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Abstract

Many in vitro and in vivo studies on the mechanisms underlying calcium nephrolithiasis 
have provided evidence of a frequently associated condition, i.e., a microscopic renal crys‐
tal deposition that can occur within the tubular lumen (intratubular nephrocalcinosis) or 
in the interstitium (interstitial nephrocalcinosis). Medullary nephrocalcinosis is the typi‐
cal pattern seen in 98% of cases of human nephrocalcinosis, with calcification clustering 
around each renal pyramid. It is common in patients with metabolic conditions that pre‐
dispose them to renal calcium stones. Cortical nephrocalcinosis is rare and usually results 
from severe destructive disease of the cortex. It has been described in chronic glomerulone‐
phritis, but often in association with another factor, such as an increased calcium ingestion, 
acute cortical necrosis, chronic pyelonephritis or trauma. The most accredited hypothesis 
to explain the onset of interstitial nephrocalcinosis is purely physicochemical, relating to 
spontaneous Ca

2
PO

4
 crystallization in the interstitium due to oversaturation of Ca

2
PO

4
salts 

in this milieu. The theory that nephrocalcinosis is a process driven by osteogenic cells was 
first proposed by our group. We review nephrocalcinosis in terms of its definition, genetic 
associations, and putative mechanisms, pointing out how much evidence in the literature 
suggests that it may have some features in common with, and pathogenic links to vascular 
calcification.

Keywords: nephrocalcinosis, genetics, Randall’s plaque, calcium crystals, vascular 
calcification, osteogenic transdifferentiation
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1. Introduction

Nephrolithiasis is a common disease, typically occurring between 30 and 60 years of age. It 

is the most often‐diagnosed chronic condition involving the kidney, after hypertension. The 

symptoms and consequences are not life threatening for the majority of patients, but stones in 

the urinary tract are a major cause of morbidity, hospitalization, and days lost from work [1]. 

The incidence of nephrolithiasis is increasing. In Italy, for example, the number of patients 

given hospital treatment for this condition rose between 1988 and 1993 from 60,000 to 80,000 
a year. About 12,000 patients a year required surgical treatment or urological maneuvers, 

and the number of extracorporeal shock wave lithotripsy sessions administered amounted to 

approximately 50,000 a year [2].

The metabolic characteristics of the urinary stones identified in patients with nephrolithiasis 
vary, but the most common (accounting for 75% of all cases) are calcium‐containing stones. 
Calcium oxalate (CaOx) is the primary component of most stones [3], often combined with 

some calcium phosphate (CaP), which may form the stone’s initial nidus. Crystal retention 

in the kidney is essential to stone formation and this occurs with several different patterns of 
deposition in the kidneys of stone formers, each pattern being associated with specific types 
of stone. Patients with idiopathic CaOx stones have white deposits on their papillae called 

“Randall’s plaque” [4]. Biopsies of these areas reveal interstitial deposits of CaP in the form of 

biological apatite, which first develop in the basement membrane of the thin loops of Henle 
and which contain layers of protein matrix. These deposits may extend down to the tip of 

the papilla and, if the overlying urothelium is denuded, the exposed plaque can become an 

attachment site for stones [5]. Stones seem to start as deposits of amorphous CaP overlying 

the exposed plaque, interspersed with urinary proteins. With time, more layers of protein and 
mineral are deposited, and the mineral phase becomes predominantly CaOx.

By contrast, in patients whose stones consist mainly of CaP (apatite or brushite), these 

stones are not attached to plaque. Instead, many collecting ducts fill with crystal deposits 
that occupy the tubule lumen and may protrude from the openings in the ducts of Bellini. 

Generally speaking, most stone formers studied to date have had crystal deposits in the med‐

ullary collecting ducts, with the exception of those with idiopathic CaOx stones, who have no 

intratubular deposits, but abundant deposits of apatite in the papillary interstitium.

Calcium nephrolithiasis, the most common renal form of stone disease, is defined as the for‐

mation of macroscopic concretions of inorganic and organic material in the renal calyces and/

or pelvis. Many in vitro and in vivo studies on the mechanisms underlying calcium nephroli‐

thiasis have produced evidence of this condition frequently being associated with nephrocal‐

cinosis, a condition involving microscopic renal crystal deposition.

2. Nephrocalcinosis

Strictly speaking, the term “nephrocalcinosis” refers to the generalized deposition of CaP or 

CaOX in the kidney, which can occur within the tubular lumen (intratubular nephrocalcinosis) 

or in the interstitium (interstitial nephrocalcinosis). Some authorities restrict the definition of 
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nephrocalcinosis to the deposition of CaP crystals in the interstitium. Randall’s plaque could 

be an example of interstitial nephrocalcinosis.

It has been suggested in Refs. [6, 7] that nephrocalcinosis should be divided into three cat‐

egories: molecular nephrocalcinosis, involving an increase in renal intracellular calcium with‐

out any crystal formation and essentially reflecting the renal dysfunction of hypercalcemia; 
microscopic nephrocalcinosis, in which CaP or CaOX crystals are visible on light microscopy, 

but not radiologically; and macroscopic nephrocalcinosis, when calcification is visible radio‐

logically or on ultrasound scans. Nephrocalcinosis does not necessarily lead to renal stones, 

and renal stones may occur without any apparent macroscopic nephrocalcinosis, so these 

two conditions are distinct but closely related [6].

As for the sites involved, nephrocalcinosis can be divided into cortical and medullary 

nephrocalcinosis.

Cortical nephrocalcinosis is rare and usually results from severe destructive disease of the cortex. 

This condition has been described in chronic glomerulonephritis, though often in association 

with another factor, such as an increased calcium ingestion, acute cortical necrosis, chronic 

pyelonephritis, or trauma [8, 9], autosomal recessive polycystic kidney disease, primary and 

secondary oxalosis, chronic renal allograft rejection, or benign nodular cortical nephrocalci‐

nosis [7]. Three different patterns of cortical nephrocalcinosis have been identified radiologi‐
cally [10]. In the most common pattern, there is a thin peripheral band of calcification, often 
extending into the septal cortex. In a second type, there is a double line of calcification along 
the two sides of the necrotic zone in the cortex (what Lloyd Thomas et al. called “tram line” 

calcification in describing the pattern of nephrocalcinosis seen in obstetric cases of cortical 
necrosis [11]). The least common pattern consists of multiple punctate calcifications randomly 
distributed in the renal cortex.

Medullary nephrocalcinosis is the typical form seen in 98% of cases of human nephrocalcinosis. 
It forms clusters of calcification around each renal pyramid. It is common in patients with 
metabolic conditions (several of which are monogenic diseases) that predispose them to renal 

calcium stones. Knowing which genes are involved can help to shed light on the mechanisms 

behind nephrocalcinosis.

2.1. Genetics of Conditions predisposing to medullary nephrocalcinosis

Stone initiation and growth is prompted by the urine becoming supersaturated with a sol‐

ute of calcium, oxalate, uric acid, and cystine, which leads the dissolved salts to condense 

into solids, thus forming the stone. But urinary CaOx supersaturation is a common finding 
in normal individuals too, who develop no stones. This is most likely due to the presence 

of crystallization inhibitors such as citrate or pyrophosphate in their urine. In addition to 

the concentration of solutes, urinary pH is a crucially important factor influencing crystal 
solubility. Supersaturation and crystallization in the urine also rely on the presence of mac‐

romolecules capable of binding and forming complexes with Ca and Ox. Mammalian urine 

contains numerous macromolecules that inhibit crystal formation, growth, and aggregation 

in the kidney. Levels of supersaturation and crystallization are kept under control by the 

proper functioning of a variety of cells lining the renal tubules [12, 13].

Understanding the Pathophysiology of Nephrocalcinosis
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Conditions predisposing to medullary nephrocalcinosis may be either those that raise the 

urinary concentration of inductors of calcium crystal deposition or those that lower the con‐

centration of the inhibitors of this process. The former category includes hypercalciuria, hyp‐

eroxaluria, the latter hypocitraturia and hypomagnesuria. Renal tubular acidosis (RTA), on 
the other hand, is responsible for changes in urinary pH, which has a fundamental role in 
favoring crystallization. In some cases, there may also be specific anatomical abnormalities 
that predispose to the onset of nephrocalcinosis, as in medullary sponge kidney (MSK).

Several genetic disorders have been found associated with conditions that predispose individu‐

als to the development and progression of nephrocalcinosis. Most of them are tubular disorders 

associated with epithelial cellular and paracellular ion transport disruptions that result in the 

urinary excretion of higher levels of calcium, phosphate or oxalate and lower levels of citrate 

and magnesium. Table 1 shows the genetic basis for the link between some inherited disorders 

and medullary nephrocalcinosis [7]. Figure 1 shows the list of intrarenal transport defects that 

prompt a dysfunctional renal handling of the two most important divalent cations Ca2+ and 

Mg2+ [14]. As can be noted, not all cation‐handling disorders are associated with nephrocalcinosis.

The kidney handles calcium, phosphate, and oxalate in the proximal tubules, in the thick 

ascending limb (TAL) of the loop of Henle, and in the distal convolute tubule (DCT), shown in 
Figure 2 [6]. Knowing the site where the tubular exchanger and transporter proteins involved 

in regulating urinary calcium, phosphate, and oxalate work help us better understand the 
mechanisms underlying nephrocalcinosis.

Bearing in mind that 98% of interstitial crystal deposition occurs in the medulla around each 
pyramid, Sayer et al. proposed the model of nephrocalcinosis shown in Figure 3.

