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Abstract

Thermodynamic experimental techniques using titration are usually employed to study
the interaction between solutes in a diluted solution. This chapter deals with the under-
lying thermodynamic framework when titration technique is applied with densimetry,
sound speed measurement and isothermal titration calorimetry. In the case of partial
volumes and partial adiabatic compressibilities, a physical interpretation is proposed
based upon atomic, free volume and hydration contributions.

Keywords: thermodynamics, molar partial volumes, molar partial adiabatic compress-
ibilities, molar partial enthalpies, densimetry, sound velocity, isothermal titration
calorimetry

1. Introduction

The purposes of this chapter are twofold. First, the thermodynamics fundaments are studied in

detail to determine experimentally, calculate and interpret thermodynamic partial molar proper-

ties using different titration techniques. Second, the postgraduate students are provided with the

necessary thermodynamic background to extract behavioural trends from experimental tech-

niques including densimetry, sound speed measurement and isothermal titration calorimetry.

The first concept introduced in this chapter is “thermodynamic description”. It is defined as a

set of variables employed to define thermodynamically the studied system. For example, a

description by components of a multicomponent system is:

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



J ¼ Jðn1, n2, n3Þ (1)

where J is an extensive thermodynamic property; n1, n2 and n3 are the number of moles of

components 1, 2 and 3. Other type of thermodynamic description is in terms of the concept of

“fraction of a system”. A fraction of a system is a thermodynamic entity, with internal compo-

sition, which groups several components. For example, the above-mentioned system can be

considered as being composed of the component 1, and a fraction F grouping components 2

and 3. In this way, J can be written as:

J ¼ Jðn1, nF, xf 3Þ (2)

where nF is the total number of moles of the fraction F and xf3 is a variable related to the

composition of the fraction. Depending on the system, one can choose the more adequate descrip-

tion. For example, in a liquid mixture, a description by components (Eq. (1)) can be suitable. Other

systems as those shown in Figure 1 could be better described in terms of fractions.

Figure 1A shows a system composed of the solvent (component 1), solute A (component 2) and

solute B (component 3). This system will be described in this chapter using a description by

fractions representing a “complex solute” composed of solutes A and B (see Figure 1B). This

description is appropriate to use in conditions of infinite dilution and dilute solutions. Other

example (see Figure 1C and D) is a functionalized latex particle. A latex is a system composed of

polymeric particles dispersed in a solvent. In a functionalized latex, particles are composed of non-

polar groups and functional groups (usually polar groups). In this case, a description by compo-

nents expressed in Eq. (1) and visualized in Figure 1C is very difficult to use and it is more

convenient to consider a fraction (polymeric particle) composed of non-polar groups (component 2)

and polar groups (component 3). Figure 1D shows a sketch of this description.

When different descriptions are considered for a system, we have to reconsider the relation

between the description and the thermodynamic object studied. In principle, one might think

that all descriptions are equivalent. But this is not true because not all descriptions can retain all

Figure 1. Examples of different descriptions in two systems. (A) and (B) are several solutes in a solvent. (C) and (D) are a

functionalized latex with polar groups.
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features of a thermodynamic system. For example, it is not possible to speak about thermody-

namic partial properties at infinite dilution in multicomponent systems. This fact should not be

surprising because in differential geometry [1], there is the same problem associated with the

relation between a parametrization and a geometric object. Let’s consider, for example, the

sphere of radius equal to one, and a parametrization is:

X1ðx, yÞ ¼
�

x, y,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2 þ y2Þ
q

�

(3)

The problem with this parametrization is that it only covers the top half of the sphere. In

addition, it is not differentiable in the points of the sphere’s equator. Other possibility is:

X2ðx, yÞ ¼
�

x, y, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2 þ y2Þ
q

�

(4)

But, it only covers the lower half of the sphere and neither is differentiable in points of the

sphere’s equator. Even if we consider a combination of X1 and X2, we have the problem of the

lack of differentiability in the points of the sphere’s equator. Another possible parametrization is:

X3ðθ,ϕÞ ¼ ð sinθ cosϕ, sinθ sinϕ, cosθÞ (5)

where θ is the colatitude (the complement of the latitude) and ϕ the longitude. X3 covers the

whole surface of the sphere and it is also differentiable in all points. For this reason, it contains

more information about the sphere (geometric object) than X1 and X2. Backing to thermody-

namics, in the same case than for X3, the partial molar properties at infinite dilution cannot be

obtained and manipulated using the description by components, and it is necessary to use the

description by fractions.

The other concept also introduced in this chapter is the “interaction between components of a

system”. The first principle of thermodynamics establishes the way, in which systems interact

between them and/or with surroundings. In this case, we are interested in the interaction

inside the systems and this cannot be interpreted macroscopically using the first principle of

thermodynamics. With the concept of interaction between components, we can define mathe-

matically a dilute solution and characterize its thermodynamic behaviour in terms of molar

partial properties. In addition to this, we will consider the partial molar properties at infinite

dilution. These properties are essential in studies of polymeric particles because they contain

the information about the interactions inside the particles. These interactions determine the

architecture and final application of the particle.

2. Mathematical fundaments

In this section, some mathematical tools are presented such as changes of variable, changes of

size, the Euler theorem and limits in multivariable functions. Variable changes will allow us to

relate partial properties of different descriptions. Changes of size are the processes underlying

Determination of Thermodynamic Partial Properties in Multicomponent Systems by Titration Techniques
http://dx.doi.org/10.5772/intechopen.69706

101



the extensivity and non-extensivity of thermodynamic properties, which will be mathemati-

cally implemented by the concept of homogeneity. The Euler’s theorem will be treated in the

more general form, and in its demonstration wewill avoid some aspects, which remain unclear

in the versions of the textbooks of Callen [2] and Klotz and Rosenberg [3].

2.1. Changes of variable

Let f be the function defined as:

f ¼ f ðx1, x2, x3Þ (6)

The gradient of f with respect to the variables x1, x2 and x3 is the vector:

∇f ðx1, x2, x3Þ ¼

∂f
∂x1

� �

x2 ,x3
∂f
∂x2

� �

x1 ,x3
∂f
∂x3

� �

x1 ,x2

2

6

6

6

6

4

3

7

7

7

7

5

(7)

If we consider the change of variable:

x1 ¼ x1ðy1, y2, y3Þ

x2 ¼ x2ðy1, y2, y3Þ

x3 ¼ x3ðy1, y2, y3Þ

8

<

:

(8)

the function f will take the form:

f ¼ f ðy1, y2, y3Þ (9)

where its gradient will be:

∇f ðy1, y2, y3Þ ¼

∂f
∂y1

� �

y2 ,y3

∂f
∂y2

� �

y1 ,y3

∂f
∂y3

� �

y1 ,y2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(10)

Our interest is to relate the partial derivatives with respect to the variables x1, x2 and x3 given in

Eq. (7) with the partial properties with respect to y1, y2 and y3 given in Eq. (10). From Eq. (8),

the total differential of x1 is:

dx1 ¼
∂x1
∂y1

� �

y2,y3

dy1 þ
∂x1
∂y2

� �

y1,y3

dy2 þ
∂x1
∂y3

� �

y1 ,y2

dy3 (11)

Using dx1 given by Eq. (11) and similarly with equations for dx2 and dx3, we can write:
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dx1
dx2
dx3

2

4

3

5 ¼ T
x1 x2 x3
y1 y2 y3

� � dy1
dy2
dy3

2

4

3

5 (12)

where the matrix T is:

