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Abstract

Coral reefs are central to the biology of our planet, but in the past few decades, they have 
suffered a severe decline due to a variety of natural and anthropogenic disturbances. On 
a worldwide scale, the main disturbance is bleaching, which can be defined as the loss of 
endosymbiotic dinoflagellates and/or of their photosynthetic pigments from their cnidar‐
ian host; with that, the normal pigmentation of the tissue of cnidarians is generally lost 
and the white calcium carbonate skeleton becomes visible through the transparent tissue 
of the host. Coral bleaching can be triggered by multiple factors, but most of the bleach‐
ing observed in the field is a result of elevated sea surface temperature. It has been widely 
documented that bleaching is deleterious to coral reefs, significantly altering the biologi‐
cal and ecological processes that maintain reef communities; yet populations resistant 
to climate change have recently been identified, and it has been reported that acclima‐
tization occurs in less than two years. The aim of this review is to provide up‐to‐date 
information regarding cnidarian‐dinoflagellate symbiosis; causes of coral bleaching; 
mechanisms underlying this phenomenon; consequences of bleaching; and the survival 
mechanisms by which coral reefs face this threat.

Keywords: cnidarians, coral bleaching, global warming, marine ecosystem, symbiotic 
dinoflagellates, Symbiodinium
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1. Introduction

Despite occupying only 0.1% of the ocean, coral reefs play a critical role in marine ecology, 
and in human sustainability, they are invaluable from a variety of perspectives. They are 
home to more than a quarter of all the species that inhabit the ocean, provide coastal protec‐

tion, and support more than 10 millions of people living on tropical coasts [1, 2]. Economic 
goods and ecosystem services of coral reefs are worth more than US $20 trillion annually [3].

Coral reefs are central to the biology of our planet; in terms of biodiversity, they are the most 

rich, complex, and productive marine ecosystem on Earth. It has been estimated that over 90% 
of the species inhabiting coral reefs have yet to be described [4]. Therefore, it is not surpris‐

ing that the organisms that constitute these ecosystems produce a great variety of molecules 

with unique structural characteristics that exhibit numerous biological activities [5], and are 

considered a rich source of novel bioactive agents with great pharmaceutical and biotechno‐

logical potential [6].

Unfortunately, coral reefs are extremely susceptible to the stress related to greenhouse gas 

emissions, particularly ocean warming and acidification [7–10], which provoke disturbances 

that can seriously affect and break down the homeostatic capacity of coral reefs to overcome 
stressors [11]. One of these disturbances is the event called “bleaching,” in which the tissues of 
corals and hydrocorals lose their photosynthetic endosymbiotic zooxanthellae (dinoflagellate 
algae of the genus Symbiodinium) or their pigments, which exposes the white exoskeleton of 

calcium carbonate [12–14].

Numerous studies have shown that bleaching is harmful to coral reefs, since it significantly 
alters the biological and ecological processes that maintain equilibrium in the reef communi‐

ties. Bleaching episodes have resulted in massive damage to coral reefs around the world, 
with serious effects on the maintenance of biodiversity in the marine tropics. Bleaching is also 
responsible for other declines in reef health, such as the increase in coral diseases, declines 

in reef calcification, the breakdown of reef framework by bioeroders, and the loss of critical 
habitat for associated reef organisms [15–18]. Climate models predict that, if CO

2
emissions 

continue to rise at the current rate, bleaching events will increase in frequency and severity, 

threatening the survival of coral reefs. Actually, it has been projected that 90% of coral reefs 
around the world will be at risk if bleaching events occur annually [15, 16, 19].

The US National Oceanic and Atmospheric Administration (NOAA) coral reef watch, the 
Global Coral Reef Monitoring Network (GCRMN), as well as other environmental agencies 

around the world have been monitoring mass coral bleaching events for more than a decade, 

in order to understand conditions that cause bleaching and to develop measures to rehabili‐

tate reefs [1–20]. On the other hand, academic researchers have addressed the study of this 
phenomenon employing different approaches, including genomics, transcriptomics, and pro‐

teomics to better comprehend the molecular mechanisms that provoke it, its consequences, 
and the potential adaptive response of cnidarians to this condition [21–29]. Undoubtedly, 
bleaching represents an enormous threat to the survival of coral reefs, as bleached organ‐

isms display an increased susceptibility to pathogens, a decreased resistance to predators 
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and bioeroders, declines in reef calcification, depressed growth and reproduction rates, and 
a lessening of ability to repair damages [15–18]. In this context, the purpose of this review 
is to provide updated information regarding cnidarian‐dinoflagellate symbiosis; causes and 
consequences of coral bleaching; the molecular processes underlying this phenomenon; and 

the survival mechanisms by which coral reefs face this threat.