We focus our attention on the genetic defects that alter the kidney’s homeostatic capacity.

2.2. Renal calcium handling

Of all the calcium filtered by the kidney, 98% is reabsorbed by the tubules, with the proximal 
tubule reabsorbing about 65%, the TAL of the loop of Henle accounting for approximately 
20–25%, and 8–10% being reabsorbed in the distal tubule [15]. Hypercalciuria is an important, 
identifiable, and reversible nephrocalcinosis risk factor. It is a complex trait, caused by both 
environmental and genetic factors. It is not a disease per se, but represents the upper end of a 

continuum, rather like height, weight, and blood pressure, and—like these polygenic traits—

urinary calcium excretion should be considered a graded risk factor [16]. Table 2 shows a 

summary of the clinically and experimentally identified monogenic causes of hypercalciuria, 
pointing to the genetic causes of renal calcium leak.

It is worth remembering that the crystallization of calcium salts is a physiological event linked 

to biomineralization, i.e., the capacity of calcium, like other inorganic crystalline or non‐crystal‐

line minerals, to interact with and deposit around biomolecules, becoming an integral part of 

organic tissues to provide hardness and strength. Biomineralization is often arbitrarily distin‐

guished as physiological or pathological. It would be more appropriate to say that pathological 

calcium crystallization is a physiological process occurring in the wrong place and at the wrong 

time [17]. Nephrocalcinosis might fit this definition.

Updates and Advances in Nephrolithiasis - Pathophysiology, Genetics, and Treatment Modalities6



Gene Protein Disorder Mode of inheritance

ATP6V1B1 β1 Subunit of H+ ‐ ATPase Distal renal tubular 
acidosis (dRTA)

AR

ATPV0A4 α4 Subunit of H+‐ ATPase Distal renal tubular 
acidosis (dRTA) with 

neural deafness at birth or 

late onset

AR

SLC12A1 Sodium‐potassium‐

chloride transporter 

(NKCC2)

Bartter syndrome type 1 AR

KCNJ1 Potassium channel 

(ROMK1)

Bartter syndrome type 2 AR

BSND Barttin Bartter syndrome type 4 AR

CLCNKB Chloride channel ClC‐Kb Bartter syndrome type 3 AR

CASR Calcium‐sensing receptor 

(CasR)

Hypocalcemia with 
hypercalciuria

AD

CFTR ATP‐binding cassette 
transporter

Cystic fibrosis

CLDN16 Claudin‐16, tight junction Familial hypomagnesemia 

with hypercalciuria and 

nephrocalcinosis

AR

CLDN19 Claudin‐19, tight junction Familial hypomagnesemia 

with hypercalciuria and 

nephrocalcinosis with 

ocular impairment

AR

SLC4A1 AE1 Distal renal tubular 
acidosis (dRTA) with 

neural deafness at birth or 

late inset

AD

SLC34A3 Sodium‐dependent 

phosphate transporter 

protein 2C (NPT2C)

Hereditary 
hypophosphatemic rickets 

with hypercalciuria 

(HHRH)

AR

CLCN5 Chloride channel 5 (ClC‐5) Dent disease 1 XLR

OCRL Phosphatidylinositol 

4,5‐bisphosphate 5‐

phosphatase (OCRL1)

Dent disease 2 or Lowe’s 
syndrome

XLR

PHEX Phosphate‐regulating 

endopeptidase

Hypophosphatemic rickets XLD

FAM20A Pseudokinase FAM20A MacGibbon‐Lubinsky 

sindrome

AD

AGXT Alanine glyoxylate 

aminotransferase

Primary hyperoxaluria (PH 
type I)

AR

GRHPR Glyoxylate reductase Primary hyperoxaluria (PH 
type 2)

AR

ELN, LIMK1 Elastin Williams‐Beuren syndrome 
(WBS)

AR

Understanding the Pathophysiology of Nephrocalcinosis
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Figure 1. Schematic representation of the nephron listing the predominant origins of intrarenal transport defects causing 

dysfunctional renal handling of divalent cations. This figure was originally published in Ref. [14].

2.3. Renal phosphate handling

The kidney’s control over systemic phosphate homeostasis is crucial. About 80% of filtered 
phosphate is reabsorbed from the urine by transporters located in the proximal tubule and 

mostly in the juxtamedullary nephrons (Figure 2). At least three transporters are responsible 

for renal phosphate reabsorption, and they are precisely regulated by various cellular mecha‐

nisms and factors [18]. They are members of the Type II NA+‐dependent phosphate cotrans‐

porter family encoded by the SLC34A1, SLC34A3, and SLC20A2 genes. Though it is not a 

Gene Protein Disorder Mode of inheritance

GDNF Glial cell line‐derived 

neurotrophic factor

Medullary sponge kidney 

(MSK)

AD

SLC7A9 B(0,+)‐type amino acid 

Transporter 1 (BAT1)

Cystinuria AD

ADCY10 Adenylate Cyclase 10, 

Soluble

Familial idiopathic 

hypercalciuria

AD

SCNN1G/B Renal epithelium channel 

(βENaC and αENaC)
Liddle syndrome AD

ATP7B Copper‐transporting 

ATP‐ase

Wilson syndrome AR

AD, autosomal dominant; AR, autosomal recessive; XLR, X‐linked recessive; XLD, X‐linked dominant.

Table 1. Inherited disorders associated to medullary nephrocalcinosis (NC).

Updates and Advances in Nephrolithiasis - Pathophysiology, Genetics, and Treatment Modalities8



transporter protein, the Na+/H+ exchanger regulatory factor (NHERF1) plays a crucial part 
in renal phosphate transport by binding to SLC34A1 in the proximal tubule. Alterations in 

the genes encoding these transporters result in phosphate wasting, and consequent hyper‐

phosphaturia (Table 3). For the sake of completeness, Table 3 also includes renal phosphate 

handling impairments due to extrarenal inherited defects.

2.4. Renal oxalate handling

Urinary oxalate is the most important risk factor for CaOx nephrocalcinosis/nephrolithiasis. 

Oxalate is filtered freely at the glomerulus [6]. Anion exchange proteins in the proximal tubule 

mediate oxalate excretion and recycling at the brush border membrane (Figure 2). These pro‐

teins belong to the SLC26 family, and they allow oxalate loss in exchange for chloride, then 

uptake oxalate in exchange for sulfate loss, energized by Na‐sulfate transport in the  proximal 

tubules [19]. The main causes of hyperoxaluria relate, however, to genetic defects that alter 

glyoxylate metabolism in the liver and erythrocytes, leading to endogenous oxalate over‐

production. These hereditary autosomal recessive forms of hyperoxaluria are called primary 

hyperoxaluria type I, type II, and type III [20]. Defects in the genes responsible for oxalate reab‐

sorption have recently been reported too. Recessive mutations in SLC26A1 gene were identified 
in two unrelated individuals with calcium oxalate kidney stones. Functional experiments have 

Figure 2. Tubular transport of calcium, phosphate, and oxalate. A nephron map of exchanger and transporter proteins 

involved in the regulation of urinary calcium, phosphate and oxalate is shown. In the proximal tubule (PT) apical Na/

Pi cotransporters (NaPi‐2a) mediate phosphate reabsorption, whereas several anion exchange proteins (including those 

of the SLC26 family) mediate transcellular oxalate (Ox) secretion and recycling. There is no evidence for calcium or 

phosphate transport in the thin descending limb (DLH) or the thin ascending limb (tALH)of the loop of Henle. The 
TAL of Henle allows paracellular calcium (and magnesium) reabsorption via paracellin channels (PCLN‐1). The distal 
convoluted tubule (DCT) allows for regulated transcellular reabsorption of calcium via apical TRPV5 and the basolateral 
NCX, together with the basolateral PMCA. A calcium entry pathway exists within the IMCD, the molecular identity of 
which remains uncertain. It is likely that Na/Pi isoforms are also present in this nephron segment and their physiological 

function may be linked to the PPi transporter protein ANKH. Basolateral calcium exporters NCX and PMCA are also 
present in the collecting duct. This figure was originally published in Ref. [6].

Understanding the Pathophysiology of Nephrocalcinosis
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shown that these mutations resulted in decreased transporter activity [21], thus confirming 
their role in the disease. In the SLC26A6 gene has also recently been described a single nucleo‐

tide polymorphism associated with increased calcium oxalate kidney stones [22]. Table 4 sum‐

marizes what we know about the genetics of hyperoxaluria.

2.5. Renal citrate handling

Citrate is filtrated freely at the glomerulus. In humans, from 65 to 90% of the filtered citrate is 
reabsorbed, mainly in the proximal tubule [23]. Urinary citrate is an important calcium chelator, 

consequently reducing the potential of calcium and oxalate to interact. In addition, citrate binds 

crystals’ surface preventing their adhesion to renal epithelial cells [24]. It is intriguing that oxalate 

transport by SLC26A6 and citrate transport by the sodium dicarboxyl cotransporter SLC13A2—

both located in the apical membrane of the proximal tubules and small intestine—have been 

found to interact. This was demonstrated in SLC26A6 KO mice, which are not only hyperox‐

aluric, but also hypocitraturic [25]. Hypocitraturia is a known risk factor for the development 

Figure 3. Renal papillary model of nephrocalcinosis. Collecting ducts (CD) together with descending loops of Henle 
(DLH) and ascending thin loops of Henle (tALH) and vasa recta (VR) are shown through a cross‐section of a renal papilla. 
Possible initial sites of nephrocalcinosis are shown as shaded regions. Mechanisms leading to calcification may include: 
(1) Pi permeability at the papillary thin loops of Henle would allow interstitial loading of phosphate; (2) collecting 
duct absorption of calcium, possibly via apical calcium channels (e.g., TPC1) and basolateral calcium exit would allow 

delivery of calcium ions to the interstitium; Na/Pi cotransport at a collecting duct location would also provide additional 
phosphate ions, which may be derived from PPi delivery into the lumen via ANK; (3) concentration of oxalate from the 
urinary space into the papillary interstitium allows delivery of oxalate ions; (4) intraluminal crystal formation, both from 
the loop of Henle (calcium phosphate) and collecting duct (calcium oxalate) may adhere to collecting duct epithelial 
surfaces, then by endocytosis/transcytosis the crystals are delivered to the papillary interstitium and accumulate. 