T
x1 x2 x3
y1 y2 y3

� �

¼

∂x1
∂y1

� �

y2,y3

∂x1
∂y2

� �

y1 ,y3

∂x1
∂y3

� �

y1,y2

∂x2
∂y1

� �

y2,y3

∂x2
∂y2

� �

y1 ,y3

∂x2
∂y3

� �

y1,y2

∂x3
∂y1

� �

y2,y3

∂x3
∂y2

� �

y1 ,y3

∂x3
∂y3

� �

y1,y2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(13)

From (6) and using (7), the total differential of f can be expressed as:

df ¼
∂f

∂x1

� �

x2 ,x3

dx1 þ
∂f

∂x2

� �

x1,x3

dx2 þ
∂f

∂x3

� �

x1,x2

dx3 ¼ ½∇f ðx1,x2,x3Þ�
T

dx1
dx2
dx3

2

4

3

5 (14)

where the symbol “T” indicates “transpose”. From Eq. (9) using Eq. (10), the differential of f

can be written as:

df ¼
∂f

∂y1

� �

y2 ,y3

dy1 þ
∂f

∂y2

� �

y1,y3

dy2 þ
∂f

∂y3

� �

y1,y2

dy3 ¼ ½∇f ðy1,y2,y3Þ�
T

dy1
dy2
dy3

2

4

3

5 (15)

Equaling (15) to (14) and using (12):

½∇f ðy1,y2 ,y3Þ�
T ¼ ½∇f ðx1,x2,x3Þ�

TT
x1 x2 x3
y1 y2 y3

� �

(16)

Remembering that x being a vector and A a matrix, then (xT A)T = AT x, and taking the

transpose in both sides of (16):

∇f ðy1, y2, y3Þ ¼ T
x1 x2 x3
y1 y2 y3

� �� �T

∇f ðx1, x2, x3Þ (17)

Eq. (17) relates the vector gradient with respect to the variables (x1, x2, x3) to the vector gradient

with respect to the variables (y1, y2, y3), and it will allow us to express the partial properties in

two different descriptions.

2.2. Changes of size

In this paragraph, the process of size change in thermodynamic systems is analyzed. The behav-

iour of systems in a size change has consequences on the behaviour or nature of the thermody-

namic properties as well as on the form of the thermodynamic equations of the system. Figure 2

shows a visualization of this process in both directions: increasing and reduction.
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From Figure 2, it is clear that being V the volume, N the number of moles and U the internal

energy, the configuration of this system is under increasing size λ times:

V						!
λ�times

V 0
¼ λV

N						!
λ�times

N0
¼ λN

U						!
λ�times

U0
¼ λU

(18)

Thermodynamic properties, which transform accordingly to (18), depend on the size of the system

and are named extensive variables. Not all thermodynamic variables transform according to

Eq. (18). An example is the molar fraction of the component 2 (x2) in a two-component system.

We can see this formally in the following way. For a two-component system:

N1						!
λ�times

N0
1 ¼ λN1

N2						!
λ�times

N0
2 ¼ λN2

(19)

and x2 transforms as:

x2						!
λ�times

x02 ¼
N0

2

N0
1 þN0

2
¼

λN2

λN1 þ λN2
¼

N2

N1 þN2
¼ x2 (20)

That is, the molar fraction of the component 2 is independent of the system size. Properties,

which remain constant upon size change, are named intensive properties. Other thermody-

namic properties with such characteristics are temperature, pressure, pH and concentration c2
(c2 = N2/V). It is also interesting to look at the behaviour of functions, which depend on

thermodynamic variables (intensive and/or extensive), in a size change. Let, for example, the

function f be given by f = f(T, P, N1, N2, …). For particular values of the variables T0, P0, N01,

N02,…, the function f takes the value f0, and in a change of size:

Figure 2. Sketch of the change of size (increasing and reduction) of a system with volume V.
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T0						!
λ�times

T0
0 ¼ T0

P0						!
λ�times

P0
0 ¼ P0

N01						!
λ�times

N0
01 ¼ λN01

N02						!
λ�times

N0
02 ¼ λN02

…

f 0							!
λ�times

f 00

(21)

If f 00 ¼ lf 0, the function will behave as an extensive property. This concept is mathematically

implemented as:

f ðT, P,λN1,λN2,…Þ ¼ λf ðT, P,N1, N2,…Þ (22)

In this case, f is a homogeneous function of one degree. If f 00 ¼ f 0, fwill behave as an intensive

property. Mathematically, f is expressed as a homogeneous function of zero degree as:

f ðT, P,λN1,λN2,…Þ ¼ f ðT, P,N1, N2,…Þ (23)

2.3. Euler´s theorem

Let f = f(x1, x2,…; y1, y2,…) be a function, which is a homogeneous function of one degree with

respect to the variables y1, y2,…:

f ðx1, x2,…;λy1,λy2,…Þ ¼ λf ðx1, x2,…; y1, y2,…Þ (24)

Then,

f ¼
∂f

∂y1

� �

x1 ,x2 ,…;y2,y3, ::::

y1 þ
∂f

∂y2

� �

x1,x2,…;y1,y3 , ::::

y2 þ :::: (25)

The demonstration is as follows. The differential with respect to λ in the left side of (24) is:

df ðx1, x2,…;λy1,λy2,…Þ

dλ
¼

∂f ðx1,x2,…;λy1,λy2,…Þ

∂x1

� �

x2,x3,…;λy1,λy2,…

dx1
dλ

þ
∂f ðx1,x2 ,…;λy1,λy2,…Þ

∂x2

� �

x1 ,x3,…;λy1,λy2,…

dx2
dλ

þ
∂f ðx1,x2 ,…;λy1,λy2,…Þ

∂ðλy1Þ

� �

x1 ,x2,…;λy2,λy3,…

dðλy1Þ

dλ
þ

∂f ðx1,x2,…;λy1,λy2,…Þ

∂ðλy2Þ

� �

x1,x2,…;λy1 ,λy3,…

dðλy2Þ

dλ
þ… (26)

For the sets of variables x1, x2,… and y1,y2,…, we obtain respectively that:
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dx1
dλ

¼
dx2
dλ

¼… ¼ 0 (27)

dðλy1Þ

dλ
¼ y1,

dðλy2Þ

dλ
¼ y2, … (28)

The following step in this demonstration is different from the step proposed in other text-

books [2, 3]. The partial derivative of f with respect to (λy1) can be expressed as:

∂f ðx1,x2,…;λy1,λy2,…Þ

∂ðλy1Þ

� �

x1 ,x2 ,…;λy2 ,λy3 ,…

¼ limΔ!0
f ðx1, x2,…;λy1 þ Δ,λy2,…Þ � f ðx1, x2,…;λy1,λy2,…Þ

Δ
(29)

Considering that f is a homogeneous function of one degree with respect to the variables y1,y2,

… and making Δ’= Δ/λ in (29),

∂f ðx1,x2 ,…;λy1 ,λy2 ,…Þ

∂ðλy1Þ

� �

x1 ,x2,…;λy2,λy3 ,…

¼ limΔ
0!0

f ðx1,x2,…;y1þΔ
0,y2,…Þ� f ðx1,x2,…;y1, y2,…Þ

Δ
0 ¼

∂f ðx1,x2,…;y1 ,y2,…Þ

∂y1

� �

x1 ,x2,…;y2,y3,…

(30)

The differential of f with respect to λ in the right side of (24) is:

d½λf ðx1, x2,…; y1, y2,…Þ�

dλ
¼ f ðx1, x2,…; y1, y2,…Þ (31)

