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Abstract

Fermentation technologies have been developed to improve the production of ethanol and 
an alternative is the immobilization technology, which offers the possibility of efficiently 
incorporating symbiotic bacteria in the same matrix. This study analyzes the potential 
use of immobilized and coinmobilized systems on beads of calcium alginate for ethanol 
production used mango waste (Mangifera indica) by Zymomonas mobilis and Saccharomyces 

 cerevisiae compared with free cells culture and  evaluate the effect of glucose concentra-
tion on productivity in coimmobilized system using a Chemostat reactor Ommi Culture 
Plus. For free cell culture, the productivity was higher for Z. mobilis (5.76 g L-1 h-1) than 
for S.  cerevisiae (5.29 g L-1 h-1); while in coimmobilized culture, a higher productivity was 
obtained (8.80 g L-1 h-1) with respect to immobilized cultures (8.45 g L-1 h-1 - 8.70 g L-1 h-1). 
The conversion of glucose to ethanol for coimmobilized system was higher (6.91 mol 
ethanol) with 50 g L-1 of glucose compared to 200 g L-1 of glucose (5.82 mol ethanol); sug-
gesting the immobilized and coimmobilized cultures compared with free cells offer an 
 opportunity for the reuse of organic residues and high alcohol production.

Keywords: Mangifera indica, immobilization, coimmobilization, ethanol, Zymomonas mobilis, 
Saccharomyces cerevisiae
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1. Introduction

1.1. Use of agroindustrial waste in fermentation processes

Alcoholic fermentation is a process by which microorganisms convert hexoses, mainly glu-

cose, fructose, mannose and galactose, in the absence of oxygen and get products as alcohol 

(ethanol), carbon dioxide and adenosine triphosphate (ATP) molecules. Approximately 70% 

of the energy is released as heat and the remainder is preserved in two terminal phosphate 

bonds of ATP, for use in transfer reactions, such as activation of glucose (phosphorylation) 

and amino acids before of the polymerization. In other words, fermentation is a set of chem-

ical reactions carried out by microorganisms in which an organic compound is oxidized, 

partially in the absence of oxygen to obtain chemical energy and understood as a partial 

oxidation when all the carbon atoms of the compound are oxidized to form CO
2
. It is a pro-

cess known since antiquity and is currently the only industrial process for the preparation of 

ethyl alcohol in all countries. The glucose as raw material is not only used, but other types 

of raw material much cheaper. However, the process of alcoholic fermentation occurs natu-

rally, originated by the activity of some microorganisms through its anaerobic energy cell 

metabolism; for a large-scale production process, it is necessary for microorganisms (bac-

teria, fungi and yeasts) to accelerate the process of alcoholic fermentation and increase the 

conversion rate [1]. During the twentieth century and until the beginning of the twenty‐first 
century, alcoholic fermentation has focused exclusively on the improvement of fermenta-

tion processes and specifically on the optimization of industrial performance through a good 
selection of yeast strains, which are the most used microorganisms for the production of 

ethanol by fermentation, due to its high productivity in the conversion of sugars and bet-

ter separation of the biomass after fermentation. Yeasts are unicellular (usually spherical) 

microorganisms of size 2–4 μm and are present naturally in some products such as fruits, 

cereals and vegetables. Different species of fermentative microorganisms have been identi-
fied, among which are mainly Saccharomyces cerevisiae, Kluyveromy cesfragilis, Torulaspora and 

Zymomonas mobilis [2].

S. cerevisiae is a unicellular organism that is able to follow two metabolic routes to obtain the 

energy necessary to carry out its vital processes: alcoholic fermentation and aerobic respira-

tion. The first is characterized by the evolution of CO
2
 and the production of ethanol out 

of contact with oxygen, obtaining the energy necessary to carry out its vital processes from 

metabolizing carbohydrates. The yeast requires glucose to be catalyzed by the glycolysis or 