Dissolution by epithelial cells or by interstitial cells (including macrophages) may provide a clearance mechanism. This 
figure was originally published in Ref. [6].
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Gene Protein Disorder Mode of inheritance

ATP6V1B1 β1 Subunit of H+ ‐ ATPase Distal renal tubular 
acidosis (dRTA)

AD

ATPV0A4 α4 Subunit of H+ ‐ ATPase Distal renal tubular 
acidosis (dRTA) with 

neural deafness at birth or 

late onset

AR

SLC12A1 Sodium‐potassium‐

chloride transporter 

(NKCC2)

Bartter syndrome type 1 AR

KCNJ1 Potassium channel 

(ROMK1)

Bartter syndrome type 2 AD

CLCNKB Chloride channel ClC‐Kb Bartter syndrome type 3 AR

BSND Barttin Bartter syndrome type 4 AR

MAGED2 Melanoma associated 

antigen D2
Bartter syndrome type 5 XLR

CASR Calcium‐sensing receptor 

(CasR)

Hypercalciuria with 
hypocalcemia

AD

G6PC Glucose‐6‐phosphatase Glycogen storage disease 

type 1a

AR

FAH Fumarylacetoacetase Tyrosinemia type 1 AR

ATP7B Copper‐transporting 

ATP‐ase

Wilson disease AR

CLCN5 Chloride channel 5 (ClC‐5) Dent disease 1 XLR

OCRL Phosphatidylinositol 

4,5‐bisphosphate 5‐ 

phosphatase (OCRL1)

Dent disease 2, Lowe 
syndrome

XLR

CLDN16 Claudin‐16, tight junction Familial hypomagnesemia 

with hypercalciuria

AR

CLDN19 Claudin‐19, tight junction Familial hypomagnesemia 

with hypercalciuria

AR

SLC34A1 Sodium‐phosphate 

transport protein 2A

Fanconi renal tubular 

syndrome 2

AR

ADCY10 Adenylate Cyclase 10, 

Soluble

Familial idiopathic 

hypercalciuria

AD

KLOTHO Regulator of calcium 

homeostasis (Klotho)

Tumoral calcinosis, 

hyperphosphatemic

AR

AD, autosomal dominant; AR, autosomal recessive; XLR, X‐linked recessive.

Table 2. Monogenic forms of hypercalciuria: kidney as the primary defect.
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of nephrocalcinosis/nephrolithiasis. No monogenic form of hypocitraturia has been reported 

so far, whereas genetic associations have been demonstrated between polymorphisms in the 

VDR and SLC13A2 genes and hypocitraturia [26, 27]. Very recently, Rendina et al. [28] provided 

evidence of an epistatic interaction between VDR and SLC13A2 in the pathogenesis of hypoci‐
traturia. This may come as no surprise because the active form of vitamin D in the nephron uses 
VDR to modulate citrate metabolism and transport [26]. Finally, Shah et al. [29] have suggested 

Gene Protein Disorder Mode of 

inheritance

SLC34A1 Sodium‐phosphate transport protein 2A Fanconi renal tubular syndrome 2, 

Hypophosphatemic nephrolithiasis/
osteoporosis‐1

AD

SLC34A3 Sodium‐phosphate transport protein 2C Hereditary hypophosphatemic rickets 
with hypercalciuria (HHRH)

AR

SLC9A3R1 Na+/H+ exchange regulatory cofactor 

NHE‐RF1
Hypophosphatemic nephrolithiasis/
osteoporosis‐2

AD

FGF23 Fibroblast growth factor 23 Hypophosphatemic ricket AD

KLOTHO Regulator of calcium homeostasis (Klotho) Tumoral calcinosis, hyperphosphatemic AR

GALNT3 Polypeptide N‐

acetylgalactosaminyltransferase 3

Tumoral calcinosis, hyperphosphatemic AR

PHEX Phosphate‐regulating neutral endopeptidase Hypophosphatemic rickets XLD

FAM20C Extracellular serine/threonine protein kinase Raine syndrome AR

FGFR1 Fibroblast growth factor receptor 1 Osteoglophonic dysplasia AD

DMP1 Dentin matrix acidic phosphoprotein 1 Hypophosphatemic rickets AR

AD, autosomal dominant; AR, autosomal recessive; XLD, X‐linked dominant.

Table 3. Genetic basis of altered renal phosphate handling.

Disorder Gene Protein Mode of inheritance

Hyperoxaluria type I AGXT Serine‐pyruvate 

aminotransferase

AR

Hyperoxaluria type II GRHPR Glyoxylate reductase/

hydroxypyruvate reductase

AR

Hyperoxaluria type III HOGA1 4‐hydroxy‐2‐oxoglutarate 

aldolase, mitochondria

AR

Calcium oxalate kidney 

stones

SLC26A1 Sulfate anion transporter 1 AR

PH, primary hyperoxaluria; AR, autosomal recessive.

Table 4. Inherited disorders of renal oxalate handling.
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other genetic influences on citrate handling too: they propose a codominant inheritance of alleles 
at a single locus based on their trimodal frequency distribution of citrate excretion.

2.6. Renal magnesium handling

Hypomagnesuria is the biochemical abnormality found in about 19% of kidney stone patients, 
alone or in association with other biochemical abnormalities [30]. The kidney has a key role 

in maintaining a normal magnesium balance. The TAL of the loop of Henle and the DCT 
are crucially important in regulating serum magnesium levels and body magnesium content 

(Figure 2). Understanding the molecular defects behind rare genetic magnesium loss disor‐

ders has greatly contributed to our understanding of renal magnesium handling. About 80% 
of all plasma magnesium is filtered through the glomeruli, and 15–20% of it is reabsorbed by 
the proximal tubules, and 55–70% by the cortical TAL [31]. Magnesium is reabsorbed via a 

paracellular pathway in this nephron segment. Members of the claudin family of tight junc‐

tion proteins have been attributed a role in controlling magnesium and calcium permeability 
of the paracellular pathway (Figure 4) [31]. Although only 5–10% of the filtered magnesium is 
reabsorbed in the DCT, this process is finely regulated and plays an important part in deter‐

mining its final urinary excretion [31, 32].

Figure 4. Magnesium reabsorption in the cortical thick ascending limb (TAL) of Henle’s loop and in the distal convoluted 
tubule (DCT). The key proteins influencing magnesium reabsorption are indicated. Magnesium reabsorption in the TAL 
is passive and occurs through the paracellular pathway. The driving force is the lumen‐positive transcellular voltage, 

which is generated by the transcellular reabsorption of NaCl and the potassium recycling back to the tubular fluid via 
ROMK. Magnesium transport through DCT cells is active and depends on the negative membrane plasma potential. 
This mechanism seems to depend on a sodium gradient that results from the coordinate action of NCCT, Na‐K‐ATPase 

and Kir4.1.

Understanding the Pathophysiology of Nephrocalcinosis
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Hereditary forms of hypomagnesemia include rare, genetically determined disorders that 
may affect renal magnesium handling either primarily or secondarily. Table 5 summarizes 

the spectrum of underlying genetic defects [31].

2.7. Pyrophosphaturia

Pyrophosphate (PPi) is present in urine and can contribute 50% CaOx monohydrate (COM) 
crystal growth inhibition in the collecting duct and up to 80% in the urine [33, 34]. It has 

been postulated that hypopyrophosphaturia is a metabolic risk factor for recurrent stone 

formers [35]. That the concentration of inorganic PPi is higher in urine than in plasma cannot 

fully explain the origin of urinary PPi, but does suggest that it is somehow either secreted 

Gene Protein Disorder Mode of inheritance

SLC12A1 Sodium‐potassium‐

chloride transporter 

(NKCC2)

Bartter syndrome type 1 AR

KCNJ1 Potassium channel 

(ROMK1)

Bartter syndrome type 2 AR

CLCNKB Chloride channel ClC‐Kb Bartter syndrome type 3 AR

BSND Barttin Bartter syndrome type 4 AR

CLDN16 Claudin‐16, tight junction Familial hypomagnesemia 

with hypercalciuria and 

nephrocalcinosis

AR

CLDN19 Claudin‐19, tight junction Familial hypomagnesemia 

with hypercalciuria and 

nephrocalcinosis with ocular 

impairment

AR

CASR Calcium‐sensing receptor 

(CasR)

Hypercalciuric hypercalcemia AD

FXYD2 Gamma subunit Na/K/

ATPase

Hypomagnesemia 2, renal AD

TRPM6 TRPM6 cation channel Hypomagnesemia 1, intestinal 
with secondary hypocalcemia

AR

SLC12A3 NaCl cotrasporter (NCCT) Gitelman syndrome AR

EGF Epidermal growth factor 

(Pro‐EGF)

Hypomagnesemia 4, renal AR

KCNA1 Kv1.1 Potassium channel Myokymia 1 with 

hypomagnesemia

AD

KCNJ10 Kir4.1 potassium channel SESAME syndrome AR

HNF1B HNF1β transcription factor HNF1B nephropathy AD

Note: AD = autosomal dominant; AR = autosomal recessive.