1.1. Search strategy

The literature consulted corresponds to the main reviews and articles explaining the phenom‐

enon of bleaching, which contributes to the understanding of the relationship between the 

causes, mechanisms, and consequences of bleaching.

2. Cnidarian‐dinoflagellate symbiosis

An important feature of coral reef ecosystems is that most of the 798 reef‐forming species 
have developed a mutualistic symbiosis with unicellular dinoflagellate algae of the genus 
Symbiodinium, commonly referred to as zooxanthellae (Figure 1). This symbiosis is essential 
in the formation of large and important structures in coral reefs [30]. The genus Symbiodinium 

encompasses nine major clades (A to I), most of which were identified based on the ribosomal 
DNA small subunit [31]. These tiny organisms (8–10 μm in diameter) live within cnidarian 
cells, inside a host‐derived vacuole (symbiosome) located within the gastrodermal cell layer. 
Under normal conditions, the population density of symbionts ranges from 0.5 to 5 × 106 cells 

per cm2 of coral surface, although the limits of this range may vary [30, 32]. Regulation of sym‐

biont density involves different mechanisms, such as limiting the nutrients delivered from 
corals to symbionts, digesting photosynthetic algae, expulsing excess symbionts, rearranging 

excess symbionts into new coral cells, and producing growth inhibition factors [30, 33–35].

Symbiodinium algae carry out photosynthesis, but instead of retaining the sugars and amino 

acids that result from this activity for their own growth and reproduction, they deliver more 

than 95% of their photosynthetic production to their host. In return, Symbiodinium has direct 

access to the waste products of coral metabolism, such as carbon dioxide, which is used in pho‐

tosynthesis. The recycling of nutrients between coral host and its endosymbionts is extremely 
efficient and allows them to live in nutrient‐poor waters [30, 35, 36]. Endosymbionts translo‐

cate molecular oxygen to their hosts and most of their photosynthetically‐fixed carbon in the 
form of glycerol, glucose, amino acids, and lipids. Moreover, the oxygen produced during 
photosynthesis helps maintain the high levels of ATP required for the calcification process 
[30]. In exchange, cnidarians afford inorganic nitrogen, phosphorus, and carbon, as well as 
a lighted environment that provides refuge from herbivores (Figure 1) [36, 37]. Signaling 
molecules regulating host‐symbiont interaction have not been fully characterized. It has been 
suggested that translocation of photosynthetic products may be controlled by host release fac‐

tors (HRFs) [30, 36], some of which are of proteinaceous nature (approximately 10 KDa) [38], 

although free amino acids and mycosporine‐like amino acids have been found to induce the 

release of photosynthetically fixed carbon [39, 40].
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Another important characteristic of reef‐forming cnidarians is their capacity to produce 
 calcified skeletons. Calcification is a crucial process for building the largest biological struc‐

tures in the world [38, 41]. Despite its importance, the mechanism of calcification, or, more 
broadly, biomineralization, is little known. The coral exoskeleton is made of aragonite, a crys‐

talline form of calcium carbonate (CaCO
3
), and it is completely covered by a thin single layer 

of epithelial cells called calicoblastic epithelium (calicodermis). These cells play an important 
role in coral calcification, controlling the ionic composition of the medium in which calcifica‐

tion occurs (extracellular calcifying medium, ECM) [38, 41, 42].

Two hypotheses have been proposed to explain the stimulation of calcification by the pres‐

ence of dinoflagellate symbionts [38]. One of them considers that absorption of CO
2
 and 

release of O
2
 by the symbionts [43] indirectly alter the pH and/or modify inorganic calcium 

concentration inside the gastrovascular cavity of the cnidarian, which leads to calcification 
by the precipitation of CaCO

3
 [44]. The other hypothesis states that symbiotic algae produce 

organic molecules, such as nitrogenous compounds, glucose, and glycerol, that carry out 

the following functions: provide energy for calcification, modify the buffering capacity of 
the ECM, or are precursors for organic matrix synthesis [38, 45].