Embden-Meyerhof pathway, to obtain pyruvate that is then converted by anaerobically into 

ethanol and CO
2
 by the action of specific enzymes. Its optimal temperature of growth varies 

between 22 and 29°C and does not survive more than 53°C. It ferments a sugar solution with 

a concentration of less than 12% and is inactivated when the sugar concentration exceeds 15% 

due to the osmotic pressure of medium on the cell. On the other hand, Z. mobilis is a faculta-

tive anaerobic gram-negative bacterium that can ferment certain sugars through a metabolic 

pathway producing bioethanol, sometimes, more efficiently than yeasts. It has an incomplete 
Krebs cycle, but it has characteristics to perform the pyruvic synthesis pathways from glucose 

or glyceraldehyde-3-phosphate. This organism also shows a high rate of sugar uptake and a 

yield of ethanol as fuel of the 97% [3].
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The alcoholic fermentation processes using agroindustrial products present a great challenge 

given the inconveniences that could arise when using raw material for human consumption or 

edible vegetable crops for the production of ethanol, and, on the other hand, the change in the use 

of land destined for the cultivation of vegetables that will be used to produce ethanol and bioetha-

nol, which would sometimes lead to deforestation, food shortages, increase of desert regions and 

greater inability of soils to retain water, thus disrupting the balance of the hydrological cycle [4].

On a global scale, the use of energy raw materials for energy purposes and in the production 

of ethanol has led to higher prices for products such as maize or barley, as well as making eth-

anol production economically unviable. Therefore, it is important to use raw materials that do 

not compete with food products and that are low cost in the production of biofuels, must also 

ensure a good profitability and are environmentally sustainable projects. In the energy sector, 
it has been estimated that the use of all world food surpluses could only produce bioethanol 

to replace 1% of the oil currently used. Concluding that if food crops were used to produce 

ethanol, a chain of food imbalances would be generated, which would be unsustainable [5].

An alternative to producing ethanol is through the use of other nontraditional raw materials, 

which arise as by-products and/or waste from industrial processes. Propose new technolo-

gies that allow the production of ethanol from cane residues, solid waste and those materials 

containing cellulose and hemicellulose, which allows the revalorization of waste from various 

industries, converting them into raw material for the production of ethanol.

At present, efforts have been made mainly in the search for cheap raw materials, which 
replace the traditional ones, in order to achieve greater efficiency in the processes of fermenta-

tion, recovery and purification of alcohol produced. The importance of the production of bio-

ethanol has as main interest to compete with the use of fossil fuels since ethanol can be used 

as fuel for motor vehicles increasing the octane number, and therefore the reduction of con-

sumption and contaminants (10–15% less carbon monoxide and hydrocarbons). Ethanol can 

be mixed with unleaded gasoline from 10 to 25% without difficulty, although some engines 
have been able to incorporate 100% alcohol as fuel. Thus, ethanol could substitute for methyl 

tert-butyl ether (MTBE), an oxygenation product with which gasolines have been reformu-

lated in Mexico since 1989, which has reduced CO
2
 emissions. This action is very important 

since MTBE, being a very stable compound, with low degradation and very soluble in water.

The production of bioethanol lost importance at the end of the first half of the XX century, 
being replaced by the production of synthetic ethanol, from petroleum derivatives, which 

is cheaper, but cannot be used in food preparation, alcoholic beverages or medications. The 

rise in oil prices turned our eyes toward the fermentation route of ethanol production, and 

today, we work mainly in the search for cheap raw materials, replacing the traditional sugary 

materials. Studies carried out by different researchers suggest that the by‐products of mango 
juice, cane juice and molasses are an efficient alternative for the production of ethanol without 
affecting the food item, besides increasing the productivity and concentration of ethanol in 
the fermentation medium, and therefore reduce the costs of ethanol production [6].

Historically, the sugar industry in Mexico is one of the most important, characterized by sug-

arcane harvests throughout the year, with a production of cane of 46,231,229 tons per year, 

and the remaining residue derived of sugarcane has been exploited as energy biomass and 
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for the production of different biotechnological products by fermentation. Other alternatives 
of raw material are mango juice and its residues, and the fruit is grown in all the countries of 
Latin America, Mexico being the main exporting country of this fruit, with an annual produc-

tion of approximately 1 million 452 thousand tons of mango and of which more than 60% of 

this production is given to the South-Southeast region of our country.