Table 5. Inherited disorders of renal magnesium loss.
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into the tubule or generated locally [36]. PPi is generated mostly in the mitochondria, and it 

is a byproduct of about 190 biochemical reactions. The PPi end product must be promptly 
removed to ensure irreversible, one‐way reactions. PPi may be removed in three ways: by 

hydrolysis via cytoplasmic phosphatases; by PPi compartmentalization; or by its exporta‐

tion from the cytoplasm via a transporter such as ANKH protein, which is located in the 
principal cells of the renal collecting duct (Figure 2) [6, 37]. Many authors now assume that 

PPi is removed from the cell by this third means, although the exact physiological function 

of the ANKH protein has never been clarified [36]. Underexpression or loss of activity of 

ANK (the mouse homolog of ANKH) is believed to lead to CaP deposition in numerous tis‐

sues, due to loss of PPi’s inhibitory effects on CaP formation, and to the ubiquitous nature 
of CaP mineralization [38]. The majority of known ANKH mutations are assumed to be of 
the gain‐of‐function type, however, and are responsible for clinical phenotypes character‐

ized by calcium PPi deposition in the joints, i.e., calcium pyrophosphate deposition disease 

[39]. Loss‐of‐function mutations presumably responsible for the loss of ANKH activity and a 
lower extracellular PPi were detected in patients with craniometaphyseal dysplasia, which is 

characterized by overgrowth and sclerosis of the facial bones and abnormal long bone mod‐

eling. No renal calcification was seen in association with this disease, however. Unlike bone, 
ion content in the tubular environment varies considerably, and the picture is further com‐

plicated by various reabsorption mechanisms, which may in turn be affected by a negative 
feedback from the tubular ion content [36]. This might explain why ANKH loss of function 
does not cause nephrocalcinosis or kidney stones.

2.8. Regulation of urinary acidification

One of the main functions of the kidney is to keep the systemic acid‐base chemistry constant. 

The kidney has evolved so that it can regulate blood acidity by means of three key func‐

tions: (1) by reabsorbing the HCO3− filtered through the glomeruli to prevent its excretion 
in the urine; (2) by generating a sufficient quantity of new HCO3− to compensate for the 

loss of HCO3− due to dietary metabolic H+ loads and loss of HCO3− in the urea cycle; and 
(3) by excreting HCO3− (or metabolizable organic anions) following a systemic base load 

[40]. For the kidney to be able to perform these functions, various types of cell throughout 

the nephron have to respond to changes in acid‐base chemistry by modulating specific ion 
transport and/or metabolic processes in a coordinated fashion, such that the urine and renal 

vein chemistry is adjusted appropriately. The kidney contributes to acid‐base homeostasis 

by recovering filtered bicarbonate in the proximal tubule. Distally, intercalated cells of the 
collecting duct generate new bicarbonate, which is consumed by the titration of non‐volatile 

acid [41].

The renal tubular acidosis (RTA) syndromes encompass a disparate group of tubular trans‐

port defects that share the inability to secrete hydrogen ions (H+). This inability results in fail‐

ure to excrete acid in the form of ammonium (NH4+) ions and titratable acids or to reabsorb 

some of the filtered bicarbonate (HCO3−). Either situation coincides with a drop in plasma 

bicarbonate levels, leading to chronic metabolic acidosis. Much of the morbidity of RTA syn‐

dromes is attributable to the systemic consequences of chronic metabolic acidosis, including 
growth retardation, bone disease, and kidney stones [42].
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Dysfunction of the proximal tubules, where approximately 90% of the bicarbonate is reab‐

sorbed, leads to proximal RTA [43], whereas malfunctioning of the intercalated cells in the 

collecting ducts accounts for all known genetic causes of distal RTA (dRTA).

Inherited proximal RTA is a rare disorder that may be inherited as an autosomal recessive 

or dominant trait [44]. The more common autosomal recessive form has been associated 

with mutations in the basolateral sodium bicarbonate cotransporter NBCe1, encoded by the 

SLC4A4 gene. Mutations in this transporter lead to a reduced activity and/or trafficking, thus, 
disrupting the normal bicarbonate reabsorption process in the proximal tubules [45]. As an 

isolated defect of bicarbonate transport, proximal RTA is rare. It is more often associated with 

Fanconi syndrome, which features urinary wastage of solutes such as phosphate, uric acid, 

glucose, amino acids, and low‐molecular‐weight proteins, as well as bicarbonate. The distal 

acidification mechanisms remain intact, however, and acid urine can still be produced. The 
clinical phenotype is of a metabolic acidosis with hypokalemia; metabolic bone disease is 
common, but nephrocalcinosis and nephrolithiasis are rare [46].

In contrast, 80% of cases of distal RTA (dRTA) are associated with medullary nephrocalcino‐

sis. The molecular basis underlying primary dRTA is a defective functioning of alpha inter‐

calated cells [41]. The molecular defects behind proximal and distal RTA are listed in Table 6.

The clinical signs and symptoms of dRTA can vary, depending on the underlying mutation: 

patients may reveal a mild metabolic acidosis after the incidental detection of kidney stones, 

or they may have severe health issues with failure to thrive and growth retardation in chil‐

dren, rickets, severe metabolic acidosis, and nephrocalcinosis. Kidney stones in dRTA consist 

of CaP due to the release of Ca and Pi from bone to buffer the acidosis, leading to hypercalci‐
uria and consequent CaP precipitation due to an alkaline pH [47].

2.9. Macromoleculuria

The formation of crystal aggregates involves interaction between crystals and urinary mac‐

romolecules (UMs) that serve as an adhesive. The number of UMs isolated in urine has been 

Disorder Gene Protein Mode of inheritance

Distal RTA type1 SLC4A1 AE1 AR

SLC4A1 AE1 AD

ATP6V1B1 β1 Subunit of H+ ‐ ATPase AR with early onset 

hearing loss

ATPV0A4 α4 Subunit of H+‐ ATPase AR with later onset hearing 

loss

Proximal RTA type2 SLC4A4 Sodium bicarbonate 

cotransporter 1 (NBC1)

AR

Combined Proximal and 

Distal RTA type3
Ca2 Carbonic anhydrase 2 

(CAH2)
AR

PH, primary hyperoxaluria; AR, autosomal recessive.

Table 6. The inherited renal tubular acidoses.
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steadily increasing, and they now form a large group of proteins and some glycosaminogly‐

cans [48, 49]. The main macromolecules involved in crystallization are summarized in Table 7.

Although the role of these proteins in stone formation is still far from clear, coating of the 

crystals by the urinary macromolecules seems to prevent crystal aggregation or at least delay 

it for long enough for the urine to transit through the kidney.

An inhibitory role has repeatedly been confirmed for osteopontin (OPN) [50–54], which is 

synthesized in the kidney and excreted in the urine in concentrations that suffice to inhibit 
CaOx crystallization. No naturally occurring mutations in the SSP1 gene encoding OPN have 

ever been reported in human diseases, but SSP1 polymorphisms have been associated with 

the risk of nephrolithiasis [55–57].

Tamm‐Horsfall protein (THP), also called uromodulin, is a kidney‐specific protein synthe‐

sized by cells in the TAL of the loop of Henle. It is the most abundant protein in human urine. 
It is a potent inhibitor of crystal aggregation in vitro, and its ablation in vivo predisposes one 

of the two existing mouse models to spontaneous intrarenal calcium crystallization, but there 

are still some key issues to clarify regarding the role of THP in nephrolithiasis. By conduct‐
ing a long‐range follow‐up of more than 250 THP‐null mice and their wild‐type controls, 
Liu et al. [58] demonstrated that renal calcification was a highly consistent phenotype of the 
THP‐null mice. The crystals consisted primarily of CaP in the form of hydroxyapatite. They 
were located in the interstitial space of the renal papillae more frequently than in the tubules 

(particularly in older animals), and there was no accompanying inflammatory cell infiltration. 
The interstitial deposits of hydroxyapatite observed in THP‐null mice strongly resemble the 
renal crystals found in human kidneys with idiopathic CaOx stones. In humans, a number of 

naturally occurring THP mutations are reportedly linked to autosomal dominant  medullary 

Protein Role in CaOx crystallization and nephrolithiasis

Tamm‐Horsfall Inhibitor of aggregation

Osteopontin Free OPN Inhibits crystal nucleation, growth, 

aggregation and attachment, immobilized OPN promotes 
crystal attachment

Prethrombin fragment‐1 Inhibitor of growth and aggregation

Bikunin and inter‐α‐inhibitor Inhibitor of nucleation, growth, aggregation and 

attachment

α‐1‐microglobulin Inhibitor of crystallization

CD‐44 Promoter of crystal attachment

Calgranulin Inhibitor of crystal growth and aggregation

Matrix gla protein Inhibitor of crystal deposition

Heparan sulfate Inhibitor of crystal aggregation and attachment

Osteonectin Calcium binding

Fibronectin Inhibitor of crystal aggregation, attachment and 
endocytosis

Table 7. Crystallization‐modulating macromolecules (Modified from Khan SR and Canals BK 2009 [13]).
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 cystic disease and familial juvenile hyperuricemic nephropathy (Uromodulin‐related dis‐

eases). Mutations lead to a defective intracellular trafficking of THP, and to a reduced THP 
excretion and secretion. No renal stone disease has been described in patients with any of 

these mutations to date, however [13].

