prior

probability distributions) with the information coming from the data, to obtain a posterior

distribution from which inferences are made using the standard probability calculus tech-

niques [2, 6]. In recent years, Bayesian methods were broadly used to solve many of the

difficulties faced by conventional statistical methods and extend the applicability of statistics

on animal and plant breeding data [7]. Furthermore, Markov chain Monte Carlo (MCMC)

has an important impact in applied statistics, especially from Bayesian perspective for the

estimation of genetic parameters in the linear mixed effect model [2, 5]. The specific objective

of this chapter was to illustrate applications of Bayesian inference in quantitative genetics

and genomics. First, Bayesian models in the quantitative genetics theory are examined.

Second, and in the context of the genomic selection, we presented the details of statistical

modeling, using BLUP and Bayesian analyses. Third, a critical review with a focus on the

prior distributions is illustrated. Finally, genomic predictions from several methods used in

many countries are discussed.

2. A brief introduction to Bayesian analyses

In Bayesian inference, the idea is to combine what is known about the statistical ensemble

before the data are observed (prior probability distributions) with the information coming

from the data, to obtain a posterior distribution from which inferences are made using the

standard probability calculus techniques.

Pðθ=yÞα Pðy=θÞPðθÞ (1)

P(θ) is the prior distribution, which reflects the relative uncertainty about the possible values

of θ before the data are seen. P(y/θ) is the likelihood function of observing the data given the

parameter which represents the contribution of y to knowledge about the parameter θ. P(θ/y)

is the posterior distribution of the parameter θ given the previous information on the data.

3. Bayesian analyses of linear models

3.1. The mixed linear model

The mixed linear model is of great importance in genetics and is one of the most used statistical

models. Arguably, variance components and genetic parameters are important because they

give an indication of the ability of species to respond to selection and thus the potential of that

species to evolve. Mixed linear model is the simplest method for estimating the variance

components for quantitative traits in population. In the “frequentist” view, mixed linear model

is one included linearly the fixed and random effects. In the Bayesian context, there is no

distinction between fixed and random effects. Detailed Bayesian analyses of models with two

or more component variances will be discussed.
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3.1.1. The univariate linear additive genetic model

The mixed linear model is one that includes fixed and random effects.

Consider the linear model:

y ¼ Xβþ Zaþ e (2)

y is a n�1 vector of records on a trait; β is the vector of fixed effects affecting records; a is the

vector of additive genetic effects; e is a vector of residual effects. X and Z are incidence matrices

relating records to fixed effects and additive genetic effects, respectively. Data are assumed to

be generated from the following distribution:

yjβ, a, σ2e � NðXbþ Za, Iσ2eÞ

e � Nð0, Iσ2eÞ

where, I is an identity matrix of order n�n and σ
2
e is the residual variance. Independence of

various effects was assumed for the sake of simplicity in implementation. We assume a genetic

model in which genes act additively within and between loci, and there are effectively an

infinite number of loci. Under this infinitesimal model, and assuming further initial Hardy-

Weinberg and linkage equilibrium, the distribution of additive genetic values conditional on

the additive genetic covariance is multivariate normal.

ajA, σ2a � Nð0,Aσ
2
aÞ

where A is the numerator relationship matrix of order q�q; β is assumed to have a uniform

distribution with bounds βmin and βmax.

Pðσ2i jνi, S
2
i Þ � ðσ2i Þ

ðð
νi
2 þ1ÞÞ

exp �
νiS

2
i

2σ2i

 !