Colonies of reef‐building cnidarians exhibit a great variety of colors due to the  different 
types and concentrations of pigments conferred by the presence of the millions of  symbionts 

Figure 1. Cnidarian‐Symbiodinium symbiosis.
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found per square centimeter in their tissues [46]. Symbionts can be acquired by either 
vertical or horizontal transmission. Vertical transmission occurs when symbionts are 
transferred from parents to offspring through direct inheritance. On the other hand, hori‐
zontally transmitted symbionts are acquired from the environment, such is the case of 80% 
of scleractinian symbiotic corals, whose larvae acquire their symbionts during a nutritional 

process [47–50]. The process of the establishment and maintenance of symbiosis comprises 
six phases: (i) initial contact; (ii) immersion of the symbiont; (iii) dynamic intracellular sort‐

ing of the symbionts; (iv) proliferation of symbionts in gastrodermal cells; (v) stabilization 

dynamics; and (vi) symbiosis dysfunction and breakdown [38]. According to some authors, 
the recognition of symbionts works in the same way as the recognition of pathogens, i.e., it 
involves pattern recognition receptors (PRRs) that are able to recognize and bind to specific 
conserved components of the cell walls of the algae (carbohydrates, lipids, and proteins) 

[51–53].

During their life cycle, Symbiodinium cells interchange between a vegetative cyst, which is 

the dominant form in the endosymbiotic state, and a motile zoospore that possesses thecal 

plates and two flagella, one transverse and one longitudinal [54]. The current hypothesis 
about the establishment of symbiosis between host cnidarians and Symbiodinium states that 

in the first phase, lectins, secreted by the host cell, induce symbionts to progress to cyst 
stage [30, 53]. Subsequently, lectins on the host cell surface attach to glycoproteins pres‐

ent on the surface of non‐motile Symbiodinium cysts, which are subsequently phagocy‐

tized and carried into an early endocytic compartment by Rab5 proteins. Afterward, cells 
that were successfully recognized end up in a symbiosome, whereas damaged symbionts 

are digested by fusion with lysosomes after transiting through the late endocytic com‐

partment. This traffic takes place through Rab7 and Rab11 proteins [30]. The relationship 
between cnidarians and symbiotic algae is regulated by environmental and physiological 

conditions of the host [30, 55].

It is clearly evident that establishment and maintenance of cnidarian‐Symbiodinium symbiosis 

are critical to preserve homeostasis in coral reef ecosystems. On one side, algal symbionts 
obtain from their hosts protection and inorganic compounds, which are essential for their 

metabolism. On the other hand, cnidarians receive from their symbionts a great percentage 
of their energy demand and a balanced pH and precursor molecules needed for the calcifi‐

cation process. Undoubtedly, disruption of this symbiotic relationship can trigger numer‐

ous adverse effects, not only for the reef‐forming organisms, but also for the great variety of 
organisms that depend on coral reefs.

3. Coral bleaching: causes and global episodes

Bleaching has been described as a visual effect of the stress that occurs when the symbio‐

sis between reef‐forming cnidarians and their symbiotic algae breaks down (Figure 2). It 
comprises the loss of pigmentation in coral reefs due to decreased Symbiodinium population, 

reduction in the concentration of their photosynthetic pigments, or both [12, 17, 56, 57]. Up 
to now, at least four general cellular mechanisms of algal loss have been proposed: in situ 

Coral Reef Bleaching: An Ecological and Biological Overview
http://dx.doi.org/10.5772/intechopen.69685

79



degradation, symbiont (intact or degraded) expulsion, host‐cell detachment, and host‐cell 

death [58, 59].

It has been widely documented that several factors can induce coral bleaching, including 
reduced salinity [60]; amplified or reduced solar irradiation [61–64]; elevated [62, 65] or low 

water temperature [66, 67]; and the presence of chemical contaminants in the sea water, such 

as herbicides, pesticides, and cyanide [68]. However, field and laboratory investigations have 
indicated that elevated temperature is the principal cause of bleaching. Some of these studies 
are listed below.

(a) Hoegh‐Guldberg and Smith (1989) studied the conditions required to achieve experimen‐

tal bleaching of Stylophora pistillata and Seriatopora hystrix; they found that exposing frag‐

ments of these species to 32°C for 7 h caused a rate of expulsion of zooxanthellae 1000 
times greater than in the control, which was kept at 27°C [62].

(b) Jokiel and Coles (1990) concluded that bleaching can be induced by short‐term exposure 

(i.e., 1–2 days) to temperature increases of 3–4°C above normal summer temperature, or 
by long‐term exposure (i.e., several weeks) to temperature increases of 1–2°C [66].

(c) Lesser et al. (1990) showed that increases in temperature significantly reduced the total 
number of zooxanthellae per polyp of the class Anthozoa. At the same time, temperature, 
solar radiation, and ultraviolet radiation independently increased the activities of super‐

oxide dismutase (SOD), catalase, peroxidase, and ascorbate in the symbionts of Palythoa 

caribaeorum [69].