2.10. Medullary sponge kidney

Medullary nephrocalcinosis is a frequent finding in medullary sponge kidney (MSK), a renal 
malformation associated with renal stones, urinary acidification and concentration defects, 
cystic anomalies in the precalyceal ducts, a risk of urinary infections, and renal failure. In a 

large series of 375 patients with macroscopic nephrocalcinosis, it was found that the clinical 

diagnoses most frequently associated with MSK were hyperparathyroidism and dRTA [9]. The 

prevalence of MSK in the general population is not known because no systematic autopsy 

searches have been performed. In a large series of subjects undergoing iv urography for vari‐

ous reasons, pictures ranging from clearly evident MSK to faint radiological signs of the disease 

were seen in 0.5–1% of cases [59]. MSK is relatively well represented in renal stone patients, 

however, and has been found in up to 20% of recurrent renal calcium stone formers [60, 61].

Why this malformative condition may predispose to medullary nephrocalcinosis remains to 
be established. MSK is considered a rare and sporadic disorder, but a recent study showed 

that 50% of MSK stone formers had relatives with milder forms of MSK, suggesting that it is 
relatively common for MSK to be familial, and it may be inherited as an autosomal dominant 

trait [62]. It has also been reported that 12% of unrelated MSK patients carried in heterozygos‐

ity two very rare variants of the glial cell line‐derived neurotrophic factor (GDNF) gene, and 
these variants were inherited and co‐segregated with the MSK phenotype in some families [63].

Mezzabotta et al. [64] had the chance to conduct an in vitro analysis on the behavior of papil‐

lary renal cells coming from the healthy portion of a kidney resected due to renal cancer in a 

MSK patient with medullary nephrocalcinosis, who harbored one of these rare GDNF gene 
variants. They found an unexpected and previously never reported phenomenon involving 

the spontaneous formation of Ca
2
PO

4
 nodules very similar to those of calcifying vascular cells. 

They demonstrated that silencing the GDNF gene in a human renal cell line and cultivating 
the silenced cells in osteogenic conditions triggered the deposition of Ca

2
PO

4
. These results 

demonstrate the functional role of GDNF gene mutation in determining the medullary neph‐

rocalcinosis associated with the MSK phenotype. They also provide the first experimental 
evidence of human renal tubular cells having a pivotal role in driving a calcification process. 
The role of renal cells in nephrocalcinosis is discussed in the subsequent paragraphs.

3. Proposed mechanisms of nephrocalcinosis

3.1. Tubular nephrocalcinosis

It is commonly assumed that crystals of CaOx or CaP form in the tubular fluid because of 
supersaturation and are presumably a renal mechanism for excreting excess waste [65–69]. 

In physiological conditions, this process is well controlled and lowers the risk of supersatura‐

tion [70–72]. When these control mechanisms fail, however, or changing conditions alter the 
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solubility of the urinary calcium salts, there is a consequent crystal retention and renal cal‐

cium deposition. This may involve epithelial crystal adhesion when the crystals are smaller 

than the diameter of the tubular lumen or lead to crystals obstructing the tubules when crys‐

tal formation and/or aggregation becomes excessive (Figure 5A).

3.1.1. Adhesion of crystals to the tubular epithelial cells: the fixed particle theory

The first step in crystal formation is nucleation, i.e., the process by which free ions in solu‐

tion become associated forming microscopic particles. Crystallization can occur in solution 

micro‐environments, such as those potentially existing in certain parts of the nephron [73], 

as well as on surfaces (like those of cells), and in the extracellular matrix [74]. Nucleation is 

followed by an aggregation of the crystals forming in the free solution, giving rise to larger 

particles. Finlayson and Reid [75] postulated that crystals cannot grow large enough dur‐

ing the short time it takes them to transit through the tubules to be retained in the tubules 

because of their size (“free particle” mechanism). This led to the hypothesis that crystals 

can only remain in the kidney if they adhere to the tubular epithelium (the ‘fixed particle’ 
theory) [74–76]. As a general mechanism for the etiology of tubular nephrocalcinosis, it was 

therefore suggested that crystallization starts at particular sites on the epithelial surface, not 

Figure 5. Proposed mechanisms of nephrocalcinosis. (A) Processes of tubular and interstitial calcium crystal deposition. 

(B) Possible mechanisms of interstitial crystal formation.
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freely in the tubular fluid. A nascent crystal then becomes aggregated with other crystals, 
forming a mass large enough to occlude the nephron, leading to an obstructive tubulopathy 

(Figure 5A).

These crystals can be found in contact with the surface of injured/regenerating epithelial 

cells, apoptotic and/or necrotic cells, and denuded basement membranes [4, 77–84], giving 

the impression that the composition of the cell surface is crucial in modulating this process. 

In fact, it has been demonstrated on primary or immortalized tubular epithelial cells exposed 

to CaOx crystals that the crystal deposits preferentially adhere to injured, apoptotic, depolar‐

ized, immature, migrating, or proliferating tubular epithelial cells, rather than to fully differ‐

entiated, normal epithelia [85–88]. In this context, there is interesting evidence to suggest that 

proximal tubular cells bind crystals regardless of their differentiation status, whereas distal 
tubular cells (which are physiologically more likely to encounter crystals) only bind crystals 

when they are dedifferentiated [70], meaning that the distal tubular epithelium is unable to 

bind crystals when differentiated.

What we know about crystal adhesion in the proximal and distal tubules stems mainly from 
having identified the characteristics of the luminal membrane and the molecular composition 
of the crystal‐binding epithelia, which led to the discovery of several crystal‐binding mol‐

ecules [4, 80, 89–93]. Importantly, these crystal‐binding molecules are upregulated or redis‐

tributed to the apical membrane under certain conditions of cellular dedifferentiation, such 
as injury or repair, or variations in pathophysiological conditions [78, 87, 88, 94–96], which 

determine whether or not the crystals are retained in the kidney.

The different categories of crystal‐binding molecules identified in vitro to date include: (i) termi‐

nal sialic acid residues [79, 97, 98]; (ii) phospholipids, i.e., phosphatidylserine [78, 84, 99, 100]; (iii) 
membrane‐bound proteins, i.e., collagen IV [101], OPN [102–106], annexin 2 (ANX2) [107, 108] 

and nucleolin‐related protein (NRP) [88, 93, 109]; and (iv) glycosaminoglycans, of which hyal‐
uronan (HA) appears to be the most potent crystal‐binding polysaccharide [95, 96, 110]. It has 

been demonstrated that other proteins, such as matrix Gla protein (MGP), are implicated in this 

process too [48, 111]. It is intriguing, moreover, that all known crystal‐binding molecules con‐

tribute to inducing a negative cell‐surface charge, a feature that has proved important in crys‐

tal adhesion to renal epithelial cells [85, 97, 112]. This would suggest that an array of aberrant 

phenotypes could bind crystals if there are appropriate amounts of crystals and appropriately 

oriented negative charges on the luminal membrane.

On the other hand, crystals and/or concomitant high concentrations of calcium, oxalate, or 

phosphate have been found to induce injury, proliferation, inflammatory mediator produc‐

tion, and oxidative stress on contact with epithelial cells in vitro, suggesting that epithelial 

dedifferentiation could be a consequence rather than a cause of crystal adhesion [113–120].

3.1.2. Is the crystal‐binding cell phenotype a cause or a consequence of crystal adhesion?

Crystals do not adhere to normal epithelial cells, so it is highly unlikely that crystal adhesion 

might be the initial cause of cellular injury and epithelial phenotypic alterations, which are 

probably triggered instead by forced contact and transient interaction with normal epithelia 
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during the passage of the crystals/oxalate. Either way, it is evident that the tubular epithelium 

must have a very important direct role in the initiation of intratubular nephrocalcinosis.

Some reports have suggested that the renal tubular epithelial cell injury in crystal‐cell inter‐

actions occurs more easily in a setting of prior cell injury [99, 118]. The “incubation” period 

observed during transient toxic or mechanical crystal‐cell interactions capable of affecting the 
tubular epithelium is consistent with the need for a shift in the epithelial phenotype prior to 

crystal adhesion [119–121]. This would mean that crystal adhesion is a consequence, not the 

initial cause of epithelial injury in vitro.

The nucleation of ions from the renal tubule and subsequent growth of a calcium crystal 

cannot usually occur and, even if it does, such processes do not proceed quickly enough to 

produce particles of sufficient size to be retained in the kidney, and occlude tubules simply 
because of their bulk [68, 76, 118, 122, 123]. The crystals are not only the outcome of the 

physicochemical properties and urinary concentrations of the minerals involved. They are 

also influenced by crystallization regulators that may promote or inhibit crystallization and 
by signaling pathways triggered by the crystals, thus leading to different types of renal cell 
injury [8, 71, 124–127]. Urine or, more properly, tubular fluid probably contains inhibitors 
of crystal formation that specifically prevent their nucleation, growth, or aggregation. It has 
been claimed that the inhibitors’ role in controlling crystal formation is important in the nor‐

mal defenses against the development of stones, and that abnormalities of these inhibitors 

may allow for stone formation and growth.