Eq. (25) is obtained by substituting Eqs. (27), (28), (30), (31) in Eq. (26). In addition, it is

interesting to see that, defining f1 as f1 = (∂f/∂x1) and using (30), f1 is a homogeneous function

of zero degree with respect to the variables y1, y2,…:

f 1ðx1, x2,…;λy1,λy2,…Þ ¼ f 1ðx1, x2,…; y1, y2,…Þ (32)

3. Thermodynamic descriptions

3.1. Description by components

Let it be a three-component system (e.g., as those of Figure 1A and C). Being J an extensive

property, a description by components is:

J ¼ Jðn1, n2, n3Þ (33)

where n1, n2 and n3 are the number of moles of components 1, 2 and 3. The partial property of 1

is defined as:
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j1;2,3ðn1, n2, n3Þ ¼
∂Jðn1,n2,n3Þ

∂n1

� �

n2 ,n3

(34)

From the above section, we know that j1;2,3 is homogeneous function of zero degree with respect

to n1, n2 and n3. With this and considering λ = 1/(n1+n2+n3),

j1;2,3ðn1, n2, n3Þ ¼ j1;2,3
n1

n1 þ n2 þ n3
,

n2
n1 þ n2 þ n3

,
n3

n1 þ n2 þ n3

� �

¼

¼ j1;2,3ðx1, x2, x3Þ ¼ j1;2,3ðx2, x3Þ
(35)

where we have considered that x1 is a function of x2 and x3 because x1 = 1�x2�x3. From (35), we

see that the partial molar properties depend only on the composition of the system. Alternatively

to (35), we could use other scales of composition/concentration to express j1;2,3.

The equation of Gibbs is obtained by differentiating J in (33) and using Eq. (34) and similar

definitions for components 2 and 3:

dJ ¼ j1;2,3dn1 þ j2;1,3dn2 þ j3;1,2dn3 (36)

The Euler equation is obtained by considering that J is a homogeneous function with respect to

n1, n2 and n3 and applying the Euler’s theorem:

J ¼ n1j1;2,3 þ n2j2;1,3 þ n3j3;1,2 (37)

The Gibbs-Duhem equation is obtained by differentiating in Eq. (37), equalling to Eq. (36) and

cancelling common terms:

0 ¼ n1dj1;2,3 þ n2dj2;1,3 þ n3dj3;1,2 (38)

If we consider that partial molar properties are function of n1, n2 and n3, Eq. (38) would be the

Gibbs-Duhem equation in the representation of variables n1, n2 and n3. The representation in

the variables x2 and x3 is as follows. Dividing (38) by the total number of moles,

0 ¼ x1dj1;2,3 þ x2dj2;1,3 þ x3dj3;1,2 (39)

Calculating the differentials by considering that partial molar properties depend on x2 and x3,

and bearing in mind that x2 and x3 are independent variables, (38) can be written in an alterna-

tive way as:

x1
∂j1;2,3
∂x2

� �

x3
þ x2

∂j2;1,3
∂x2

� �

x3
þ x3

∂j3;1,2
∂x2

� �

x3
¼ 0

x1
∂j1;2,3
∂x3

� �

x2
þ x2

∂j2;1,3
∂x3

� �

x2
þ x3

∂j3;1,2
∂x3

� �

x2
¼ 0

8

>

<

>

:

(40)

3.2. Description by fractions

In a description by fractions, we consider the three-component system as composed of a

component 1 and a group (or fraction) composed of components 2 and 3. Figure 1B shows

Determination of Thermodynamic Partial Properties in Multicomponent Systems by Titration Techniques
http://dx.doi.org/10.5772/intechopen.69706

107



the example when two solutes are grouped in a “complex solute”, and Figure 1D shows the

example in which a polymeric particle composed of polar and non-polar groups is considered

as a fraction of the system. In this case, the extensive property J is expressed as:

J ¼ Jðn1, nF, xf 3Þ (41)

where

nF ¼ n2 þ n3 (42)

xf 3 ¼
n3

n2 þ n3
(43)

The variable nF is the total number of moles of the fraction F, and xf3 is a variable related to its

internal composition. The partial molar properties of J in this description are:

j1;Fðn1, nF, xf 3Þ ¼
∂Jðn1 ,nF,xf 3Þ

∂n1

� �

nF,xf 3

(44)

jF;1ðn1, nF, xf 3Þ ¼
∂Jðn1,nF,xf 3Þ

∂nF

� �

n1,xf3

(45)

Because J is a homogeneous function of n1 and nF, the partial properties j1;F and jF;1 will be

homogeneous functions of zero degree with respect to the variables n1 and nF. In this way and

similarly to Eq. (35):

j1;Fðn1, nF, xf 3Þ ¼ j1;FðxF, xf 3Þ (46)

where xF = nF/(n1+nF). Now, we will see the relation between both descriptions. From (42) and

(43), the change of variable of Eq. (8) is in this case:

n1ðn1, nF, xf 3Þ ¼ n1
n2ðn1, nF, xf 3Þ ¼ ð1� xf 3ÞnF
n3ðn1, nF, xf 3Þ ¼ xf 3nF

8

<

:

(47)

Substituting (47) in (13) and the result in (17), one obtains that:

j1;F ¼ j1;2,3 (48)

jF;1 ¼ xf 2j2;1,3 þ xf 3j3;1,2 (49)

∂J

∂xf 3

� �

n1,nF

¼ nFðj3;1,2 � j2;1,3Þ (50)

The equations of Gibbs, Euler and Gibbs-Duhem in this description are as follows. The Gibbs

equation is obtained by differentiating in (41) and considering the definitions given in (44) and (45):
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dJ ¼ j1;Fdn1 þ jF;1dnF þ
∂J

∂xf 3

� �

n1,nF

dxf 3 (51)

The Euler equation is obtained by remembering that J is a homogeneous function of degree one

of n1 and nF and using the Euler’s theorem:

J ¼ n1j1;F þ nFjF;1 (52)

The Gibbs-Duhem equation in the representation of variables xF and xf3 is obtained by differ-

entiating in (52), equalling to (51) and cancelling common terms, and dividing by the total

number of moles:

x1dj1;F þ xFdjF;1 ¼ xFðj3;1,2 � j2;1,3Þdxf 3 (53)

Considering that j1;F and jF;1 are functions of the independent variables xF and xf3, then (53) will

take the form:

x1
∂j1;F
∂xF

� �

xf3
þ xF

∂jF;1
∂xF

� �

xf3
¼ 0

x1
∂j1;F
∂xf 3

� �

xF
þ xF

∂jF;1
∂xf3

� �

xF
¼ xFðj3;1,2 � j2;1,3Þ

8

>

<

>

:

(54)

Calculating the partial derivative of jF;1 with respect to xf3 in Eq. (49) and substituting in

Eq. (54), we obtain:

x1
∂j1;F
∂xF

� �

xf 3
þ xF

∂jF;1
∂xF

� �

xf 3
¼ 0

x1
∂j1;F
∂xf 3

� �

xF
þ xF xf 2

∂j2;1,3
∂xf 3

� �

xF
þ xf 3

∂j3;1,2
∂xf 3

� �

xF

� �

xF

¼ 0

8

>

>

<

>

>

:

(55)

It is interesting to observe that considering constant composition (dxf3 = 0) in Eqs. (51)–(53),

then the system behaves as a two-component system. This fact cannot be obtained using the

description by components.