(d) Warner et al. (1999) sampled bleached colonies of Montastraea faveolata and Montastraea 

franksi in Florida. The bleaching was caused by a rise in temperature to over 30°C for 6 
weeks during the summer of 1997. The analysis of these samples indicated damage in 
Photosystem II and a decrease in the expression of the D1 protein [70].

Figure 2. Coral reef bleaching. Modified from Baird et al. (2008) and http://oceanservice.noaa.gov/facts/coral_bleach.
html.
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(e) Eakin et al. (2005) reported that the most serious bleaching event that affected Carib‐

bean and Atlantic coral reefs happened in 2005, the warmest year ever documented in the 
Northern Hemisphere. Whitening of coral reefs provoked mortality of living reef‐forming 
organisms by up to 40% [71].

Among the other environmental factors that can cause bleaching, besides thermal stress, solar 
radiation [17] has the most significant influence. This stressor can act independently of, or syner‐

gistically with, elevated sea water temperature [14, 72]. Fitt and Warner (1995) found a substantial 
reduction in symbiont photosynthesis in the coral Montastraea annularis after exposure to ultra‐

violet and blue light [73], whereas Gleason and Wellington (1993) demonstrated that bleaching 

occurred more readily when corals were exposed to high energy, short wavelength solar radia‐

tion [61]. Other studies have confirmed that exposure to high temperature and ultraviolet light 

exacerbates the stress on the symbiont population, contributing to bleaching [74, 75]. Along with 
increased temperature and high irradiance, elevated atmospheric CO

2
 concentration is also affect‐

ing coral reefs by lowering ocean pH levels, which decreases calcification, increasing the rates of 
erosion that exceed the capacity for accretion of the reefs in tropical and subtropical zones [76–78].

Bleaching of coral reefs was first recorded in the 1870s [79, 80], and since 1980, coral reef 
bleaching and mortality episodes linked to elevated temperatures have been monitored. Ever 
since 1979, nine major coral bleaching episodes have affected coral reefs around the world, 
with an alarming rise in scale and frequency. At first, the phenomenon was regarded as linked 
to El Niño Southern Oscillation (ENSO) events [77, 81], which caused a high mortality in 

colonies of Millepora platyphylla in the Eastern Pacific coral reefs. However, since the early 
1990s, it is known that bleaching is correlated in near real time with anomalously high satel‐
lite‐derived sea surface temperature (SST) [81]. This relationship was clearly observed in the 
Caribbean basin during the 1980s and 1990s, when annual coral bleaching increased logarith‐

mically with SST anomalies [82]. A minimal rise of only 0.1°C in regional SSTs caused a 35% 
increase in the extent and intensity of bleaching, while when SST was increased by 0.2°C and 
above, massive bleaching events took place [15].

The GCRMN (with support from more than 30 countries, the IOC‐UNESCO, UNEP, IUCN, and 
the World Bank) has provided annual reports on the state of coral reefs. The report from 1997 to 
1998 indicated the occurrence of an unprecedented global episode of mass coral bleaching. Before 
1998, GCRMN surveys reported a 9.5% loss of corals in six regions. During 1998, one of the hot‐
test years on record, these regions lost an average of 17.7% of their live reef‐building corals [83]. 
The 1998 record was surpassed in 2005 and again in 2010 [71, 84]. However, 2014 [71, 85] and 2015 
were considered the hottest years ever recorded, and 2016 continued this tendency, which has 
led to the longest and most damaging global coral bleaching event officially documented [86].

A summary of the major bleaching events reported since the 1980 is shown in Table 1. 
Unfortunately, anthropogenic activities that affect environment have provoked that coral 
bleaching events increase in frequency and severity, which represents a very serious threat 

to coral reefs worldwide. Reef‐forming organisms have survived to mass extinction events in 
the past; however, it is unknown if they will be able to adapt fast enough to cope with rapid 

environmental change.
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4. Molecular mechanisms underlying bleaching

It has been shown that, under elevated sea water temperatures and high solar radiation, 
Symbiodinium photosynthesis leads to intense oxidative stress in the two partners of the 

mutualistic symbiosis between reef‐forming cnidarians and dinoflagellate endosymbionts 
[35, 87]. Oxidative stress involves the production and accumulation of reactive oxygen spe‐

cies (ROS), which can damage lipids, proteins, carbohydrates, and DNA [7, 52]. ROS play a 
key role in signal transduction of cell damage mediators and in processes such as apoptosis, 

autophagy, and necrosis [35, 88, 89]. In fact, numerous evidences indicate that the first step of 
bleaching involves inhibition of photosystem II (PSII) activity, a phenomenon referred to as 
photoinhibition, which often results in the overproduction of ROS, especially H

2
O

2
 [90, 91]. 