There are different types of such crystallization inhibitors in the urine, including small organic 
anions such as citrate, small inorganic anions such as PPis, multivalent metallic cations such 

as magnesium, and macromolecules such as OPN and Tamm‐Horsfall protein, which can 
take effect on different levels during the crystal formation process (Table 7). Citrate lowers 

the saturation of CaOx by forming complexes with calcium and inhibits the aggregation of 

preformed crystals and the attachment of crystals to the renal epithelium [97, 128]. PPi is a 

substance naturally occurring in urine that has been found to inhibit the crystallization of 

both CaOx and CaP [129]. Magnesium has also been shown to prevent stone formation by 

inhibiting the growth and aggregation of crystals (and presumably interferes with their nucle‐

ation too) [130]. OPN (known to inhibit the spontaneous nucleation of crystals from solutions) 

was found to prevent the growth of preformed crystals in a seed growth assay [131, 132], but 

there is also evidence to suggest that OPN bound to the surface of cells may enhance crystal 

attachment [102, 103]. In addition, the inhibitory effect of OPN on CaOx aggregation in vitro 

can be switched to an aggregation promoting effect if its net negative charge is neutralized by 
polyarginine [133].

Tamm‐Horsfall glycoprotein (THP) is the most abundant of the urinary proteins under 
normal circumstances [134]. THP coats CaOx crystals and prevents their adhesion to cul‐
tured epithelia, but there are few in vivo studies on how it would affect their aggregate, 
once it anchored to the epithelia [134, 135]. Another protein, called urinary prothrombin 

fragment 1, has been isolated from the matrix of crystals formed by adding oxalate to urine 

[136]. This is an effective inhibitor of CaOx crystal growth and aggregation, in vivo as well 

as in vitro [137].
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3.2. Interstitial nephrocalcinosis

The presence of crystals in the renal interstitium is defined as interstitial nephrocalcinosis 
(Figure 5A). Although the causal role of aberrant epithelial tissue in crystal adhesion—dem‐

onstrated in renal cell lines in vitro, in animal models, in kidney transplant patients, and in 

neonates—may account for intratubular crystal formation and retention [138–140], the spe‐

cific pathogenic mechanisms leading to interstitial crystal formation and deposition are still 
unclear [7].

Translocation of intratubular crystals and/or de novo interstitial calcification have been pro‐

posed as causative factors (Figure 5B).

3.2.1. Translocation of intratubular crystals to the interstitium

Crystal translocation can be induced by transcytosis (Figure 5B), a process during which small 

intraluminal crystals are internalized within apical vesicles (with or without the mediation of 

a receptor) and transferred across the cell wall to the basolateral side, where they are released 

into the interstitial extracellular environment [12]. Apical endocytosis of small crystals has 

been well described [141–144], but there is little evidence of any basolateral release of crystals 
into the interstitium. It has been suggested that these crystals probably disintegrate into lyso‐

somes [142, 143, 145]. Very recently, however, Chiangjong et al. [146] demonstrated that, after 

exposure to CaOx crystals, renal tubular epithelial cells secrete more crystal‐binding protein 

(enolase‐1 [147]) into the basolateral compartment; the authors suggested that this protein 
could in turn promote CaOx crystal invasion through the renal interstitium. The transloca‐

tion of crystals into the interstitium is associated with inflammation, attracting leukocytes, 
monocytes, and macrophages that—according to some—would then remove the crystalline 

material [148].

An alternative mechanism of transepithelial crystal translocation was described using the 

term “exotubulosis” (Figure 5B) in an in vivo study conducted by De Bruijn et al. [149, 150]. 

These authors demonstrated that crystals adhering to the inside wall of the tubule can be 

overgrown by tubular epithelial cells adjacent to the site of adhesion of the crystals. After pro‐

liferation and migration, the tubular epithelial cells cover the crystals and differentiate into a 
new mature epithelium, with its basement membrane on top of the crystals and its apical side 

directed toward the lumen, thereby restoring the epithelial integrity of the affected tubule, 
and translocating the crystals into the interstitium.

For a long time, translocation was the only explanation for the advent of mineral deposits in 

the interstitium [151, 152], but crystals can also form de novo in the interstitium.

3.2.2. De novo interstitial crystal formation

It has been claimed that these crystal deposits start in the interstitium around the thin limbs of 

the loop of Henle (below the basement membrane) and give rise to subepithelial calcifications 
better known as Randall’s plaques [153].
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Nobody knows, however, whether this de novo crystal formation is due merely to a chem‐

ically driven supersaturation or whether cells are involved too. For some time, the most 

accredited hypothesis advanced to explain the onset of interstitial nephrocalcinosis was 

purely physicochemical, relating to spontaneous Ca
2
PO

4
 crystallization in the interstitium as 

a result of calcium and phosphate oversaturation in this milieu. Evidence has been produced 

of a lower expression and defective barrier and fence functions of the tight junction in renal 

tubular epithelial cells exposed to CaOx crystals. This could lead to intercellular (paracel‐

lular) migration of intratubular COM crystals, and of calcium, oxalate, and phosphate ions 

to the interstitium to initiate tubulointerstitial injury, inflammation, and interstitial nephro‐

calcinosis [154–157].

Dysregulation of calcium homeostasis in the renal interstitium (and probably on a systemic 
level too) may have a key role in the pathogenesis of nephrocalcinosis. Bushinsky DA [154] 

proposed a sequence of events that could lead to an increased supersaturation and subse‐

quent crystal formation. “Following ingestion and absorption of dietary calcium, the renal‐filtered 
load of calcium would increase, resulting in increased tubular calcium concentration. The medullary 

countercurrent mechanism would concentrate the calcium extracted from the TAL into the hypertonic 
papilla. The vasa recta, also with an increased calcium concentration, would fail to readily remove 

calcium from the interstitium. The increased serum calcium would stimulate the calcium receptor and 

decrease reabsorption of water in the collecting duct, further concentrating the interstitium. Vectorial 

proton transport into the collecting duct would alkalinize the interstitium. The pH of the vasa recta 

would also increase following gastric proton secretion, the so‐called alkaline tide, resulting in less 

bicarbonate removal from the medullary interstitium. The increased pH would decrease the solubility 

of CaP complexes. Perhaps an extracellular matrix protein, specific to the papillary interstitium, could 
provide a site promoting heterogeneous nucleation, which occurs with a lower degree of supersatura‐

tion than homogeneous nucleation.”

Estimates of tubular fluid supersaturation based on data obtained in the rat suggest that CaP 
supersaturation often occurs in the thin limbs of the loop of Henle [158], where tubular fluid is 
saturated even under normal circumstances. In humans, this condition could drive the precip‐

itation of CaP deposits at interstitial sites, in the inner medulla—known as Randall’s plaques 

when they become extensive enough to be macroscopically visible [4, 6, 158, 159]. Randall’s 

plaques have been proposed as a nidus for the development of the most common variety of 

CaOx stones [4, 160].

3.2.3. Randall’s plaques

Randall demonstrated that interstitial crystals are located at, or adjacent to, the papillary tip 

[161]. These crystals in the papillary interstitium are composed not of CaOx (the most com‐

mon solid phase found in patients with nephrolithiasis), but of CaP [162, 163], that then eroded 

into the urinary space, serving as a heterogeneous nucleation surface for CaOx. Randall con‐

cluded that renal stones originated as a slow deposition/crystallization of urinary salts (CaOx, 

CaP, uric acid) on a lesion of the renal papilla—a picture confirmed and extended in patients 
with idiopathic CaOx nephrolithiasis [4, 5, 164] (Figure 6).
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Figure 6. Mechanism of stone growing on Randall’s plaque. The plaque appears in the interstitial tissue within the renal 

papilla, with no crystals present in any tubular lumens. The plaque is composed of calcium phosphate (CaP) in the 

mineral form of apatite. Papillary epithelium is lost, and the plaque can be exposed to urinary fluid in the renal calyx. 
The resulting calcium oxalate stone may grow and the plaque keeps the stone from flowing out with the urine, and the 
insolubility of the calcium oxalate makes the stone quite. Stones that are formed on Randall’s plaques are released from 

the papilla in the renal calyx.

4. Cell‐driven calcification: the example of vascular calcification

In the last decade, some researchers have attempted to clarify the effects of high oxalate and 
crystal concentrations on the biology of renal tubular cells because the exact role of the tubu‐

lar cells in response to the influx of these potentially precipitating ions is still uncertain.

A role in the pathogenesis of Randall’s plaques has also been suggested for interstitial cells 

capable of transdifferentiating along the bone lineage, leading to the hypothesis that neph‐

rocalcinosis could be an osteogenic cell‐driven process, similar to that of vascular calcifica‐

tion [64, 165–168]. Tubular epithelial cells have a well‐known ability to differentiate into cells 
with the mesenchymal phenotype (for instance, renal interstitial myofibroblasts may origi‐
nate from renal tubular cells undergoing epithelial‐mesenchymal transformation) [169]. This 

capacity for differentiation is not exclusive to renal cells, or epithelial cells. It is shared with 
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Ito cells in the liver [170], and a subpopulation of smooth muscle cells (SMCs) in the intima 

of arteries—cell populations that are thought to be pericyte‐like. Remarkably, vascular peri‐

cytes have the ability to undergo osteoblastic differentiation and mineralization [171, 172], 

and seem to play a crucial part in ectopic vascular calcification.

The underlying mechanisms that lead to pathological calcification are complex and thought to 
involve active, strictly regulated processes that are common to bone formation [54, 173, 174]. 