The alternative of using residues or products that can replace the raw materials normally 

used in ethanol production is now a highly promising possibility, because the cost of produc-

tion of ethanol is closely related and dependent on the cost of the raw material, the volume 

and the composition of the same. The existing economy in Mexico related to cane cultivation 

(experience and sugar tradition) and the export of mango types offers technological alterna-

tives that allow the fermentation of cane juice, molasses and mango juice through S. cerevisiae 

and Z. Mobilis as viable sources for the production of ethanol, whether in the manufacture of 

alcoholic beverages or for the production of biofuels.

1.2. Tecnología de inmovilización

Research has been developed in order to increase the productivity of alcoholic fermentation 

processes. The productivity, expressed as grams of ethanol produced per hour per unit of fer-

mentation volume, can be increased by optimizing the composition of the culture medium, by 

the selection of an appropriate microorganism strain or through the adaptation of the design 

of reactors [7]. One challenge today is to reduce ethanol production costs, and an alternative 

is to reduce the cost of the culture media, which can represent about 30% of the final produc-

tion costs of ethanol [8].

Some fermentation technologies have been developed to improve the production of ethanol 

and its concentration in the culture media [9, 10]. Among these, the immobilization technology 

offers advantages in contrast to free cell cultures, such as increased retention time in bioreac-

tors, high cellular metabolic activity, high cell load and protection for cells from stress [10, 

11]. The immobilization cell technologies have been applied for different purposes as for the 
production of hydrogen [12] and compounds commercially used in the food industry [13]. 

Other studies have been developed with immobilized algal cells to remove nutrients (N and 

P) from wastewater, phenol and hexavalent chromium [14–17]. Similarly, the immobilization 

of Zymomonas and Saccharomyces have been used for the bio-ethanol production from waste 

materials [7–10, 18–20].

On the other hand, the immobilization technology provides the possibility of efficiently incor-

porating symbiotic bacteria [21, 22]. The interaction between two microorganisms in the same 

matrix is called coimmobilization, and this association can be positive with higher growth 

and production. However, there are relatively less applications in the ethanol production 

involving the immobilization of mixed-culture systems and/or coimmobilized cultures.

In a petroleum deficiency situation, bioethanol from yeast and bacterial fermentation has become 
a promising alternative source for fuel. Agricultural and industrial waste containing sugar, starch 

and cellulose, such as cassava peels, fruit bunches, and the effluents from sugar and pineapple 
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cannery productions have been successfully applied for the bioethanol production [23, 24]. In 

this context, the municipality of Ciudad del Carmen, Campeche, Mexico, has an annual produc-

tion of about 2.868 ha mango (Mangifera indica), obtained through various forms of cultivation 

and orchard-based technology, but the lack of local market and the poor product distribution 

to other locations cause much of the product be wasted, with significant losses in the locality. 
Hence, the need to seek alternatives to use these wastes and generate added value in the econ-

omy of the region.

This study was to determine whether the association between S. cerevisiae coimmobilized with 

Z. mobilis improved growth, and ethanol production using a culture medium equivalent to 

mango juice (M. indica) creates an opportunity for a regional fruit for exploitation in the pro-

duction of ethanol. In this study, both microorganisms were confined in small alginate beads, 
a practical means of using microorganisms for environmental applications.

2. Materials and methods

2.1. Microorganism and medium

The yeast strain S. cerevisiae (ATCC® 2601) and bacteria Z. mobilis (ATCC® 8938) were obtained 

from the laboratory Microbiologis® and used for fermentation in coimmobilized and immo-

bilized systems. Both microorganisms were cultured in a medium containing composition 

(g L−1), as described by Demirci et al. [25]: 20 g glucose, 6 g yeast extract, 0.23 g CaCl
2
•2H

2
O, 

4g (NH
4
)

2
SO

4
, 1 g MgSO

4
•7H

2
O and 1.5 g of KH

2
PO

4
, previously sterilized by autoclave. 

Strains were maintained in 250 mL of culture at 30°C and pH 4.5 with manual shaking three 

times a day. Transfers of fresh medium were made every 24 h for three consecutive days 

prior to use in experiments.