4. Partial properties in diluted solutions of multicomponent systems

We consider intuitively a diluted solution when the properties of the solution are similar to

those of its solvent in pure state. In this section, we will study the thermodynamic behaviour of

the partial molar properties in this region of concentrations.

4.1. Thermodynamic concept of interaction between components

In this paragraph, we will define the concept of non-interaction and prove that when applying

it to a system, the system behaves as an ideal mixing. From a thermodynamic point of view,

the components of a system are not interacting if both following points hold simultaneously.
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1. The state of each component in the system, expressed in terms of its partial molar proper-

ties, does not vary by changes of composition of the other components. It means each

component does not detect the presence of the other components.

2. The formation of the system from its pure components is carried out with any cost of

energy, neither for the system nor for the surroundings.

Mathematically, the first point can be written as:

∂j1;2,3ðx2,x3Þ

∂x2

� �

x3

¼
∂j1;2,3ðx2,x3Þ

∂x3

� �

x2

¼ 0⇔ j1;2,3 ¼ j1;2,3ðx1Þ (56)

Substituting (56) in (40) and considering also that:

∂j1;2,3
∂x2

� �

x3
¼

∂j1;2,3
∂x1

� �

x3

∂x1
∂x2

� �

x3
¼ �

∂j1;2,3
∂x1

� �

x3
∂j1;2,3
∂x3

� �

x2
¼

∂j1;2,3
∂x1

� �

x2

∂x1
∂x3

� �

x2
¼ �

∂j1;2,3
∂x1

� �

x2

8

>

<

>

:

(57)

it is obtained that:

�x1
∂j1;2,3
∂x1

� �

x3
þ x2

∂j2;1,3
∂x2

� �

x3
¼ 0

�x1
∂j1;2,3
∂x1

� �

x2
þ x3

∂j2;1,3
∂x3

� �

x2
¼ 0

8

>

<

>

:

(58)

Because j1;2,3 depends only on x1:

∂j1;2,3
∂x1

� �

x2

¼
∂j1;2,3
∂x1

� �

x3

(59)

and then (57) yields:

x1
∂j1;2,3ðx1Þ

∂x1

� �

x3

¼ x2
∂j2;1,3ðx2Þ

∂x2

� �

x3

¼ x3
∂j3;1,2ðx3Þ

∂x3

� �

x3

(60)

Because the first term depends only on x1 and the second and third terms depend only on x2
and x3, respectively, from (60), we have that:

x1
dj1;2,3
dx1

¼ kJðT, PÞ (61)

where kJ is a function, which only depends on temperature T and pressure P. Similar equations

to (61) are obtained for j2;1,3 and j3;1,2. Integrating in (61) between x01 ¼ 1 and x1,

j1;2,3ðx1Þ ¼ j1 þ kJðT, PÞlnðx1Þ (62)
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For components 2 and 3, similar equations to (62) are obtained. Now, we will apply the second

point of the above definition of non-interaction. The zero cost of energy for the system and

surroundings is equivalent to:

Qmix ¼ Wmix ¼ 0 ) ΔUmix ¼ 0 )
u1;2,3 ¼ u1
h1;2,3 ¼ h1
v1;2,3 ¼ v1

8

<

:

(63)

Considering u1; 2,3, h1; 2,3 and v1; 2,3 as (62) and bearing in mind (63):

kUðT, PÞ ¼ kHðT, PÞ ¼ kVðT, PÞ ¼ 0 (64)

In addition to this g1;2,3 (free energy of Gibbs),

v1;2,3 ¼
∂g1;2,3
∂P

� �

T,x2,x3

) kVðT, PÞ ¼
∂kGðT,PÞ

∂P

� �

T

(65)

h1;2,3

T2
¼ �

∂

∂T

g1;2,3
T

� �� �

P,x2,x3

)
kHðT, PÞ

T2
¼ �

∂

∂T

kGðT,PÞ

T

� �� �

T

(66)

Combining Eqs. (64)–(66), we have that:

kGðT, PÞ ¼ kT (67)

where k is a constant. For the entropy, one gets:

�s1;2,3 ¼
∂g1;2,3
∂T

� �

P,x2,x3

) �kSðT, PÞ ¼
∂kGðT,PÞ

∂T

� �

P

(68)

With this,

g1;2,3 ¼ g1 þ kT lnðx1Þ (69)

s1;2,3 ¼ s1 � k lnðx1Þ (70)

and we have demonstrated that a system holding the non-interaction definition proposed is an

ideal mixing.

4.2. Diluted solutions

In this section, we will define the thermodynamic concept of diluted solutions and study the

behaviour of the partial molar properties of these solutions. Commonly and intuitively, we

consider a solution as diluted when its properties are similar to those of the pure solvent. We

can implement mathematically this concept in the following way. When we remove all solutes

from a solution, we have that:

limx2þx3!0jðx2, x3Þ ¼ j1 (71)
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where j is the molar property of the extensive thermodynamic property J. In addition, the

partial derivatives must vanish:

limx2þx3!0

∂j1;2,3ðx2,x3Þ

∂x2

� �

x3

¼ limx2þx3!0

∂j1;2,3ðx2,x3Þ

∂x3

� �

x2

¼ 0 (72)

Otherwise, we would have memory effects and we can see this with an example. If we purify

water, the pure substance obtained does not depend on the initial diluted solution employed.

Actually, pure water is commonly used as a standard because it does not depend on the part of

world, in which it is obtained. The Taylor’s expansion of j1;2,3 is:

j1;2,3ðx2, x3Þ ¼ j1ð0, 0Þ þ ½∇j1;2,3ð0,0Þ�
T x2

x3

� �

þ
1

2
ðx2, x3ÞHj1;2,3ð0, 0Þ

x2
x3

� �

þ… (73)

where ∇j1;2,3(0,0) and Hj1;2,3(0,0) are, respectively, the vector gradient and the Hessian of j1;2,3
matrix at (0,0). Considering (71) and (72) in (73) and that all partial derivatives mush vanish at

(0,0), we have that for diluted solutions:

j1;2,3ðx2, x3Þ ≈ j1 þ… (74)

From Eq. (74), we have for diluted solutions:

∂j1;2,3
∂x2

� �

x3

≈
∂j1;2,3
∂x3

� �

x2

≈ 0 (75)

The behaviour of molar partial properties of solutes is as follows. Considering a “complex

solute” S composed of 2 and 3 (as in Figure 1B),

j1;SðxS, xs3Þ ≈ j1 (76)

and substituting Eq. (74) in the first equation of (55),

∂jS;1
∂xS

� �

xs3

≈ 0⇔ jS;1ðxS, xs3Þ ≈ jS;1ðxs3Þ (77)

Inserting Eq. (76) in the second equation of (55), it is obtained that:

xs2
∂j2;1,3
∂xs3

� �

xS

þ xs3
∂j3;1,2
∂xs3

� �

xS

≈ 0 (78)

Until now, we have seen the effect of the dilution in the capacity of detecting the presence of

other components in a diluted solution. In order to gain an insight into the interactions, we

have to study the process of mixing in diluted solutions. From (71), we can write:

limx2þx3!0 h ¼ h1 ) limx2þx3!0 qmix ¼ limx2þx3!0 Δmixh ¼ 0

limx2þx3!0 v ¼ v1 ) limx2þx3!0 wmix ¼ limx2þx3!0 � PΔmixv ¼ 0




(79)
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It indicates that in the limit of infinite dilution, components do not interact because the process

of mixture does not have any energy cost. This result implicates that in diluted solutions,

according to the asymptotic approach given by Eq. (74), the interaction between solvent and

solutes is weak and it can be neglected.