, ði ¼ a, eÞ

where ve, S
2
e and va, S

2
a are interpreted as degrees of belief and a priori values for residual and

additive genetic covariances. Posterior conditional distributions derived from the likelihood

and the prior distributions for these parameters are,

bi| b-i, a, σ
2
a , σ

2
e , y � Nðb̂i, ðx

0
ixiÞ

�1
σ
2
e Þ, with (x0ixi) is the ith element of the diagonal of X0X

3.1.2. The univariate linear additive genetic model with permanent and genetic group effects

The model equation [8] used to estimate genetic parameters and genetic breeding value for

milk yield was as follows:

y ¼ Xβþ Zaþ ZQgþWpþ e (3)

where y is the vector of milk yield, b is the vector of fixed effects, a is the vector of additive

genetic effects, g is the vector of genetic group effects, p is the vector of random permanent
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environmental effects, and e is the vector of residual effects. X, Z, W, and ZQ are incidence

matrices relating a record to fixed environmental effects in b, to a random animal effects in a,

to a random permanent environment effects in p, and to genetic groups in g, respectively. g* is

the vector of genetic group effects, â is a vector of breeding values. A is the numerator

relationship matrix. where â� ¼ Q ĝ þ â.

The conditional distribution of observed yield is defined by:

yjb, p, a � , σ2e � NðXb þ Za � þ Wp, Iσ2e Þ

with the assumption of P(b) being a constant; a*|A*, σ2a � NðQg,A�σ2aÞ;

pjσ2p � Nð0, Iσ2pÞ; and Pðσ2i jνi,S
2
i Þ � ðσ2i Þ

ððνi2þ1ÞÞ exp �
νiS

2
i

2σ2i

� �

where S2i are prior values for the variances, χ
�2
νi

are inverted chi-square distributions, and νi are

degrees of freedom of parameters.

3.1.2.1. Management and environmental effects

The distribution of a fixed effect is:

bijb�i, a
�, σ2a , σ

2
p, σ

2
e , y � Nðb̂ i, ðx

0
ixiÞ

�1
σ2eÞ

with (x0i xi) b̂i ¼ x
0
y� x

0

ix
0

�ib�i � x
0

iwp � x
0

iza
�,

where (x0i xi) is the ith element of the diagonal of X0X

3.1.2.2. Permanent environmental effects

The distribution of a permanent effect is:

pijbi, p�i, a
�, σ2a , σ

2
p, σ

2
e , y � Nðp̂i, ðw

0
iwi þ δÞ�1

σ2e Þ

with ðw0
iwi þ δÞp̂i ¼ w0

i y� w0
i Xb� ðwiW�i þ δÞp�i � wiza

�,

where w0
i wi is the ith element of the diagonal of W0W.

3.1.2.3. Breeding values

The distribution of a breeding value is:

a�i jb,p�i, a
�
�i, σ

2
a, σ

2
p, σ

2
e, y � Nða�i ðz

0
izi þA��1

i, i α�1Þσ2eÞ

with ðz
0

izi þ A��1
i, i αÞâi ¼ z

0

iy� z
0

iXb� z
0

iWP � A��1
i, i αa��i,

where z0i zi is the i th element of the diagonal of Z0Z.
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3.1.2.4. Variance components

The additive genetic variance is defined by

σ
2
a jb, p, a

�, σ2p, σ
2
e , y � ~V a

~S
2

aχ
�2
~va

with ~V a ¼ na þ Va, ~S
2

a ¼ ða�
0

A��1a� þ VaS
2
aÞ=

~V a, and np is the number of animals being evaluated.

The variance of permanent environmental effects is given by:

σ
2
p, jb, p, a

�, σ2a , σ
2
e , y � ~V p

~S
2

pχ
�2
~vp

with ~V p ¼ np þ Vp, ~S
2

p ¼ ðp0pþ VpS
2
pÞ=

~V p, and np is the number of animals being evaluated.

Residual variance:

σ
2
e jb, p, a

�, σ2a , σ
2
p, y � ~V e

~S
2

eχ
�2
~ve

with ~V e ¼ ne þ Ve,

~S
2

e ¼ ½ðy� Xb�Wp� Za�Þ
0

ðy� Xb�Wp� Za�Þ þ VeS
2
e �=

~V e,

and ne is the total number of records.

Comparing genetic value predictions based on polygenic model in Tunisian Holstein Population

using BLUP and Bayesian analyses, Ref. [8] reported that the rankings of animals with Bayesian

methods are similar to those obtained by BLUP method. Spearman’s rank correlation between

genetic values estimated from Bayesian procedures and genetic values estimated from BLUP

methods were high (0.99). Again, Bayesian and best linear unbiased estimator (BLUE) solutions

of fixed effects (month of calving, herd-year, and age-parity) showed the same patterns. The

same result is reported by Ref. [9]. However, Ref. [8] illustrated different correlation estimates

between two methods (Bayesian and BLUP) for cow’s and bull’s breeding value.