2.2. Preparation of immobilized and coimmobilized cells

For the preparation of immobilized cells, we used the technique described by Tam and Wong 

[26]. Both microorganisms were harvested by centrifugation at 3500 rpm for 10 min. The bac-

teria and yeast cells were resuspended in 50 mL of distilled water to form a concentrated 

cell suspension. The suspension was then mixed with a 4% sodium alginate solution in 1:1 

volume ratio to obtain a mixture of 2% microorganism–alginate suspension. The mixture 

was transferred to a 50‐mL burette, and drops were formed when “titrated” into a calcium 
chloride solution (2%). This method produced approximately 6500 uniform algal beads of 

approximately 2.5 mm in diameter with biomass content for Z. mobilis-alginate of 0.0055 g 

bead−1 and for S. cerevisiae of 0.00317 g bead−1 for every 100 mL of the microorganism–alginate 

mixture (Figure 1).

The beads were kept for hardening in the CaCl
2
 solution for 4 h at 25 ± 2°C and then rinsed with 

sterile saline solution (0.85% NaCl) and subsequently with distilled water. A concentration of 

2.6 beads mL−1 of medium (equivalent to 1:25 bead: medium v/v) was placed in a Chemostat 
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Figure 2. Chemostat Ommi Culture Plus (Virtis) used for fermentation experimental process.

Ommi Culture Plus (Virtis) containing 2 L of culture medium. The reactor was maintained 

under stirring at 120 rpm and 30°C (Figure 2). A similar procedure was used for coimmobiliza-

tion, with the difference that the concentrate of bacteria (25 mL) and yeast (25 mL) was mixed 
and then mixed with 50 mL of alginate; this procedure allowed retaining the same concentra-

tion of cells in all experiments.

Figure 1. Microorganism–alginate beads suspension.
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2.3. Experimental setup and procedure

This study was divided into two parts: (1) the batch experiment consisted of evaluating the 

growth and ethanol production in a medium equivalent to mango juice in cultures with free 
cells, immobilized and coimmobilized, and (2) evaluate the effect of glucose concentration 
in the production of ethanol in the system previously selected in the first experimental part 
based on the ethanol productivity obtained. Fermentation was performed in a Chemostat 

Ommi Culture Plus (Virtis) with a volume of 2 L operation, adjusting stirring at 120 rpm and 
maintaining a temperature of 30°C. The medium equivalent to mango juice was similar to that 
described by Demirci et al. [25] by adjusting the composition of the medium to a concentra-

tion of 200 g L−1 glucose, equivalent to that observed in the mango juice (M. indica).

The experimental design consisted of triplicate cultures in a Chemostat reactor Ommi Culture 

Plus for S. cerevisiae and Z. mobilis in free cell culture, immobilized and coimmobilized. For 

each experiment, the biomass was collected, as well as samples of the culture medium to the 

end of the logarithmic phase every 20 h. For the determination of ash‐free dry weights, five 
beads were dissolved and filtered through a GF‐C glass fiber filter (2.5 cm diameter), previ-
ously rinsed with distilled water, and incinerated at 470°C for 4 h. The samples were dried at 

120°C and put to constant weight for 2 h in a conventional oven and then in a muffle furnace 
at 450°C for 3 h. The soluble solids of each fermenting medium were determined every 20 h 

by taking 1 mL aliquot from each reactor and testing for the Brix level in an refractometer.

Ethanol content (% v/v) was obtained using the Anton Paar DMA 4100M instrument, which 

determines the density of the mixture in relation to the standard OIML-STD-90, which can 

determine the content of distillate ethanol (% v/v); according to the ethanol density recorded, 

it was possible to obtain an approximate of ethanol content (grams of ethanol per liter of cul-

ture) produced for each experiment. Prior to the determination of the ethanol content, a distil-

lation of cultures was conducted with a plate column distiller PS-DA-005/PE of four plates, 

at small scale. The cooling water flow was 3 L h−1 at 15°C. An aliquot of 3 L was distilled for 

4 h, maintaining the operating conditions at atmospheric pressure, without reflux and with a 
temperature ramp in the heating jacket of 30°C up to 80°C.

The STATISTICA 7.0 software for statistical analysis and calculated mean and standard devia-

tion for each treatment were used. The covariance analysis (ANCOVA) with P ≤ 0.05 was used 
to evaluate the growth in free cell cultures, immobilized and coimmobilized. The Tukey test 

(P ≤ 0.05) was used when significant differences were observed.