These cell damage response pathways are important during bleaching and depend on stress 

Date Bleaching event

79/80 Great Barrier Reef

82/83 Eastern Pacific, Indonesia, Tokelau, Panama, Galapagos, Moorea, S‐Japan

84 Moorea

86/87 Great Barrier Reef, Moorea, Caribbean Galapagos

88 Andaman Sea

89 Jamaica

90 Jamaica

91 Moorea, Andaman Sea

92/93 Great Barrier Reef, Galapagos

94 Pacific, E‐Africa, Great Barrier Reef, Moorea

96 Arabian Gulf, Hawaii

97/98 Worldwide

00 South Africa, Easter Island

02 Great Barrier Reef, Arabian Gulf, Hawaii

05 Eastern Caribbean, Southern Africa

06 Great Barrier Reef

07 Iran

08/09 Queensland Australia

10 Worldwide

11 Western Australia Coast, Ningaloo Reef

15/16 Worldwide

Table 1. Documented bleaching events.
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intensity and duration [17, 35]. Moreover, it has been proposed that bleaching itself is a con‐

trol mechanism to minimize the harmful effects caused by the metabolic imbalance in cnidar‐

ian‐algal symbiosis [56].

Photosynthetic damage in Symbiodinium spp. has been proven using non‐invasive chlorophyll 
fluorescence techniques, which demonstrated a significant loss of PSII photochemical effi‐

ciency during bleaching [70, 92, 93]. Elevated temperatures and high radiation cause photoin‐

hibition and damage to the chloroplasts and the photosynthetic apparatus of the symbionts, 

through at least three pathways:

• Damage to the D1 protein, a core component of PSII, which is involved in the photolysis of 
water. This hypothesis proposes that, under stress conditions, the CO

2
 fixation is limited and 

the electrons of PSI are transferred to O
2
. This results in the formation of superoxide, which is 

quickly converted into H
2
O

2
 by superoxide dismutase (SOD). H

2
O

2
 hinders the repair of PSII 

by impairing the synthesis of the precursor D1 protein (pre‐D1) [91]. During bleaching, the 
rate of photoinhibition and damage of D1 protein exceeds the rate of the PSII repair cycle [87].

• Inactivation of ribulose‐1,5‐bisphosphate carboxylase oxygenase (Rubisco), one of the key 
enzymes of the Calvin‐Benzon cycle [94]. This mechanism was proposed when Bhagooli 
(2013) found that inhibition of the Calvin‐Benson cycle by glycolaldehyde induced photo‐

inhibition and coral bleaching, even at optimal temperatures [95].

• Injury of the thylakoidal membranes by ROS, which elicits an energy decoupling of the 
electron transport in both PSI and PSII, resulting in diminished ATP and NADP production 
[52]. The excess electrons reduce oxygen instead of NADPH with the subsequent genera‐

tion of superoxide ion, which is reduced by SOD to H
2
O

2
. This last molecule reacts with 

ferrous ion and yields, the even more reactive, hydroxyl radical. Furthermore, excess elec‐

trons can react with photosynthetic pigments and molecular oxygen to produce atomic 

highly reactive oxygen. All the above‐mentioned ROS spread to the host tissues triggering 
innate immunity, via the transcription factor NF‐kB, leading to apoptosis [52]. Activation 
of NF‐κB also induces iNOS expression, increasing the levels of nitric oxide, which reacts 
with superoxide ion to form peroxynitrite (ONOO‐). This anion is highly reactive and dam‐

ages the mitochondrial membrane, which releases pro‐apoptotic molecules, such as AIF, 
promoting apoptosis (Figure 3) [96].