4. Genomic selection

A massive quantity of genomic data is now available in animal and plant breeding with the

revolutionary development in sequencing and genotyping. The cost of genotyping is dramati-

cally reduced. Consequently, practices of genomic selection are nowadays possible with the high

number of single nucleotide polymorphism (SNP) markers available. Therefore, it is feasible to

perform analysis of the genome at a level that was not possible before [10–13]. The concept of

genomic selection was introduced by Ref. [1]. The latter suggested that a set of markers covering

the whole genome explain the all genetic variances and each marker is likely to be associated

with a quantitative trait locus (QTL), and each QTL is in linkage disequilibrium with the
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markers. The number of effects per QTL to be estimated is very small. The estimated effects of all

markers are summed in order to obtain the genetic value of the individual. Using simulation,

Ref. [1] showed in simulation that with a high-density SNP marker, it is possible to predict the

breeding value with an accuracy of 0.85 (where accuracy is the correlation between the estimated

breeding value and true breeding value). The challenge in genomic evaluation is to find the best

prediction method to obtain accurate genetic values of candidates. Many genomic evaluation

methods have been proposed [14, 15]. The main objective of this section is to compare Bayesian

methods to other methods used in genomic selection based on their predictive abilities. The

study reported by Ref. [1] was considered an influential paper on dairy cattle breeding pro-

grams. First, the methods suggested correspond well to the data structures where the number of

SNPs substantially exceeds the number of observations. Second, the methods of Ref. [1] consti-

tute a logical evolution of the BLUP methodology, which is the reference method in animal

genetics by considering specific variances of SNPs in the different loci. Third, the Bayesian

approaches used in Ref. [1] that take into account unknown effects (measuring prior uncertainty)

in a model, and combined with the ability of the Monte Carlo Markov chain, can be used in the

majority of parametric statistical models.

4.1. Genomic BLUP (GBLUP)

The GBLUP method assumes that effects of all SNPs are sampled from the same normal

distribution; the effects of all markers are assumed to be small with equal variance. Genomic

BLUP was defined by the model:

y ¼ 1μþ Zgþ e (4)

where y is the data vector; μ is the overall mean; 1 is a vector of n ones; Z is a matrix of incidence,

allocating records to the markers’ effects; g is a vector of SNP effects assumed to be normally

distributed g � Nð0, Gσ2gÞ, where σ2g is the additive genetic variance and G is the genomic

relationship matrix; e is the vector of normal error, e � Nð0, σ2e Þ where σ2e is the error variance.

The genomic relationship matrix was defined as G ¼ X0XXm

i¼1
pið1� piÞ

, where X is matrix for

specified SNP genotype coefficient at each locus, pi is the rare allele frequency for SNPi.

4.2. Bayesian approaches

In Bayesian estimation, the information from the data is combined with the information from

the prior distribution of the variances of the markers. Several Bayesian statistical analyses have

been used in genomic evaluation, which differ in the hypotheses of distributions of marker

effects. At the level of the modeling of the variances of the effects of the markers, Meuwissen

et al. [1] proposed different distributions a priori between the Bayes A and Bayes B methods.

4.2.1. Bayes A

Bayes A method assumes that variance of marker effects differ among loci (e.g., σ2g
j
is different

across the j) [16]. The variances are modeled according to the scaled inverted chi-square

distribution: The a priori distribution of the variances of the SNP effects is written:
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Pðσ2gjÞ � χ�2ðν, SÞ, where S is the scale parameter and ν is the number of degrees of freedom.

This has the advantage, if we consider a normal distribution of the data, to lead to an a

posteriori conditional distribution of χ�2.