4.3. Partial molar properties of interaction in diluted solutions

The molar property j of a diluted solution can be written as:

j ≈ x1j1 þ xSjS;1 (80)

where we are considering the interaction between components 2 and 3 since

jS;1 ¼ xs2j2;1,3 þ xs3j3;1,2 (81)

In a diluted solution without interaction between 2 and 3, the property jØ can be written as:

j∅ ¼ x1j1 þ xSðxs2j2;1 þ xs3j3;1Þ (82)

In this way, we can calculate the interaction contributions to j as:

Δjint ¼ j� j∅ ≈ xSΔjS;1 (83)

where

ΔjS;1 ¼ xs2Δj2;1,3 þ xs3Δj3;1,2 (84)

is the partial molar property of interaction of the complex solute and

Δj2;1,3 ¼ j2;1,3 � j2;1
Δj3;1,2 ¼ j3;1,2 � j3;1




(85)

are the partial molar properties of interaction of the components 2 and 3, respectively. These

properties are not independent as we will see as follows. Combining (78) and (85),

xs2
∂Δj2;1,3
∂xs3

� �

xS

þ xs3
∂Δj3;1,2
∂xs3

� �

xS

þ xs2
∂j2;1
∂xs3

� �

xS

þ xs3
∂j3;1
∂xs3

� �

xS

≈ 0 (86)

In Eq. (85), Δj2;1,3 and Δj3;1,2 are evaluated when using concentrations xS and xs3. Accordingly,

j2,1 is evaluated using the concentration x2 given by x2 = xS (1�xs3), and then,

∂j2;1
∂xs3

� �

xS

¼
dj2;1
dx2

∂x2
∂xs3

� �

xS

¼ �xS
dj2;1
dx2

(87)

Considering the Gibbs-Duhem equation for a two-component system:
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x1
dj1;2
dx2

þ x2
dj2;1
dx2

¼ 0 (88)

in Eq. (87) and bearing in mind that solutions are diluted,

xs2
∂j2;1
∂xs3

� �

xS

¼ x1
dj1;2
dx2

≈ 0 (89)

Similarly for component 3,

xs3
∂j3;1
∂xs3

� �

xS

¼ x1
dj1;3
dx3

≈ 0 (90)

Substituting (89) and (90) in (86), we obtain:

xs2
∂Δj2;1,3
∂xs3

� �

xS

þ xs3
∂Δj3;1,2
∂xs3

� �

xS

≈ 0 (91)

Eq. (91) indicates that in a diluted solution, the interaction between components 2 and 3 is not

vanished. The partial molar property of interaction of the complex solute can be calculated

experimentally as:

ΔjS;1 ≈ jS;1 � ðxs2j2;1 þ xs3j3;1Þ (92)

and the partial properties of interaction of components 2 and 3 can be obtained from (92) using

the equations:

Δj2;1,3 ≈ΔjS;1 � xs3
dΔjS;1
dxs3

Δj3;1,2 ≈ΔjS;1 þ ð1� xs3Þ
dΔjS;1
dxs3

8

>

>

<

>

>

:

(93)

Eq. (93) is obtained by differentiating in Eq. (92) with respect to xs3, using Eq. (91) and combining

the result with Eq. (92). As we will see below, Eq. (93) will allow us to obtain the interaction

partial properties of 2 and 3 from experimental data.

4.4. Experimental determination of partial molar properties of interaction in diluted

solutions

4.4.1. Partial specific volumes of interaction and partial specific adiabatic compressibility

of interaction

As an example, we will consider the interaction between functionalized polymeric particles

and an electrolyte at 30�C [4]. For that, polymeric particles synthesized of poly(n-butyl

acrylate-co-methyl methacrylate) functionalized with different concentrations of acrylic acid

were used in this study. The electrolyte was NaOH. Similarly to Figure 1A, water (solvent) was

considered as component 1, polymeric particles as component 2 and electrolyte as component
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3. And similarly to Figure 1B, the systemwas fractionalized in component 1 and a complex solute

composed of polymeric particles and electrolyte. The experimental measurements were carried

out using a Density and Sound Analyzer DSA 5000 from Anton-Paar connected to a titration cell.

It is of full cell type, which is usually employed in isothermal titration calorimetry. Polymeric

particles were located in the titration cell, and electrolyte was located in the syringe. Concentra-

tions of polymeric particles (c2) and electrolyte (c3) after each titration were calculated as [4, 5]:

ciþ1
2 ¼ ci2 e

�v
V

ciþ1
3 ¼ cs3 � ðcs3 � ci3Þ e

�v
V

(

(94)

where V is the effective volume of the titration cell, v is the titration volume and cs3 is the stock

concentration of electrolyte in the syringe. Figure 3A and B shows, respectively, data of density

(r) and sound speed (u) as function of the electrolyte concentration. The specific volume (v)

and the specific adiabatic compressibility (ks) were calculated as:

v ¼
1

ρ
(95)

ks ¼
10

ρu

� �2

(96)

Considering the solution in the cell as diluted, the partial specific volume (and similarly the

partial specific adiabatic compressibility) of the complex solute can be calculated as:

vS;1 ¼
v� t1v1

tS
(97)

where t1 and tS are the mass fraction of the water and of the complex solute, respectively.

Figure 3C and D shows the partial specific volume and partial specific adiabatic compressibil-

ity as function of tf3 (mass fraction of the electrolyte in the complex solute). The term of

interaction ΔvS;1 is calculated by Eq. (92), where v2;1 is obtained by considering that:

v2;1 ¼ limts3!0vS;1 (98)

in Figure 3C. The term v3;1 is calculated by extrapolating the linear part of vS;1 in Figure 3C as:

v3;1 ¼ limts3!1vS;1 (99)

The partial specific volume of interaction of the polymeric particles (Δv2;1,3) and the partial

specific volume of interaction of the electrolyte (Δv3;1,2) were obtained using Eq. (93). The

numerical method employed to calculate the derivatives is shown elsewhere [4]. Figure 4

shows the values of ΔvS;1, Δv2;1,3 and Δv3;1,2, and Figure 5 shows the values of Δks S;1, Δks 2;1,3

and Δks 3;1,2 obtained in a similar way than for volumes.

Partial volume of polymeric particles (v2;1) can be broken down in the following contribu-

tions [6–11]:
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v2;1 ¼ v2;1=atom þ v2;1=f ree þ v2;1=hyd (100)

which are shown in Figure 6. The atomic volume contribution (v2;1/atom) is the sum of all volumes

of the atoms, which make up polymeric chains. The free volume contribution (v2;1/free) is conse-

quence of the imperfect packing of the polymeric chains. The atomic volume contribution and

free volume contribution are both positive contributions. The hydration contribution (v2;1/hyd) is

negative, as a consequence of that the specific volume of water molecules in bulk is larger than

the specific volume in the hydration shell. The contributions to the partial specific adiabatic

compressibility are the free volume and hydration because the effect of the pressure on the

atomic volume is neglected [10, 12–21]:

kT 2;1 ¼ �
∂v2;1
∂P

� �

T

¼ �
∂v2;1=f ree

∂P

� �

T

�
∂v2;1=hyd

∂P

� �

T

¼ kT 2;1=f ree þ kT 2;1=hyd (101)

The contribution kT 2;1/free is positive, and the contribution kT 2;1/hyd is negative [4, 8]. In this

chapter, we will take the adiabatic compressibility as an approximation of the isothermal

0.0 0.1 0.2 0.3

0

4

8

12

v
S

;1
 (

1
0

-3
 c

m
3
/g

)

t
s3

A

0.0 0.1 0.2 0.3

0

4

8

12

16

B

C

v
2

;1
,3

 (
1

0
-3

 c
m

3
/g

)

t
s3

0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

v
3

;1
,2

 (
cm

3
/g

)

t
s3

Δ

Δ

Δ

Figure 4. (A) Partial specific volume of interaction of the complex solute (polymeric particles + electrolyte) as function of

the mass fraction of the electrolyte in the complex solute (ts3). (B) Partial specific volume of interaction of the polymeric

particles as function of ts3. (C) Partial specific volume of interaction of the electrolyte as function of ts3.