3. Results

3.1. Growth

In free cell cultures, the growth was observed immediately after being inoculated in the reac-

tor of 2 L. Growth kinetics shows an exponential phase for S. cerevisiae and Z. mobilis of 120 h. 

After this period of cultivation, both species showed a decline in the production of biomass, 

finalizing treatment after 200 h of culture. The maximum values of biomass concentration 
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were 14.18 and 11.80 g L−1 dry weight for S. cerevisiae and Z. mobilis, respectively. Both micro-

organisms grew satisfactorily under the culture conditions used in this study (Figure 3A), 

with a higher growth rate (μ) for S. cerevisiae (0.0547 d−1) with respect to Z. mobilis (0.0418 d−1). 

Growth rates in free cell cultures for both microorganisms S. cerevisiae and Z. mobilis were not 

significantly different (P ≥ 0.05).

For immobilized cells, both yeast and bacteria presented immediate growth after adding the 

beads to the culture medium; in both treatments, the exponential phase of growth reached 

a maximum of 80 h. It is noteworthy that although both microorganisms were immobilized 

under the same procedure, the content of biomass per bead at the beginning of treatment 

was lower for Z. mobilis (0.0031 g bead−1) compared to S. cerevisiae (0.0039 g bead−1). Despite 

these differences, both microorganisms were able to tolerate immobilization (Figure 3B), 

reaching maximum biomass content values of 0.0055 and 0.0047 g bead−1 for S. cerevisiae 

and Z. mobilis, respectively. In relation to growth, Z. mobilis showed a higher growth rate 

(0.142 d−1) with respect to S. cerevisiae (0.106 d−1), but there were no significant differences 
(P ≤ 0.0001).

3.2. Glucose‐substrate removal

The decrease of substrate showed significant differences (P ≤ 0.0001) between treatments 
with free and immobilized cells for both species (Figure 4). However, the Tukey test analysis 

showed that the two species in free culture were not significantly different (P > 0.05) in 200 h 

of treatment. While for the immobilized and coimmobilized cell cultures, only the immobi-

lized Z. mobilis bacteria showed no significant differences (P = 0.245) during removal of the 

substrate with the coimmobilized system during 140 h of culture (Figure 4B).

It is a fact that consumed substrate was greater in free culture for S. cerevisiae and Z. mobilis 

from 200 to 80 g L−1 (60% removal) after the 200-h treatment period (Figure 4A), compared 

to the immobilized system with 40% removal for S. cerevisiae (from 200 to 120 g L−1) and 30% 

removal for Z. mobilis (from 200 to 140 g L−1), while in those cultures of coimmobilized cells 

consumption ranged from 200 to 130 g L−1 (35% removal) (Figure 4B).

The average consumption analysis based on removal rates determined during the exponential 

growth for both species showed that free culture S. cerevisiae and Z. mobilis reached removal 

rates of 2.0 and 2.7 g-substrate per g-biomass d, respectively. This suggested greater produc-

tivity for the bacteria (5.76 g h−1) with respect to yeast (5.29 g h−1) (Table 1).

In cultures with immobilized cells, the removal rate in the exponential phase (80 h) was 

greater for S. cerevisiae (0.165 g-substrate per g-biomass d) with respect to Z. mobilis (0.056 g-

substrate per g-biomass d), but in coimmobilized culture it was greater (0.235 g-substrate per 

g-biomass d) since both species contribute to reducing glucose and increasing the removal 

rate. Similar results were observed in the productivity, where the coimmobilized cell culture 

showed higher values (8.80 g L−1 h−1) with respect to the immobilized cells of S. cerevisiae 

(8.45 g L−1 h−1) and Z. mobilis (8.70 g L−1 h−1 (Table 1). In general, the highest productivity 

levels were recorded in coimmobilized and immobilized cultures with respect to free cell 

cultures because shorter ethanol production time (80 h) compared to free cultures (120 h).
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3.3. Effect of initial concentration of glucose on ethanol production

It is a fact that most cultures from fruits may contain a high concentration of fiber solids that 
cause problems of mixture in the reactor, and consequently a low contact between cells and 

substrate. Mango juice is no exception. In this study, we evaluated the growth and alcohol 
production of Z. mobilis coimmobilized with S. cerevisiae in cultures with dilutions of 200 and 

50 g L−1 of substrate in equivalent medium.