Pðσ2gj jgjÞ � χ�2ðνþ nj, Sþ g0 jgjÞ,

where, nj is the number of marker effects at segment j. The posterior distribution combines

both the information provided by the data and the a priori distribution.

4.2.2. Bayes B

In a genomic evaluation context, Bayes B method [1, 17] assumes different variances of SNP

effects, with many SNP contribute per zero effects, and a few contribute per a large effects on

the trait. Meuwissen et al. [1] propose a model in which a proportion π (arbitrarily fixed at

0.95) of the markers having zero effect. The a priori distribution of the variances of the effects

to the markers is then written:

σ2g ¼ 0 with a probability π, Pðσ2gjÞ � χ�2ðν, SÞwith a probability (1� π), Gibbs sampling cannot

be used to estimate the effects and variances of the Bayes Bmodel because of the high probability

on some markers of being of zero variance. We therefore use a Metropolis-Hastings algorithm

which allows the simultaneous estimation of σ2g
j
and gj. On the basis of the results of Ref. [1] and

many subsequent works, the Bayes B method is often considered the “benchmark” in terms of

genomic prediction efficiency, but it is extremely costly in computational time. However,

Meuwissen [18] propose an alternative to the Bayes B method which relies on a fast algorithm.

4.2.3. Bayesian lasso

Legarra et al. [19] proposed a model of Bayesian lasso (BL) with different variances for residual

and SNP effects which they termed BL2Var. It is therefore assumed that a large number of

SNPs have an effect practically zero and that very few have large effects. Tibshirani [20]

showed that the distribution of the lasso estimators can be written:

Pðσ2g j
jσ2,λÞ � λ

2
exp ð�λjgjjÞ

He suggests that the lasso estimators can be interpreted as an a posteriori mode of a model in

which the regression parameters would be independent and identically distributed according

to a prior double exponential distribution. Park and Casella [21] propose to use a complete

Bayesian approach by assuming an a priori distribution of regression coefficients such as:

Pðσ2g j
jσ2,λÞ � λ

2
ffiffiffiffiffi

σ2
p exp ð� λ

ffiffiffiffiffi

σ2
p jgjjÞ

where σ2 represents the variance of residual effects of the model and the variance of the SNP

effects. Applications of the Bayesian lasso to the genomic selection proposed by Refs. [22, 23]

use the same variance σ2 to model both the distribution of effects of SNPs and residuals. De los
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Campos et al. [22] showed that the Bayesian lasso is close in terms of precision of prediction to

the Bayes B method but with a significant reduction in the complexity of the calculations. In

addition, these authors suggested using Bayesian lasso against the large number of markers

included in regression models, which is typically larger than the number of records.

4.2.4. The Bayes C method

Bayesian methods such as Bayes A and Bayes B [1] have been widely used for genomic evalua-

tion. Similar methods exist, with similar performances, developed in order to reduce computa-

tion times and to simplify statistical modeling. The Bayes C method [24] differs from Bayes B by

assuming the variance associated with SNPs common to all markers. In Bayes C, as in Bayes B,

the probability π that an SNP has a nonzero effect is assumed to be known. The model is similar

to the Bayes B model but for a homogeneous variance of effects on all loci: σ2g ¼ 0 with a

probability 1 � π;ðσ2gÞ � χ
�2ðν, SÞ. The main problem with the Bayes C method is that SNPs

with a nonzero effect is assumed to be known. With the Bayes A method, the parameter π is

equal to 1, which implies that all the markers have an effect. For the Bayes B method, π is strictly

less than 1 in order to take into account the hypothesis that some SNPs may have a zero effect

but is fixed arbitrarily while the intensity of the selection of variables is controlled by this

parameter. Habier et al. [25] propose to modify the Bayes C method by estimating the parameter

π: the parameter π is assumed to be unknown. Thus, the a priori distribution of π becomes

uniform over [0, 1]. SNPmodeling is the same as with Bayes C. Pðgjjπ, σ
2
gÞ ¼ 0 with a probability

1 � π; Pðgjjπ, σ
2
gÞ � Nð0, σ2gÞ where Pðσ2gÞ � χ

�2ðν, SÞ with a probability π. The various param-

eters of this model are estimated by MCMC methods, Markov Chain Monte Carlo [6, 26] as

proposed by Ref. [25]. It is written as a function of the additive genetic variance σ
2
a .