Another hypothesis to explain the molecular events that lead to bleaching proposes disrup‐

tion to the carbon‐concentrating mechanisms of the coral host. According to this hypothesis, 
bleaching is initiated by the inability of the coral to efficiently supply its symbionts with CO

2
, 

mainly in periods of high solar radiation, when the algal CO
2
 demand is very high. The lack 

of CO
2
 needed for “dark reactions” reduces consumption of ATP and NADPH, blocking 

electron transport components. Sustained concentration of light excitation energy into the 
over‐reduced electron transport chain triggers photoinhibition, damage to the photosynthetic 

components (mainly PSII), and ROS generation [97]. Excessive ROS production stimulates 
antioxidant defenses in the cnidarians and their symbionts, and it is also related to the exit of 

photosynthetic algae [98]. Moreover, bleaching can be caused by damage to “dark reactions” 

in the absence of thermal stress [99].
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Recent investigations have examined the bleaching phenomenon employing genomic and 

transcriptomic approaches in order to measure changes in the expression of genes and tran‐

scripts during thermal stress and bleaching in different cnidarian species [100], including 

Acropora nana [21], Stylophora pistillata [22], Acropora millepora [101], Acropora palmate [24], 

Aiptasia pallida [25], Orbicella faveolata [23], and Acropora hyacinthus [27]. The results from those 
studies revealed that differential expression patterns occur between normal and bleached 
specimens, providing evidence that several important cell processes are affected by bleach‐

ing, such as stress response, Ca2+ homeostasis, cytoskeleton organization, cell transport, cell 

proliferation, apoptosis, calcification, protein expression, immune response, and metabolism, 
among others [21, 23–25, 27, 29, 101].

On the other hand, proteomic approaches have been applied to assess the effect of post‐trans‐

lational environmental stress on marine organisms [29. A recent study carried out on Acropora 

palmata showed that bleaching induced a differential protein expression response in this cni‐
darian. Thirty‐eight key proteins were differentially expressed, primarily transcription factors 
involved in heat stress/UV responses, immunity, apoptosis, biomineralization, the cytoskel‐
etal organization, and endo‐exophagocytosis [24].

It is evident that up to now, the studies of climate‐related stress on coral reefs have indi‐
cated that bleaching does not result from a single process, but rather from a complex 

interaction of environmental and genetic factors, operating at several levels within the 

reef‐forming holobionts [99, 102, 103], which highlights the need for further detailed 

investigations directed toward a better understanding of the mechanisms underlying 
bleaching.

Figure 3. Molecular mechanisms of coral bleaching. Modified from Weis [52] and Wooldridge [98].
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5. Mechanisms by which cnidarians face bleaching

Coral bleaching events have increased in frequency and intensity. Actually, some studies 
project that if this trend continues, tropical coral reefs might disappear this century [104, 105]. 
Mass coral bleaching and mortality events that have been registered worldwide over the past 

three decades have raised serious concerns about the future of coral reef ecosystems [77, 106]. 
Ecological extinction of corals reefs in some regions has been predicted to occur within the 
next 20–50 years, if reef‐forming cnidarians are unable to adapt sufficiently rapidly to keep 
pace with global warming [107].

The ability to recover from a bleaching event has been associated with the energy reserves and 
heterotrophic feeding capacity of the cnidarian host [16, 108, 109]. Symbiodinium can provide 

up to 100% of a healthy coral’s daily fixed carbon requirements; however, following bleach‐

ing, recovering corals may heavily rely on alternate sources of fixed carbon, which is acquired 
via catabolism of energy reserves and/or by increased heterotrophy [16, 110, 111].

Some evidences suggest that cnidarians are able to deal with thermal stress, through a series of 

adaptive processes (e.g., acclimatization, genetic adaptation, and symbiont shuffling), which 
may help reduce the harmful consequences and mortality provoked by bleaching [112, 113].

Acclimatization or acclimation is a type of phenotypic plasticity in which organisms, such 
as corals and their symbionts, can optimize their physiological performance in response to 

environmental changes [114]. The capacity for acclimation and adaptation of cnidarians and 
Symbiodinium clades is currently poorly known. Differentially expressed genes in Acropora 

hyacinthus, under physiological and stress conditions, suggested that the acclimatization that 

occurs less than 2 years after exposure to thermal stress is the same as that might have been 

expected from natural selection over many generations. Incorporating these adaptive capaci‐
ties to ecosystem models will likely reduce the predictions of the disappearance of coral reef 

ecosystems [115].

Some studies have determined the existence of coral species that have survived high tempera‐

tures, indicating that they have higher thermal tolerance thresholds than others. Resistant 
species belong to the genera Cyphastrea, Goniopora, Galaxea, and Pavona, whereas species of 

the genera Stylophora, Pocillopora, and Acropora are more vulnerable to thermal stress [59]. In 
the case of Symbiodinium algae, some clades have been recognized as being more resistant 

than others. A study carried out on the major reef‐building species in the Caribbean showed 
that Symbiodinium algae of the clade D display a significant thermal tolerance [116]. This was 
confirmed in a further study on Orbicella faveolata that demonstrated that under nonstressful 

conditions, thermally sensitive Symbiodinium of the clades B17 and C7 are prevalent, whereas 
after a bleaching event, clades D1 and A3 proliferated and repopulated cnidarian tissues pre‐

viously evacuated by clades B17 and C7 [117].