For the coimmobilized of Z. mobilis and S. cerevisiae within alginate beads, an immediate 

increase in biomass content was observed. Although the biomass content for both treatment 

0 50 100 150 200 250

B
io

m
a

s
s
 (

g
 l
 -

1
 )

0

2

4

6

8

10

12

14

16

S. cerevisiae 

Z. mobilis

Time (h)

0 20 40 60 80 100 120 140 160

B
io

m
a

s
s
 (

g
 b

e
a
d

-1
 )

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

S. cerevisiae

Z. mobilis

A

B

Figure 3. Average increase of biomass for Saccharomyces cerevisiae and Zymomonas mobilis in free culture (A) and 

immobilized cells (B).
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showed significant differences (P ≤ 0.0024), the results suggest that the concentration of sub-

strate was not a limiting factor for the growth for bacteria and yeast (Figure 5). The maximum 

biomass content in the treatment of glucose to 50 g L−1 (Gl
50

) was obtained in the first 100 h of 
culture with about 0.0063 g beads−1; while for the treatment of 200 g L−1 glucose (Gl

200
) was of 

0.053 g beads−1 during a period of 80 h (Figure 5).
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Figure 4. Average reduction of glucose (g L−1) for Saccharomyces cerevisiae and Zymomonas mobilis in free culture (A) and 

immobilized culture (B). Different letters indicate significant differences (P ≤ 0.05).
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The content of alcohol produced had no significant differences (P ≤ 0.05) with respect to 
glucose concentration. However, uptake rates exhibit a decline as the glucose content in the 

reactor decreases (Table 2). The highest uptake rate occurred at a concentration of 200 g L−1 

glucose (0.235 g-substrate per g-biomass d) with a 76.5% removal, compared to 50 g L−1 glu-

cose (0.08 g-substrate per g-biomass d). Although the production of alcohol was similar in 

both treatments, the ratio mol-ethanol produced per consumed mol-glucose was higher in 

cultures of 50 g L−1 glucose with a value of 6.91, with respect to 200 g L −1 glucose with a ratio of 

5.82 mol-ethanol produced per consumed mol-glucose (Table 2). Similarly, higher productiv-

ity was obtained (8.85 g L−1 h−1) at a lower glucose concentration compared to a medium with 

high glucose content (8.80 g L−1 h−1).

4. Growth and productivity

To evaluate the capacity of growth in free and immobilized culture, two microorganisms, yeast 

and bacteria, were subjected to the same culture conditions (Figure 3A). In free culture, the yeast 

S. cerevisiae showed a higher cell density and specific growth rate (0.0547 d−1) with respect to 

Culture Cells Ethanol 

formed  

(% v/v)

Y (g L−1 h−1) Glucose  

consumed (g L−1)

Uptake rate (g‐

substrate removed 

per g‐biomass d)

   
moles Eth

 
________

 
mole Glc

   

Free cells S. cerevisiae 80.6 5.29a 90 2.71a 2.76

Z. mobilis 87.7 5.76a 80 2.0a 3.38

Immobilized 

cells

S. cerevisiae 86.0 8.45b 60 0.165b 4.42

Z. mobilis 87.7 8.70b 43 0.056b 6.29

Coimmobilized 

cells

Z. mobilis and 

S. cerevisiae

88.7 8.80c 47 0.235c 5.82

a,b,c Indicate significant differences (P ≤ 0.05).

Table 1. Uptake rate, productivity (Y) and ethanol mole produced per glucose mole for Saccharomyces cerevisiae and 

Zymomonas mobilis in free culture, immobilized and coimmobilized.

C
0

Ethanol formed 

(% v/v)

Y (g L−1 h−1) Glucose  

consumed (g L−1)

Uptake rate  

(g‐substrate 

removed per g‐

biomass d)

   
moles Eth

 
________

 
mole Glc

   

50 89.63 8.85 40.0 0.08 6.91

200 88.70 8.80 47.0 0.235 5.82

C
0
: Initial concentration of glucose (g L−1 ).