Figure 3. (A) Density as function of the electrolyte concentration c3 (g/L). (B) Sound speed as function of the electrolyte

concentration. (C) Partial specific volume of the complex solute composed of polymeric particles and electrolyte as

function of the mass fraction of the electrolyte in the complex solute (ts3). (D) Partial specific adiabatic compressibility of

the complex solute as function of tf3.
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compressibility. For the electrolyte, the free volume contribution is null, and then, v3;1 and kT 3;1

will take the following form:

v3;1 ¼ v3;1=atom þ v3;1=hyd (102)

kT3;1 ¼ �
∂v3;1
∂P

� �

T

¼ �
∂v3;1=hyd

∂P

� �

T

¼ kT3;1=hyd (103)

For the complex solute, we can write a similar breakdown:

vS;1 ¼ vS;1=atom þ vS;1=f ree þ vS;1=hyd (104)

Inserting Eqs. (100), (102) and (104) in Eq. (92) and neglecting the variation in the atomic

contributions, the following equation for the interaction specific partial volume is obtained:

Figure 6. Contributions to the partial volume in a polymeric particle.
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Figure 5. (A) Partial specific adiabatic compressibility of interaction of the complex solute (polymeric particles + electro-

lyte) as function of the mass fraction of the electrolyte in the complex solute (ts3). (B) Partial specific adiabatic compress-

ibility of interaction of the polymeric particles as function of ts3. (C) Partial specific adiabatic compressibility of interaction

of the electrolyte as function of ts3.
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ΔvS,1 ¼ ΔvS,1=f ree þ ΔvS,1=hyd (105)

where

ΔvS;1=f ree ¼ vS;1=f ree � ts2v2;1=f ree (106)

ΔvS;1=hyd ¼ vS;1=hyd � ðts2v2;1=hyd þ ts3v3;1=hydÞ (107)

Substituting (105) in (93), we get

Δv2;1,3 ¼ ΔvS;1=f ree � ts3
dΔvS;1=f ree

dts3

� �

þ ΔvS;1=hyd � ts3
dΔvS;1=hyd

dts3

� �

Δv3;1,2 ¼ ΔvS;1=f ree þ ð1� ts3Þ
dΔvS;1=f ree

dts3

� �

þ ΔvS;1=hyd þ ð1� ts3Þ
dΔvS;1=hyd

dts3

� �

8

>

>

>

<

>

>

>

:

(108)

Defining now:

Δv2;1,3=f ree ¼ ΔvS;1=f ree � ts3
dΔvS;1=f ree

dts3

Δv2;1,3=hyd ¼ ΔvS;1=hyd � ts3
dΔvS;1=hyd

dts3

Δv3;1,2=f ree ¼ ΔvS;1=f ree þ ð1� ts3Þ
dΔvS;1=f ree

dts3

Δv3;1,2=hyd ¼ ΔvS;1=hyd þ ð1� ts3Þ
dΔvS;1=hyd

dts3

(109)

One arrives at the following result:

Δv2;1,3 ¼ Δv2;1,3=f ree þ ΔvS;1=f ree

Δv3;1,2 ¼ Δv3;1,2=f ree þ Δv3;1,2=hyd
(110)

where similar equations are obtained for the interaction partial specific compressibilities.

Considering these contributions, the interpretation of the partial specific volumes of interac-

tion of the particle as function of the electrolyte concentration is as follows. From tf3 = 0 to

around 0.05 (see Figure 4B), there is an increment in Δv2,1,3 which can be interpreted as a gain

of free volume by the disentanglement of the polymeric chains. This increment of free volume

is accompanied by an increment in the hydrodynamic radius [4]. From around tf3 = 0.05 to

around 0.1, there is a decrement in Δv2,1,3 due to hydration. In this region of compositions, the

separation of polymeric chains allows the entrance of water molecules in the polymeric parti-

cle. As a result, the hydrodynamic radius of the particle increases [4]. From around ts3 = 0.1 to 0.15,

Δv2,1,3 increases sharply. This fact can be interpreted as an increment of the dehydration. Beyond

ts3 = 0.15, Δv2,1,3 becomes constant, indicating that the interaction between particles and the
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electrolyte is saturated. Similar regions with similar interpretations are obtained for the partial

specific adiabatic compressibility (see Figure 5B).

4.4.2. Partial specific enthalpies of interaction

This section deals with the determination of the partial specific enthalpies of interaction of the

same system than in the latest example [4]. Partial specific enthalpy of interaction of polymeric

particles is:

Δh2;1,3 ¼ h2;1,3 � h2;1 (111)

and the partial specific enthalpy interaction of the electrolyte is:

Δh3;1,2 ¼ h3;1,2 � h3;1 (112)

The partial specific enthalpy of interaction of the electrolyte can be measured by isothermal

titration calorimetry using the combination of two experiments [6, 7]. The first experiment is

locating the polymeric particles in the cell and the electrolyte in the syringe. The heat per unit

of titration volume in an infinitesimal titration is:

dQcd

dv
¼ ðρs � cs3Þh1;2,3 þ cs3h3;1,2 � hvðc

s
3Þ (113)

where ρs is the density of the stock solution and hvðc
s
3Þ is the enthalpy of the stock solution per

unit volume. The second experiment consists of titrating water with the above stock solution,

and its heat per unit of titration volume in an infinitesimal titration is:

dQc

dv
¼ ðρs � cs3Þh1;3 þ cs3h1;3 � hvðc

s
3Þ (114)

The partial specific enthalpy of interaction of the electrolyte is obtained by subtracting (114)

from (113), considering Eq. (112), diluted solutions and bearing in mind that dn23 ¼ cs3dv:

dQcd

dns3
�
dQc

dns3
¼ Δh3;1,2 (115)

Figure 7A shows the experimental values Δh3;1,2. The partial specific enthalpy of interaction of

polymeric particles was calculated by integrating Eq. (91) [7]:

Δh2;1,3ðtf 3Þ ¼ �

ð

tf3

0

t0f 3

1� t0 f 3

dΔh3;1,2
dt0 f 3

� �

dt0 f 3 (116)

and the values of Δh2;1,3 are shown in Figure 7B. It is very interesting to observe in Figure 7B

that Δh2;1,3 is zero from ts3 = 0 to around ts3 = 0.1. This fact indicates that the changes, which

take place in the first two regions in Figures 4B and 5B, are entropic in origin.
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5. Partial molar properties at infinite dilution

First, we will discuss the case of the two-component system and then make the extension to

three-component system. In this section, J can be U, H, V or their derivatives Cv = (∂H/∂T)V,

Cp = (∂H/∂T)P or E = (∂V/∂T)P, KT = (∂V/∂P)T and KS = (∂V/∂P)S.