σ
2
g ¼

σ2
a

ð1�πÞ

Xp

j¼1
2pjð1� pjÞ

, where pj is the allelic frequency of SNP j.

4.3. A critique

The extreme speed with which events are running handicaps the process of linking new

development to extant theory, and the understanding of statistical models suggested up until

now [27]. The latter authors criticize the theoretical and statistical concepts followed by Ref. [1]

in three levels. The first is the connection between parameters (additive genetic variances with

Bayesian view) from infinitesimal models with those frommarker-based models. The second is

the relationship between molecular marker genotypes and similarity between relatives. The

third is the connection between infinitesimal genetic models and marker-based regression

models. Gianola et al. [27] argued that the methods Bayes A and Bayes B proposed by

Ref. [18] require specifying parameters. The latter used formulas for obtaining the variance of

SNP effects, based on some knowledge of the additive genetic variance in the population. Their

development begins on the assumption that the effects of the markers are fixed and in other

development, they consider them as random without a clear demonstration. Meuwissen et al.

[1] explained that affecting a priori a value σ2g ¼ 0 with a probability π means that the specific

SNP does not have an effect on the trait. By contrast, Ref. [27] illustrated that a parameter
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having zero variance does not obligatory imply that the parameter takes zero value. The

parameter could have any value, but with certainty. Gianola et al. [27] suggested the use of a

nonparametric method as developed by Refs. [22, 28] because these methods do not impose

hypotheses about mode of inheritance as Bayesian A and Bayesian B methods.

5. Applications in genomics

Major dairy breeding countries are now using genomic evaluation [27]. Several results have

been reported around the world. Several authors reported that the reliabilities of genomic

estimated breeding values (GEBV) were substantially greater than breeding values from esti-

mated breeding values (EBV) based on pedigree information [29]. The accuracy of selection

was different between countries [12]. The accuracy was dependent on the size of reference

population, the heritability of the trait studied, the statistical models and approaches used for

prediction of genetic values for quantitative traits, and the method achieved to estimate the

accuracy [12, 27, 29]. Ref. [14] found the reliability of GEBV bulls of the Canadian and

American Holstein population. A genotyping of 39,416 molecular markers of 3576 Holstein

bulls was used to establish the prediction equations.

The prediction methods contained a linear model, in which marker effects are assumed to be

normal, and a nonlinear model with a heavier tailed prior distribution to account for major genes

as described by [1]. VanRaden et al. [14] reported that the combination of the polygenic effects

based on pedigree information with the genomic predictions can improve the reliability to 23%

greater than the reliability of polygenic effects only. The same study showed that the nonlinear

model had a little advantage in reliability over the linear model for all traits except for fat and

protein percentages. Genomic breeding values of 25 traits in New Zealand dairy cattle were

estimated by Ref. [30]. The reference population consisted of 4500 bulls genotyped using the

BovineSNP50Beadchip, containing 44,146 SNPs. Harris and Johnson [31] reported an increase in

accuracy was found by using Bayesian approaches compared to BLUP methods. In Ref. [31],

genomic breeding values (GBVs) for young bulls with no daughter information had accuracies

ranging from 50 to 67% for milk traits, live weight, fertility, somatic cell, and longevity, versus an

average 34% for progeny test. Meuwissen et al. [1] compared least squares method with BLUP

and two Bayesian methods (Bayesian A and Bayesian B). The latter authors estimated the effects

of 50,000 marker haplotypes from a limited number of observations (2200). Using least squares

method, it is not possible to estimate all effects simultaneously. For this reason, different steps

have been adopted to incorporate the effects of markers. First, they performed regression on

markers for every segment of 1 cm each. Second, they calculated a Log-likelihood, which

assumed to be normal at every segment of chromosome. Third, they summed all segments

corresponding to a likelihood peak into multiple regression models. Using BLUP analyses, Ref.