Table 2. Productivity (Y), uptake rate and ethanol mole produced per glucose with minimum content of glucose for 

coimmobilized Z. mobilis and S. cerevisiase.
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bacteria Z. mobilis (0.0418 d−1) in a treatment time of 120 h. The immobilized systems are known 

to have a greater capacity of cell growth and high metabolic activity [27, 28], which is consistent 

with the results obtained in this study. The result showed a high growth rates for immobilized 

Z. mobilis (0.142 d−1) and S. cerevisiae (0.106 d−1) with respect to free cell cultures, suggesting that 

immobilization did not affect growth in both microorganisms and increased biomass content 
favorably. Furthermore, the high activity in immobilized cell was observed with in a decrease 

of substrate in a shorter time of treatment (80 h) compared to free cell cultures (120 h). The short 

time of treatment for immobilized cell could be attributed to the increase of biomass within 
the beads and consequently an immediate decay of the substrate; however, this indicates that 

increasing cell population within the beads can cause a limited effects of nutrients on the cells 
located at the center of the beads, causing a decrease in cellular activity [28, 29].

Another factor that probably favors the rapid decline in cell density is attributed to the pro-

duction of CO
2
 as result of fermentation activity. Studies suggest the adverse effect of CO

2
 gas, 

because if the diffusion of CO
2
 is lower compared to its production, it will accumulate inside 

of alginate bead [30]. In this study, the CO
2
 is observed in the reactor as bubbles attached on 

the surface of the beads, suggesting that the spread of CO
2
 gas in the first 80 h was not a factor 

that inhibited growth and the production of alcohol; however, after this time, gas saturation 

in the reactor was probably high, affecting the diffusion of CO
2
. This coupled with a limita-

tion in the transport of nutrients and subsequent inhibition of microorganisms and may have 

caused glucose consumption to be lower compared to free cells (Table 1).

In particular, in free cell culture, the lower percentage of alcohol obtained by yeast during the 

increasing fermentation culture commonly relates to the fact that this is affected by the high 
concentration of ethanol in the solution, which may inhibit metabolism and decrease efficiency 
[31], unlike bacteria Z. mobilis [30]. In the present study, the lowest biomass produced by the 

bacteria (0.0047 g L−1) with respect to yeast (0.0055 g L−1) may be practical from the standpoint of 

waste generation. Similarly, observations were reported by Amin and Verachtert [9] for Z. mobi-

lis and Saccharomyces bayanus immobilized in carrageenan with 5.6 and 9.9 g L−1, respectively.
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Figure 5. Growth (g biomass bead−1) in coimmobilized system at different substrate concentrations.
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It is evident that ethanol production was not inhibited in immobilized or coimmobilized sys-

tems, and even showed higher productivity with respect to free cells (Table 1), suggesting 

that they are more efficient in the conversion of sugar with respect to time. Krishnan et al. [19] 

reported lower productivity for Z. mobilis immobilized in carrageenan (1.6 g L−1 h−1) compared 

to that obtained in this study (8.7 g L−1 h−1); this difference may be attributed to the lower 
amount of glucose content in the culture medium of 32 g L−1 with respect to that used in the 

present study of 200 g L−1.

Interestingly, the immobilized systems showed a higher conversion of substrate of 4.42 and 

6.29 mole of ethanol per mole of glucose for yeast and bacteria, respectively, compared to the 

obtained by free cells, from 2.7 to 3.3 mole of ethanol per mole of glucose. In general, treat-

ments with immobilized cells showed a higher output of ethanol per mole of glucose with 

respect to that reported by Amin and Verachtert [9] for Z. mobilis and S. bayanus immobilized 

in carrageenan with values of 1.8–1.9 mole of ethanol produced per mole of consumed glu-

cose. Gunasekaran et al. [32] and Krishnan et al. [19] suggest that Z. mobilis is a good candi-

date to obtain alcohol with approximately 1.9 mole ethanol per mole of glucose; similarly, 

Rogers et al. [33] reported that specific productivity of ethanol (g ethanol g−1 biomass dry 

weight) is greater for Zymomonas than for Saccharomyces uvarum.