Cells that may readily undergo osteogenic‐like transition include: vascular smooth muscle 

cells (VSMCs) [171, 175–193] in the media, myofibroblasts in the adventitia, pericytes in the 
microvessels [171, 172, 194], multipotent vascular mesenchymal progenitors, and valve inter‐

stitial cells [195, 196]. Vascular calcification was long thought to result from passive degenera‐

tion [197], but actually involves a complex, regulated process of biomineralization similar to 

osteogenesis, which mediates the deposition of bone matrix in the blood vessels [175–193].

5. Mechanisms of vascular calcification

Calcification may involve both osteogenic and chondrogenic differentiation. In humans, it 
is primarily osteogenic (with bone tissue formation), whereas in mice it is primarily chon‐

drogenic (with cartilage formation). Although osteoblasts and chondroblasts are distinct cell 

types, they have substantial similarities in mineralization mechanisms and gene expression, 

leading to the formation of a complex and highly structured extracellular matrix, which can 

also be found in the calcified vasculature.

There is evidence to indicate that the proteins controlling bone mineralization are involved 

in regulating vascular calcification as well. Many key bone formation regulators and bone 

structural proteins, including pro‐osteogenic factors like the bone morphogenetic proteins 

(BMP) [171–186], and inflammatory mediators such as tumor necrosis factor‐α (TNF‐α), are 
expressed in atherosclerotic plaques as well as during the osteogenic differentiation of VSMCs. 
These factors can induce calcification via Msx2 and Wnt signaling, which plays a crucial part 
in the commitment of pluripotent mesenchymal cells, activated during vascular calcification 
[198–202], and they have been implicated in the regulation of osteoblastic VSMC transdifferen‐

tiation [203, 204]. Wnt signaling induces an upregulated expression of the transcription factors 
Cfb1/Runx (core‐binding factor subunit1α/runt‐related transcription factor 2) and osterix [177, 

178, 198–200, 205–207]. In turn, Runx2 increases the expression of the bone‐related proteins 

osteocalcin (OCN), sclerostin, and receptor activator of nuclear factor‐kappa β ligand (RANKL) 
[208]. Downstream from Runx2, osterix increases the expression of other bone‐related pro‐

teins, including bone sialoprotein, alkaline phosphatase (ALP) [206, 209, 210], OPN [211–213], 

matrix γ‐carboxyglutamic acid protein (MGP) [214], and osteoprotegerin (OPG) [215].

The cellular and systemic conditions that permit VSMC differentiation to osteoblast‐like cells 
are multifactorial. At cellular level, procalcifying conditions may occur because of the factors 

that increase cellular stress responses. Similarly, systemic factors, such as a loss of circulating 

inhibitors of calcification, or changes in levels of hormonal regulators of calcium and phos‐

phate homeostasis can also facilitate VSMC differentiation and vascular calcification.
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Osteogenic differentiation of VSMCs is prevented under normal conditions by physiological 
inhibitors, such as MGP, OPN, and OPG [216, 217], and regulated by monocyte‐ and mac‐

rophage‐osteoclast differentiation within the vascular wall. The growth of crystals is also 
hindered thermodynamically and inhibited by PPi [183, 218]. Unlike OPN, OPG, and MGP, 

which function in the vessel wall, fetuin A is a circulating inhibitor of calcification that has a 
high affinity for hydroxyapatite crystals and is thought to function by binding small CaP par‐

ticles via a domain particularly rich in acidic residues, stabilizing and clearing them to phago‐

cytes for removal [218]. In vitro, fetuin A inhibits the de novo formation of hydroxyapatite 

crystals, but does not affect crystals that have already formed [219]. Fetuin A also has an anti‐

inflammatory function, dampening the effects of CaP particles in neutrophil stimulation, and 
is responsible also in macrophage cytokine release and induction of apoptosis. Additionally, 

fetuin‐A has been shown to accumulate in VSMC‐derived matrix vesicles, preventing them 

from initiating and propagating calcification.

Given the complexity of the systems that regulate vascular calcification, it is likely that many 
of these factors are at work simultaneously, but in some situations the physiological balance 

is disrupted and vascular calcification can progress (Figure 7).

An alternative mechanism for vascular calcification has recently been suggested. The “circu‐

lating cell theory” [220] postulates that circulating cells coming from sources such as bone 

Figure 7. Physiopathological mechanisms promote cellular differentiation and mineral deposition during vascular 
calcification. Vascular smooth muscle cells undergo differentiation to osteoblast‐like cells when exposed to different 
factors. These osteoblast‐like cells participate in vascular calcification.
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marrow may have an active role in vascular calcification. A circulating immature bone‐mar‐

row‐derived cell population has been identified, and a small subset of this bone marrow 
population reportedly possesses bone‐forming properties in vitro. Under the influence of che‐

moattractants (released by damaged endothelium, for instance), these cells may home in on 
diseased arteries. Under pathological conditions such as an imbalance between promoters and 

inhibitors of vascular calcification, this population may undergo osteogenic differentiation in 
the lesions, promoting vessel mineralization [220]. In another study, it has also been claimed 

that multipotent vascular stem cells (MVSC) in the blood vessel wall might differentiate into 
osteoblast‐like cells [221]—though this theory remains highly controversial for the time being.

6. Factors regulating vascular calcification

6.1. Phosphate

The role of phosphate in the osteoblastic differentiation process is well established [176, 177, 

181, 185, 187, 222]. In vitro, high extracellular phosphate concentrations induce a rise in intra‐

cellular phosphate concentrations actively mediated by three types of sodium‐dependent 

phosphate cotransporter, of which the type III transporters Pit‐1 and Pit‐2 are ubiquitously 

expressed and predominant in humans. Only Pit‐1 is required for the osteogenic differentia‐

tion of VSMCs [177, 223–225]. Increasing phosphate concentrations in the VSMCs induce their 

phenotypic switch to osteoblast‐like cells [177, 178, 184]. In the event of renal failure, phos‐

phate plays a key part in this mechanism [165, 168]. Vascular SMCs exposed to pro‐calcifying 

levels of phosphate (akin to what may happen in patients with chronic kidney disease (CKD)) 
lose their expression of the smooth muscle contractile proteins, SM22α and SMα‐actin, and 
express the bone markers Runx2, OPN, OCN, and ALP instead [178].

As well as phosphate, many other factors can influence the osteoblastic‐like phenotype. A 
long‐term exposure of VSMCs to a variety of chronic stresses and ionic disorders (especially 

hyperphosphatemia and hypercalcemia), for example, can override the action of some endog‐

enous inhibitors, such as MGP, OPN, OPG and PPi [217], inducing differentiation [226]. 

Oxidative stress, inflammation, hormonal perturbations, and metabolic disorders can lead to 
vascular calcification too.

6.2. Oxidative stress

Oxidative stress and endoplasmic reticulum stress have both been implicated in vascular cal‐

cification and shown to promote smooth muscle cell (SMC) differentiation. In particular, oxi‐
dative stress generated in VSMCs by hyperlipidemia and oxidized lipoproteins, or a uremic 

milieu [227] prompts the expression of BMP2, Runx2 [228], and osterix, and governs Wnt sig‐

naling [207]. Reactive oxygen species (ROS) signaling can also induce other markers of osteo‐

blastic differentiation. In the vascular wall, the induction of oxidative stress can recapitulate 
osteogenesis in the VSMC from their undifferentiated state [229]. The role of ROS formation 

and signaling in vascular calcification may also reveal a link between inflammation and vascu‐

lar calcification, since inflammatory cytokines induce calcification via the Msx2/Wnt/β‐catenin 
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pathway [202]. It has also been found that calcium deposits colocalize with inflammatory cells 
both in vitro [230, 231] and in vivo [232]. Mineral crystals may therefore be pro‐inflammatory 
per se, prompting and exacerbating the inflammation and calcification [233, 234].

6.3. Hormones

Hormones have pleiotropic effects on calcific vasculopathy. For example, the adipose‐derived 
factor, leptin, promotes vascular cells in vitro [235] and in vivo [236], while adiponectin‐defi‐

cient mice have increased levels of vascular calcification [237]. The influence of parathyroid 
hormone (PTH), which is involved in the bone turnover process, is also well known. PTH has 
a crucial role in calcium homeostasis, and so does PTH‐related peptide (PTHrP), and the two 
may function as pathological calcification mediators. Both PTH and PTHrP prevent VSMC 
calcification in a dose‐dependent manner by inhibiting ALP activity [238]. In addition, PTHrP 
is secreted from VSMCs, an action that is impaired by calcitriol (1,25‐dihydroxyvitamin D, 
the active form of vitamin D) [239]. PTH not only promotes the release of calcium from bone 
but also mobilizes salts, including bicarbonate and phosphate and impairs renal phosphate 

excretion, leading, for example, to advanced nephron loss in CKD patients, and thus result‐
ing in severe hyperphosphatemia [240]. Accrued high levels of serum phosphate then further 

stimulate the secretion of PTH, forming a vicious cycle [241]. Hyperphosphatemia increases 
FGF23 (a protein released by bone), which—together with its co‐receptor Klotho (a trans‐

membrane protein expressed by the kidney and blood vessels)—may also be a pathogenic 

factor in vascular calcification [242, 243]. Klotho maintains the balance of circulating calcium 

and phosphate [244]. Activation of the vitamin D receptor increases the expression of Klotho 
and FGF23 to promote renal phosphate excretion by downregulating the sodium phosphate 

transporters Slc34A1/NaPi‐2a and Slc34A3/NaPi‐2c. Intriguingly, Klotho inhibits vascular 

calcification by preventing VSMC differentiation while disrupting Klotho‐FGF23 signaling 
results in hyperphosphatemia with ectopic calcification [244, 245].