5.1. Two-component systems

In a two-component system, we only have one way to calculate limits at infinite dilution and it

is to take a component as solvent (component 1) and the other as solute (component 2). For a

two-component system, j takes the form:

jðx2Þ ¼ x1j1;2ðx2Þ þ x2j2;1ðx2Þ (117)

Because

limx2!0jðx2Þ ¼ j1 (118)

and using Eq. (117), we have:

limx2!0j1;2ðx2Þ ¼ j1 (119)

For the solute, we have:

limx2!0j2;1ðx2Þ ¼ jo2;1 (120)

We can obtain experimentally the value of jo2;1 as follows. The Taylor’s expansion of j(x2)

around x2 = 0 is:

Figure 7. (A) Partial specific enthalpy of interaction of the electrolyte as function of the mass fraction of the electrolyte in

the complex solute (ts3). (B) Partial specific enthalpy of interaction of the polymeric particles as function of ts3.
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jðx2Þ ¼ jð0Þ þ
djð0Þ

dx2
x2 þ… (121)

Differentiating (117) with respect to x2, considering the Gibbs-Duhem equation for a 2-compo-

nent system and combining the results with equations (117), (120) and (121):

jðx2Þ ¼ j1 þ ðjo2;1 � j1Þx2 (122)

For this reason, we can obtain experimentally jo2;1 from a linear fit in a plot of j(x2) as function of x2.

5.2. Three-component systems

In three-component systems, we have two ways to calculate limits at infinite dilution. The first

way is to group two components in a “complex solvent” and to calculate the limit at infinite

dilution of the other component in this complex solvent (type I). The other way is considering a

component as solvent, to group the other two components in a complex solute, and to calculate

the limit at infinite dilution of the complex solute in the solvent (type II).

5.2.1. Limits of type I

In this case, we consider a complex solvent B composed of components 1 and 2 and a solute

(component 3). For this system,

J ¼ Jðn3, nB, xb2Þ (123)

where nB = n1+n2 and xb2 = n2/(n1+n2). With this, j can be written as:

jðx3, xb2Þ ¼ xBjB;3ðx3, xb2Þ þ x3j3;Bðx3, xb2Þ (124)

where x3 is the mole fraction of the component 3. At infinite dilution, we have:

lim x3 ! 0
xb2 constant

jðx3, xb2Þ ¼ jBðxb2Þ (125)

and then combining Eq. (124) with (125), one gets for the solvent:

lim x3 ! 0
xb2 constant

jB;3ðx3, xb2Þ ¼ jBðxb2Þ (126)

For the solute, it is obtained that:

lim x3 ! 0
xb2 constant

j3;Bðx3, xb2Þ ¼ jo3;Bðxb2Þ � jo3;1,2ðxb2Þ (127)

where we have used Eq. (48). Similarly to the case of two-component systems, the amount jo3;1,2
can be obtained experimentally by using the equation:
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jðx3, xb2Þ ¼ jBðxb2Þ þ
�

jo3;1,2 � jBðxb2Þ
�

x3 (128)

This equation is obtained by using the first-order Taylor’s expansion of j(x3,xb2) around x3 = 0,

the partial derivative of j(x3, xb2) with respect to x3, the Gibbs-Duhem equation of the fraction-

alized system considering the composition of the fraction as constant and Eqs. (126) and (127).

5.2.2. Limits of type II

In this case (see Figure 1A and B), we will consider the component 1 as solvent and a “complex

solute” S composed of 2 and 3 and then:

J ¼ Jðn1, nS, xs3Þ (129)

where nS = n2+n3 and xs3 = n3/(n2 + n3). The molar property j is:

jðxS, xs3Þ ¼ x1j1;SðxS, xs3Þ þ xSjS;1ðxS, xs3Þ (130)

Similarly to the above cases, at infinite dilution we have for the solvent:

lim xS ! 0
xs3 constant

j1;SðxS, xs3Þ ¼ j1 (131)

Accordingly to case of the two-component system, one gets for the complex solute:

lim xS ! 0
xs3 constant

jS;1ðxS, xs3Þ ¼ joS;1ðxs3Þ (132)

and in a similar way than for the type I limits, joS;1 can be calculated as

jðxS, xs3Þ ¼ j1 þ
�

joS;1ðxs3Þ � j1

�

xS (133)

In order to study the contributions of components 2 and 3 to joS;1, we define the following limits

an infinite dilution:

lim xS ! 0
xs3 constant

j2;1,3ðxS, xs3Þ ¼ jΔ2;1,3ðxs3Þ

lim xS ! 0
xs3 constant

j3;1,2ðxS, xs3Þ ¼ jΔ3;1,2ðxs3Þ

8

>

>

<

>

>

:

(134)

In this way, taking limits in both sides of Eq. (49), and bearing in mind Eqs. (132) and (134), we

have that:

joS;1ðxs3Þ ¼ xs2j
Δ

2;1,3ðxs3Þ þ xs3j
Δ

3;1,2ðxs3Þ (135)

Now, we will see some mathematical properties of limits of type II. One of them is for example:

limxs3!0j
Δ

2;1,3ðxs3Þ ¼ jo2;1 (136)
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This property is demonstrated by using iterated limits:

limxs3!0j
Δ

2;1,3ðxs3Þ ¼ lim xs3 ! 0

xS constant

lim xS ! 0

xs3 constant

j2;1,3ðxS, xs3Þ

2

6

4

3

7

5

¼ lim xS ! 0

xs3 constant

lim xs3 ! 0

xS constant

j2;1,3ðxS, xs3Þ

2

6

4

3

7

5
¼ limxS!0j2;1,3ðxS, 0Þ ¼ limx2!0j2;1ðx2Þ ¼ jo2;1

(137)

The other mathematical property is:

limxs3!1j
Δ

3;1,2ðxs3Þ ¼ jo2;1,3ð0Þ (138)

where its demonstration is as follows:

limxs3!1j
Δ

3;1,2ðxs3Þ ¼ lim xs3 ! 1
xS constant

lim xS ! 0
xs3 constant

j3;1,2ðxS, xs3Þ

2

4

3

5

¼ lim xS ! 0
xs3 constant

lim xs3 ! 1
xS constant

j3;1,2ðxS, xs3Þ

2

4

3

5 (139)

Now, it is necessary to consider other way to fractionalize the system. For convenience, we will

consider a complex solvent B composed of 1 and 3, and a solute 2 where the variable xB
represents the molar fraction of B and xb3 = n3/(n1+n3). With this,

lim xs3 ! 1

xS constant

x2 ¼ lim xs3 ! 1

xS constant

xSð1� xs3Þ ¼ 0

lim xs3 ! 1

xS constant

xb3 ¼ lim xs3 ! 1

xS constant

xs3xS½1� xSð1� xs3Þ� ¼ xS

8

>

>

>

<

>

>

>

:

(140)

and considering Eq. (140), (139) transforms into:

limxs3!1j
Δ

3;1,2ðxs3Þ ¼ lim xS ! 0

xs3 constant

lim x2 ! 0

xb2 constant

j3;1,2ðx2, xb2Þ

2

4

3

5 ¼

¼ lim xS ! 0

xs3 constant

jo3;1,2ðxb2Þ ¼ jo3;1,2ð0Þ

(141)

Other interesting property of the limits of type II is that they are related to each other by the

following equation:

xs2
djΔ2;1,3
dxs3

þ xs3
djΔ3;1,2
dxs3

¼ 0 (142)