According to the results, immobilization and coimmobilization exhibited a lower uptake rate 

compared to free cells; this shows that there was less consumption of substrate (Table 1). 

Nevertheless, there was greater productivity, which indicates that it is possible to obtain high 

alcohol content with a lower requirement of substrate, but with the disadvantage of residual 

glucose in the medium; this problem can be solved with sequenced systems, as suggested by 

Demirci et al. [25]. Another alternative of solving this problem is to increase the cell number 

or inoculum size within the reactor. This is reasonable because a high number of cells could 

create a greater sorption of substrate (glucose) into the cell and eventually consumed sub-

strate. However, Siripattanakul‐Ratpukdi [10] suggested that with different cell yeast loads, 
the same reduction (>90%) of substrate is obtained at the end of a treatment period of 10 h.

The low glucose reduction observed in this study in alginate beads can be attributed to the 
decline in cell density, but it is likely that the diffusion of substrate could have been pre-

vented. Studies have reported that the adsorption of substrate by the matrix was observed in 

the first hours of treatment, with a possible decrease of substrate diffusion within the matrix 
in a continuous process [34].

On the other hand, Robinson et al. [35] suggest that the diffusion rate within the alginate 
matrix depends on the concentration gradient between the culture medium and matrix; this 

is, when the nutrient concentration in the culture medium decreases, the diffusion rate occurs 
within the matrix and therefore the removal rate. In this study, during the first hours of treat-
ment, the matrix is probable a partial saturation with substrate (glucose), because the substrate 

is decreased during the culture time, and cell growth for both microorganisms was continu-

ous. Clearly, the immobilized cell system successfully decreased glucose by adsorption of 

the matrix (immobilized glucose) and biodegradation (bioconversion of glucose), being the 

main process the biodegradation. This suggests that the main factor that could limit glucose 

removal may have been the high concentration of CO
2
 in the reactor.
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4.1. Coimmobilization of Z. mobilis and S. cerevisiae at different glucose  
concentrations

The biomass content in alginate beads shows that a high concentration of glucose (200 g L−1) 

leads to a rapid decrease compared to cultures with a low glucose concentration (50 g L−1). 

This confirms the fact that the high concentration of glucose saturates beads faster, reduc-

ing the diffusion between beads and the culture medium; consequently, the diffusion of CO
2
 

produced can be reduced and remains trapped inside the bead, causing a decrease in growth 

and substrate consumption.

Conversely, the low concentration of substrate of the culture medium indicates the presence of 

a soft transport and substrate accumulation within the matrix, allowing a proper consumption 

and growth of bacteria and yeast. Therefore, a low concentration of substrate may actually 

increase the production of alcohol with minimal residual glucose, reaching values of 6.91 mol 

of ethanol per mole of glucose, with respect to a high glucose concentration (Table 2).

Previous studies in our laboratories have shown that the fermentation process of mango juice 
for a coimmobilized system can produce a production ratio of 1.4 L of alcohol (79% v/v ethanol) 

for every 3 L of mango juice.

5. Conclusions

The present study has shown the existing potential of using coimmobilized systems in the 

production of ethanol. The association of Z. mobilis and S. cereviase was positive, obtaining 

a higher ethanol content and high conversion of substrate compared to free and immobi-

lized cells.

In general, the immobilization technology offers an alternative by increasing productivity and 
conversion of substrate compared to culture systems with free cells. In the present study, the 

immobilized systems showed high conversion capacity to obtain high alcohol content with a 

lower requirement of substrate.

The possible substrate inhibition was not a factor affecting cell growth in both organisms; 
it is clear that the immobilized cell system successfully reduced glucose by the matrix 

adsorption (immobilized glucose) and biodegradation (bioconversion of glucose), being 

biodegradation the main process. This suggests that the main factor that could limit fur-

ther growth was the high concentration of CO
2
 in the reactor. Furthermore, although no 

significant differences were detected in the alcohol content in immobilized culture in 
diluted medium, the conversion from glucose to ethanol is greater in those media with a 

glucose concentration of 50 g L−1. For practical purposes, it is desirable that the fermenta-

tion of waste organic be performed through dilutions to increase the homogeneity of algi-

nate beads within the reactor and consequently allow the diffusion of CO
2
 and substrate 

through the beads.
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