[1] considered that all SNP effects were independent and identically distributed with a known

variance. Bayes A method was as BLUP at the level of the data, but differs in the variance of the

chromosome segments, which assumed to have an inverted chi-square distribution. A mixture

prior distribution of genetic variances was used in Bayes B method. Table 1 shows the accuracy

of selection obtained by Ref. [1] from the GBLUP methods, the least squares regression and the
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Bayes A and Bayes B approaches. The predictive abilities of the different methods are estimated

by calculating the correlation (ρ) between true and estimated breeding values and the regression

(b) of true on estimated breeding value.

The least squares method is the least efficient because it overestimates effects on QTL [32].

The Bayes B approach is the most accurate both in terms of correlation and regression.

However, the regression coefficient obtained by the Bayesian methods was still less than 1,

and probably due to the hypothesis of a priori distribution χ
�2 for Bayes A and Bayes B

being different from the simulated distribution of the variances. Goddard and Hayes [11]

compared the correlation of 0.85 as reported by Ref. [1] to results obtained on real data by

Refs. [14, 33, 34]. VanRaden et al. [14] produced a mean correlation over several characters of

0.71 from a reference population of more than 3500 bulls. Studies have shown the superiority

of genomic evaluation [35] or marker-assisted selection in France [36] on classical infinitesi-

mal model of quantitative genetics. Several authors have applied the first genomic evalua-

tion methods described by Ref. [1] or their derived methods on real data. The Bayes A and

Bayes B approaches have found results that are often similar or slightly superior to GBLUP

in terms of accuracy of genetic value prediction for the Australian Holstein-Friesian cattle

breed (+0.02 to +0.07 of correlation gain between predicted and observed values), for exam-

ple [12] and New Zealand (+2% correlation gain, [31]). However, the GBLUP method

required less computing time than the Bayes A method [32, 37]. Gredler et al. [38] demon-

strated the superiority of the Bayes B method, in terms of the accuracy of genomic estimates,

on a modified Bayes A method for integrating a polygenic effect [39]. Thus, although the

Bayes B method seems slightly more efficient than the Bayes A method, numerous studies

showed that the Bayes B method is not so much better in terms of accuracy of the genomic

estimates than a GBLUP model [40]. Again, all researches indicate that the Bayesian

approaches, which assume an a priori distribution of SNPs, increase the reliability of breed-

ing values over traditional BLUP methods [1, 12, 14]. A common conclusion is that for most

quantitative traits, the hypothesis of the traditional BLUP method, that all markers are

associated with equal variances, is far from reality. By comparing the results obtained in the

various populations around the world, clearly, the accuracies of GEBVs were greater than

breeding values estimated from progeny test based on pedigree information. Several

researches suggested combining the progeny test based on pedigree information with the

breeding value from genomic to calculate the final GEBV [5, 25]. Accuracy based on model-

ing molecular marker and pedigree information was generally superior to that of the model

including only genomic or pedigree information. Hayes et al. [12] reported that a main

Methods ρ b

Least squares 0.318 0.285

GBLUP 0.732 0.896

Bayes A 0.798 0.827

Bayes B 0.848 0.946

Table 1. Comparing estimated versus the breeding value [1].
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advantage of using the both sources of information coming from polygenic breeding values

and genomic information is that any QTL not detected by the marker effects may be detected

by the progeny test based on pedigree information. A significant reduction in posterior mean

of residual variance component was reported by Ref. [22] when pedigree and markers were

considered jointly compared to pedigree-based model. In the same study, Spearman’s rank

correlation of estimated breeding value between model including marker information and

pedigree-based model was close to 1.

6. Conclusion

Standard quantitative genetic model based on phenotypic and pedigree information has been

very successful in term of genetic value prediction. Also, the availability of genome-wide dense

markers leads researchers to be able to perform advanced genetic evaluation of quantitative

traits with a high accuracy of prediction of genetic value. However, a main problem is how this

information should be included into statistical genetic models. Bayesian MCMC methods

appear to be convenient for genetic value prediction with a focus on the precision of the choice

of prior distribution for the different parameters.
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