Various mechanisms have been proposed to explain adaptive capacity of cnidarian species to 
face heat and radiation stress [7]. One of them involves photoprotection provided by pigments 
within the host tissues. Evidences supporting this proposal were obtained from a study of 
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the coral Montipora monasteriata, which was selected since it occurs in multiple color morphs 

(tan, blue, brown, green, and red). That study demonstrated that two of the non‐ fluorescent 
host pigments (CP‐420 and CP‐580) are up‐regulated in response to elevated irradiance. This 
behavior appeared to favor retention of antennal chlorophyll by endosymbionts and therefore, 

photosynthetic capacity. It was found that up‐regulated host pigments can facilitate the estab‐

lishment of new or restructured dinoflagellate chloroplasts by modifying the internal light 
field. Particularly, high concentrations of CP‐420 provided photoprotection for Symbiodinium 

by intercepting photons destined for photochemical quenching by dinoflagellate algae [118].

Another adaptive process entails non‐photochemical quenching (NPQ) that dissipates excess 
light as heat. Reef corals produce fluorescent pigments belonging to a family related to green 
fluorescent proteins, which through the absorption, scattering, and dissipation of high‐energy 
solar radiation by fluorescence reduce photoinhibition and the severity of bleaching [113]. 
Some of these sunscreen compounds are mycosporine‐like amino acids, such as shinorine. 
This pigment showed no detectable fluorescence when excited at a frequency of 312–348 nm, 
which corresponds to the band of its mean‐maximum absorption. Furthermore, electron para‐

magnetic resonance spectroscopy (EPR) revealed that purified shinorine (50 μM) produced 
no detectable radicals when irradiated with 305–700 nm. The lack of free radical formation by 
UV irradiation and the lack of fluorescence are consistent with the high efficiency dissipation 
of thermally absorbed UV energy [113, 119].

A well‐known biochemical adaptation to thermal stress is the heat‐shock response (HSR), 
which comprises the induced expression of a conserved set of molecular chaperones, known 

as heat‐shock proteins. These molecules are critical for protein homeostasis, defense mech‐

anisms, the refolding of denatured proteins, and the breakdown and replacement of non‐

replaceable proteins [120].

An additional adaptive response implies increased expression of enzymes that sequester 
oxygen radicals. The use of recent molecular techniques has improved our understanding of 
the magnitude of the transcriptional response of corals to various stressors, including high 

temperatures. An analysis carried out on Acropora millepora indicated that thermally stressed 

samples experienced a significant overexpression of four genes associated to cnidarian oxida‐

tive stress responses (HSP70, MnSOD, ferritin, and Zn2+‐metalloprotease) [121].

A caspase‐mediated apoptotic cascade, caused by reactive oxygen species mainly generated 
by the algal symbionts, is a well‐known factor that triggers bleaching and death of the host 

cnidarian. It has been shown that under high temperatures, some corals are able to naturally 
suppress caspase activity and significantly reduce caspase concentration as a mechanism to 
avoid colony death from apoptosis. It has been hypothesized that variability in response to 
thermal stress is determined by a four‐element, combinatorial genetic matrix intrinsic to the 

specific symbiotic association [109].

On the other hand, symbiont shuffling and/or switching are considered other important mecha‐

nisms for explaining the way coral reef communities can counter environmental stress condi‐

tions. In some cases, the distribution of certain clades of Symbiodinium can substantially change 

after bleaching, via shuffling (a shift in symbiont dominance) or by symbiont switching (algae 
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are acquired from exogenous sources). A case study was performed on Stylophora pistillata that 

belonged to a coral reef that had suffered bleaching in March 2006. The objective of the study 
was to determine the percentages of different Symbiodinium clades populating the host after 

bleaching, and after the coral recovered from the event. Samples were collected in November 
2006 and July 2007, and the results indicated the initial presence of clades C79, C78, C8/a, and 
C35/a, the last two in greater proportion. However, once the coral recovered from bleaching and 
repopulated, the proportions of C79, C35/a, and C78 decreased, while the population of C8/a 
increased considerably. Furthermore, other more resistant Symbiodinium clades appeared [122].