The demonstration of this equation is as follows. Both sides of the following equation:
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xs2
∂j2;1,3
∂xs3

� �

xS

þ xs3
∂j3;1,2
∂xs3

� �

xS

¼ xSð1� xSÞ
∂ðj3;1,2 � j2;1,3Þ

∂xS

� �

xs3

(143)

are calculated in the following way. The left-hand side is obtained by deriving partially Eq. (49)

with respect to xs3. The right-hand side of (143) is calculated considering that:

∂jS;1
∂xs3

� �

xS

¼
∂J

∂xs3∂nS
¼

∂J

∂nS∂xs3
(144)

Using (50) in (144) and cancelling common terms, Eq. (143) is obtained. Taking the limit when

xs approaches to zero when xs3 is kept constant in both sides of Eq. (143) and considering that:

lim xS ! 0
xs3 constant

∂

�

j3;1,2ðxS,xs3Þ � j2;1,3ðxS,xs3Þ
�

∂xS

0

@

1

A

xs3

¼
∂j3;1,2ð0,xs3Þ

∂xS

� �

xs3

�
∂j2;1,3ð0,xs3Þ

∂xS

� �

xs3

¼ f ðxs3Þ (145)

Eq. (142) is obtained.

From values of joS;1 it is possible to obtain jΔ2;1,3 and jΔ3;1,2 by using the following equations:

jΔ2;1,3 ¼ joS;1 � xs3
djoS;1
dxs3

jΔ3;1,2 ¼ joS;1 þ ð1� xs3Þ
djoS;1
dxs3

8

>

>

<

>

>

:

(146)

Eq. (146) was obtained by differentiating Eq. (135) with respect to xs3, considering Eq. (142) and

combining the result with Eq. (135).

5.2.3. Application of the limits of type II to the study of polymeric particles

The polymeric particles used were synthesized with a gradient of concentration of functional

groups (acrylic acid) inside the particle [9]. In this system, the content of acrylic acid represents

the polar groups, while poly(butyl acrylate-co-methylmethacrylate) is the non-polar groups. As

seen in Figure 1C and D, component 1 is water, component 2 is non-polar groups and compo-

nent 3 is polar groups. The polymeric particle (composed of polar and non-polar groups) is

taken as a fraction “P” of the systemwhere the variable tp3 = n3/(n2+n3) will be the mass fraction

of polar groups in the particle. In this study [9], the same experimental equipment than in

Section 4.4.1 was used and measurements of density and sound speed were carried out by

titrating water (in the cell) with latex of polymeric particles (in the syringe). Figure 7A and B

shows the density ρ and u as functions of the concentration for several values of tp3. The density

and sound speed were transformed into specific volumes and specific adiabatic compressibil-

ities by using Eqs. (95) and (96), and results are shown in Figure 1C andD.

Advances in Titration Techniques124



In this case, Eq. (133) will take the form:

j ¼ j1 þ ðjoP;1 � j1Þ tP (147)

and considering that t1 = 1 – tP, Eq. (147) transforms into:

j ¼ joP;1 þ ðj1 � joP;1Þ t1 (148)

Using Eq. (148) as a fit function in Figure 8C and D, the partial specific volume at infinite

dilution of the particles (voP;1) and the partial specific adiabatic compressibility at infinite

dilution of the particles (koS P;1) were obtained from the independent term of Eq. (148) and the results

are shown in Figure 9A and B as functions of tp3. In this case, Eqs. (100) and (101) take the form:

voP;1 ¼ voP;1=atom þ voP;1=f ree þ voP;1=hyd (149)

koS P;1 ¼ koS P;1=f ree þ koS P;1=hyd (150)

The partial specific properties of polar (jΔ3;1,2) and non-polar (jΔ2;1,3) groups were calculated by

using Eq. (146). The derivatives of Eq. (146) were calculated numerically by using schemes of

finite differences. Figure 9C and D shows, as functions of the amount of polar groups (tp3), the

values of specific partial volumes of non-polar and polar groups, respectively. Figure 9D and F

shows, respectively, the specific partial adiabatic compressibility of non-polar and polar

groups.

With similar arguments than in Section 4.4.1, we can get the following equations for the

volumes:

vΔ2;1,3 ¼ vΔ2;1,3=atom þ vΔ2;1,3=f ree þ vΔ2;1,3=hyd (151)

vΔ3;1,2 ¼ vΔ3;1,2=atom þ vΔ3;1,2=f ree þ vΔ3;1,2=hyd (152)

and for the adiabatic compressibilities:

kΔT 2;1,3 ¼ kΔT 2;1,3=f ree þ kΔT 2;1,3=hyd (153)

kΔT 3;1,2 ¼ kΔT 3;1,2=f ree þ kΔT 3;1,2=hyd (154)

In addition to this, by combining Eqs. (135), (149), (151) and (152), one gets the following

equations:

voP;1=atom ¼ tp2v
Δ

2;1,3=atom þ tp3v
Δ

3;1,2=atom (155)

voP;1=f ree ¼ tp2v
Δ

2;1,3=f ree þ tp3v
Δ

3;1,2=f ree (156)

voP;1=hyd ¼ tp2v
Δ

2;1,3=hyd þ tp3v
Δ

3;1,2=hyd (157)
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Figure 8. (A) Density of latex as function of polymeric particles concentration. (B) Sound speed as function of polymeric

particles concentration. (C) Specific volume of latex as function of mass fraction of solvent (water). (D) Specific adiabatic

compressibility as function of the mass fraction of solvent (water). In all figures (□) 0 wt%, (○) 5wt%, (∆) 10 wt%, (◊) 15 wt

%, (◁) 20 wt%, (⬢) 25wt%.

Figure 9. (A) Partial specific volume of the polymeric particles at infinite dilution as function of the polar group content.

(B) Partial specific adiabatic compressibility of particles at infinite dilution as function of the polar group content. (C)

Partial specific volume of non-polar groups at infinite dilution as function of the polar group content. (D) Partial specific

adiabatic compressibility of non-polar groups at infinite dilution as function of the polar group content. (E) Partial specific

volume of polar groups at infinite dilution as function of the polar group content. (F) Partial specific adiabatic compress-

ibility of polar groups at infinite dilution as function of the polar group content.

Advances in Titration Techniques126



where similar equations can be obtained for the adiabatic compressibilities. Figure 9A and B

shows that voP;1 and k
o
sP;1 decrease when the amount of polar groups increases. This fact indicates

an increment of the hydration in the interior of the particle when the amount of polar groups
increases. The distribution of this hydration is as follows. Figure 9C andD shows that vΔ2;1,3 and

k
Δ

s2;1,3 decrease from 0 to 15% of polar groups, while Figure 9E and F shows that vΔ3;1,2 and k
Δ

s3;1,2

increase. This fact can be interpreted because the hydration is redistributed from the polar
groups to the non-polar groups. In the region of 15–25%, this behaviour is reversed.

6. Conclusions

In this chapter, we have developed common thermodynamic bases for isothermal titration
calorimetry, densimetry and measurement of sound speed in terms of thermodynamic partial
properties (interaction partial enthalpies, partial volumes and partial adiabatic compressibil-
ities). To build these common thermodynamic bases, it is necessary to introduce new concepts,
i.e., the concept of fraction of a system and the concept of thermodynamic interaction between
components of a system. An advantage of the proposed thermodynamic scheme is the possi-
bility of including new thermodynamic partial properties as partial heat capacities.
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