Calcitriol may also exacerbate dystrophic calcification. Vitamin D toxicity is a common ani‐
mal model used to study vascular calcification [246]. Calcitriol dose‐dependently increases 

both calcification and ALP activity in VSMCs [239]. In response to interferon‐γ, macrophages 
express 25‐hydroxyvitamin D 1α‐hydroxylase, the enzyme needed to convert 25‐hydroxyvi‐
tamin D into calcitriol [239]. Once calcitriol binds to its receptor, signaling through this path‐

way has pleiotropic effects. The vitamin D receptor influences many genes in the vessel wall, 
including vascular endothelial growth factor (VEGF), matrix metalloproteinase 9, myosin, and 
structural proteins (including elastin and type I collagen [247–250], and this explains some of 

the effects of calcitriol on vascular calcification.

Glucocorticoids, a class of steroid hormones with anti‐inflammatory properties, have also 
been shown to mediate osteoblastic differentiation and thereby promote ectopic calcification. 
Long‐term glucocorticoid use has been associated with osteoporosis, however, and these 

compounds have been shown to initiate differentiation to an osteochondrogenic phenotype 
in vascular cells [251, 252]. Similarly, pericytes exposed to dexamethasone exhibit a weaker 

expression of MGP and OPN, and an increased ALP activity and calcium deposition.
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6.4. Matrix vesicles

Bone formation involves hydroxyapatite [Ca
10

(PO
4
)

6
(OH)

2
] crystals, which begin to develop 

matrix vesicles that grow out of osteoblasts. VSMC that have undergone osteoblastic differ‐

entiation are able to release similar mineralization‐competent matrix vesicle‐like structures in 

the extracellular matrix too [176, 180, 215, 226, 253–256]. These matrix vesicles serve as mineral 

nucleation sites and are responsible for the initial deposition of calcium and phosphate in blood 

vessels (Figure 7). Matrix vesicles contain proteins related to calcification, extracellular matrix 
and extracellular matrix‐modifying enzymes, calcium channels, trafficking and cytoskeletal 
proteins, oxidant and endoplasmic stress‐related proteins, and other serum proteins [226]. All 

these proteins are involved in the disruption of the normal vessel architecture and thus serve 

as the nidus for calcification. Matrix vesicles also have an increased expression and activity of 
transglutaminase 2, a calcium‐dependent enzyme that promotes extracellular matrix crosslink‐

ing, and matrix metalloproteinase‐2 [226, 257]. Matrix vesicles are secreted from multivesicular 

bodies and are enriched with exosomes found to contain amorphous calcium‐phosphate crys‐

tals under calcifying conditions, and detected at the site of calcification [258].

Prolonged cellular stress may activate homeostatic repair processes, or cells may undergo 

apoptosis when overwhelmed by the stress. Apoptosis regulates VSMC calcification in vitro 

and inhibiting apoptosis reduces VSMC calcification [171, 176, 259–261]. In advanced carotid 

atherosclerotic plaques, the matrix vesicles contain high levels of BAX (a pro‐apoptotic mem‐

ber of the BCL2 family), indicating that they may be remnants of apoptotic cells [171, 176, 260]. 

Apoptotic VSMC‐derived matrix vesicle‐like structures are also able to concentrate and crys‐

tallize calcium, triggering calcification [176, 183, 189, 193, 222]. It has likewise been reported 

that chondrocyte‐derived apoptotic bodies might contribute to the calcification of articular 
cartilage [262]. All these data support the idea that the formation of apoptotic bodies may be 

another factor initiating ectopic calcification in cells under certain conditions.

Autophagy—a catabolic process that may be an adaptive response to cell stress—has been 

found to limit SMC calcification by inhibiting matrix vesicle release. When phosphate levels are 
high, inhibiting autophagy resulted in an increased VSMC calcium deposition. Downregulating 
autophagy was also associated with a loss of VSMC contractile proteins, but not with any 

VSMC differentiation to an osteogenic phenotype. On the other hand, inhibiting autophagy did 
increase the release of procalcific matrix vesicles with high levels of ALP activity [263]. In short, 

factors that interfere with autophagy are likely to increase VSMC and vascular calcification.

6.5. MicroRNAs

MicroRNAs (miRs) have emerged as key regulators of cell differentiation to osteoblast‐
like cells, regulating gene expression under pro‐calcifying conditions. Some studies have 

described a stronger expression of miRs targeting smooth muscle contractile proteins and a 

weaker expression of miRs targeting osteoblast differentiation markers under these conditions 
[264]. For example, the miR‐143/145 complex, which regulates the expression of VSMC dif‐

ferentiation markers and Kruppel‐like factor4 (KLF4), is downregulated; and KLF4 is known 
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to control bone homeostasis by negatively regulating both osteoclast and osteoblast differen‐

tiation [265]. Other studies showed that downregulation of miR‐204, miR‐205, miR‐133a, or 

miR‐30b/c in VSMCs occurs prior to calcification and upregulates Runx2 expression [266, 267]. 

Micro‐RNA‐125b, which targets Ets1 and osterix, was found downregulated 21 days after 

exposing VSMCs to osteogenic medium [268]. Another set of miRs, miR‐135a(n), miR‐762, 

miR‐714, miR‐712(n), that target the calcium flux proteins NCX1, PMCA1, and NCKX4, have 
also been implicated in VSMC calcification [266]. It is still not clear, however, whether these 

miRs are really important in VSMC differentiation to an osteoblast‐like phenotype, or whether 
this process is associated with changes in the expression of a panel of miRs targeting several 

proteins important for calcification.

7. Evidence of cell‐driven renal calcification

It is worth considering the possibility of ectopic renal calcification being an osteogenic‐like 
process. Evidence to support the notion that resident renal cells could be prompted to trans‐

differentiate, or differentiate along an osteogenic lineage, comes from the following observa‐

tions. Madin‐Darby canine kidney (MDCK) cells grown in monolayers directly on a plastic 
dish, or a dish coated with collagen gel, developed small blisters/domes/nodules after 21 days 

that became more prominent after 30 days [269, 270]. Microscopic examination showed that 

the nodules were CaP crystals. MDCK cells grown in agar produced spherical colonies in 
which layers of epithelial cells, with their apical surface on the outside, enclosed CaP crystal 

deposits on the basal side of the epithelium [90, 93, 270–272].

Kumar et al. [71] found that rat inner medullary collecting duct cells grown in a calcifying 

medium formed calcifying nodules that were positive for typical bone proteins. Miyazawa 

et al. [273, 274] reported finding that CaOx crystals upregulated vimentin (VIM) in normal 
rat kidney proximal cells and that other genes, such as OPN, fibronectin (FN), cathepsins B 
and L, and mitogen‐activated protein kinase, related to the pathogenesis of stone formation. 

Using MDCK cells grown for 28 days in the presence of 10 mM β‐glycerophosphate, Azari 
et al. identified a mineralization process with an increased ALP activity and the presence of 
small aggregates of hydroxyapatite crystals within membrane‐bounded vesicles [275]. Other 

related osteogenic genes (RUNX1 and 2, osterix, BMP2 and 7, bone morphogenetic protein 

receptor 2, collagen, OCN, osteonectin (ON), OPN, MGP, OPG, cadherins, FN, and VIM) were 

found upregulated in the kidney of hyperoxaluric rats [276, 277]. Khan et al., again, showed a 

pronounced expression of MGP, together with that of collagen, OPN and FN, in renal medul‐

lary peritubular vessels of hyperoxaluric rats [111], confirming that the tubular epithelial cells 
of hyperoxaluric kidneys acquired a number of osteoblastic features, and suggesting a dedif‐

ferentiation of epithelial cells to the osteogenic phenotype [278].

Mezzabotta et al. were the first to provide evidence of human renal cells transdifferentiating 
into an osteogenic‐like phenotype, producing CaP deposits [64]. They found spontaneous 

instances of calcification phenomena in primary papillary renal cells derived from a patient 
with medullary sponge kidney (MSK) and medullary nephrocalcinosis, who carried a muta‐

tion in the GDNF gene. To investigate whether this spontaneous mineralization was merely a 
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physicochemical phenomenon or a well‐organized biomineralization process, they searched 

for any sign of the bone mineralization machinery being expressed in the cells. They found 

the cells positive for osteogenic markers such as ON, ALP, collagen I, laminin and Runx2, 

and weakly positive for OCN, but negative for OPN (a known inhibitor of crystal forma‐

tion). The upregulation of ON and downregulation of OPN were also demonstrated at mRNA 

level. Investigating which cells were the main actors behind the phenomenon observed, the 

authors found that the cells were mesenchymal stroma cells (MSCs), which are very similar 

to pericytes. The microvasculature of the renal papilla is particularly rich in pericytes, which 

regulate microvascular integrity in the peritubular capillary network and give the descending 

vasa recta its contractile function [279]. Thus, like VSMCs, papillary MSCs associated with the 

perivascular niche may be capable of driving an osteogenic process under certain conditions.

In the same paper, the Authors demonstrated that human renal tubular HK‐2 cells exposed 
to an osteogenic medium displayed the ability to produce Ca

2
PO

4
 by regulating the ON/OPN 

ratio in favor of ON.

Overall, all these very interesting data underscore that renal cells may acquire an osteoblast‐

like phenotype, and that a process very similar to vascular calcification may have a role in the 
development of human nephrocalcinosis.
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