It is worth mentioning that studies directed toward understanding the causes and effects of 
bleaching, as well as the tolerance mechanisms that counteract this phenomenon have focused on 

Anthozoa species, showing that bleaching affects various processes that are essential to the survival 
of cnidarians. However, an integrative analysis is still needed to understand the molecular mecha‐

nisms underlying the different responses (adaptation or death) of cnidarians to coral bleaching.

6. Consequences of bleaching in coral reefs ecology

Undoubtedly, the bleaching phenomenon has seriously affected corals reefs. Although it has 
been observed that some reef‐building cnidarians that suffer the loss of their symbiotic algae 
can, in some cases, survive and recover [90], bleaching can also lead to massive death [79, 

104, 123], inflicting an enormous damage to the ecological balance of entire reef communities.

Coral reef monitoring programs exist in all regions of the world, recording reef features such 

as coral cover, fish biomass, and macroalgal cover, among others. However, at present the 
way of interpreting coral reef monitoring data has not been globally standardized, which 

hampers decision making directed toward protecting and rehabilitating coral reefs [124].

Several aspects regarding coral resistance and resilience are still unclear. For example, it is 
uncertain which Symbiodinium clades remain fairly viable following a stressful event and if 

they are able to significantly contribute to the recovery of bleached corals [30]. In this regard, 
some researchers reported that a majority of the expelled symbionts remained healthy, 
whereas others claimed that the survival of Symbiodinium did not last; some Symbiodinium 

cells, released into the water column after a thermal stress, had a drastically reduced photo‐

synthetic activity after 5 days, suggesting that their survival could be compromised. Therefore, 
their contribution to the free‐living stocks may be limited [125].

At present, coral resilience ability is the object of various research projects, since it has been 
widely documented that many corals that apparently recover from a bleaching event display 

a decrease in growth rate and calcification [114, 126], and are more susceptible to disease [127, 

128], which is not surprising, since their supply of energy available for fundamental processes 

is diminished.

Gene expression biomarkers are emerging as powerful diagnosis tools for identifying 

and characterizing coral stress. Among the most plausible candidates are genes related to 
 expression of heat‐shock proteins, immune and oxidative stress responses, some metabolic 
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processes, and structural genes. Other genes, such as hsp16, Cacna1, MnSOD, SLC26, and 
Nf‐kB, are showing excellent potential as reliable indicators of thermal stress in corals [107].

The impact on the reduction of the biodiversity of corals has not been fully envisaged. 
However, it is predicted that if reef‐forming cnidarians do not evolve rapidly toward thermal 

tolerance, they will no longer dominate the reefs in the coming years [129, 130]. A possible 
scenario, according to some ecology specialists, is that if global warming continues at the 

present rate, a phase shift in coral reefs to an alternate state dominated by a different kind of 
organisms might occur [131, 132]. This alternate state might represent a substantial degrada‐

tion of the coral reefs. Furthermore, degraded states can also be resilient to change, which 
complicates their possible reversal [11, 105].

7. Concluding remarks

Mass coral bleaching and mortality events that have been registered worldwide over the past 

three decades have raised serious concerns about the future of coral reef ecosystems. In fact, 
ecological extinction of corals reefs in some regions has been predicted to occur within the 

next 20–50 years, if reef‐forming cnidarians are unable to adapt sufficiently rapidly to keep 
pace with global warming [104, 117, 133].

It is clear that the survival of coral reefs strongly depends on the functionality of the symbiosis 
between cnidarians and Symbiodinium algae, and up to now, we are just beginning to under‐

stand the molecular and cellular mechanisms underlying this relationship. Omics approaches 
have enabled a better comprehension about the way cnidarian‐algal symbiosis functions and 
how holobiont physiology is modified by bleaching. Studies of the effects of global warm‐

ing and coral bleaching have indicated that this event is the result of a complex interaction 

of environmental and genetic factors. Investigations of coral bleaching have also provided 
important insight into the mechanisms responsible for coral resistance to thermal stress.

It is evident that the key to understanding the future of coral reefs requires an insightful com‐

prehension of the molecular and physiological mechanisms that promote thermal tolerance 

in the cnidarians and their symbionts, and to identify the genetic characteristics responsible 

for the variety of responses that occur in a coral bleaching event. Therefore, it is very impor‐

tant to continue studies in this regard to better understand cnidarian‐Symbiodinium symbio‐

sis, causes and effects of bleaching, the survival mechanisms of hosts and symbionts, as well 
as their ecological importance. Surely, the results derived from these studies will be useful to 
design strategies and policies to restore coral reefs and to promote their conservation.
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