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Abstract

Although menopause is a phenomenon predominantly studied in humans or laboratory 
animals, this chapter discussed the case of nonhuman primates (NHPs), not only with the 
objective of employing them as study models but also to better understand phylogenetic 
divergence among species. Those taxonomic differences are reflected in reproductive 
processes that may be similar to those of human beings, with the presence of a defined 
cycle or periods of estrus, but perhaps at different ages as well, where menopause plays 
a crucial role. First, it is important to delimit the concept of menopause by consider-
ing its anatomical, physiological, and biochemical parameters, including the cessation 
of menstrual bleeding or perineal swelling—when present—or follicular depletion and 
hormonal changes. Thus, the aim of this chapter is to discuss some of the similarities 
between NHPs and human females, during the menopause period. Studying these phe-
nomena should help us achieve a better understanding of the social, physiological, and 
environmental factors without adopting any particular cultural view of menopause.

Keywords: nonhuman primate, ovarian cycle, reproductive cessation, new world monkeys, 
old world monkeys
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1. Introduction

Menopause is a process of the reproductive aging [1] manifested in the depletion of ovar-

ian follicles, the reduction of ovarian hormones to castration levels, and the increase in the 

concentration of serum gonadotropins [2]. In human beings, this process occurs in midlife, 

heralded by the gradual disappearance of menstrual cycles accompanied by the end of repro-

ductive capacity, which correlates with functional and structural changes in the hypotha-

lamic-pituitary-ovarian axis [3].

This process is not exclusive to humans, for it also occurs in all iteroparous organisms that 

exhibit declining fertility as a function of general senescence [4]. However, in contrast to 

human beings, nonhuman primates (NHPs) and even longer lived species like tortoises, 

elephants, and whales retain their capacity to reproduce until relatively advanced age [5]. 

Studies in NHPs, such as monkeys and apes, both in the wild and in conditions of captiv-

ity, have reported menopause as a physiological phenomena [6–8], but they clearly show 

that the reproductive changes observed in NHPs differ from those of human menopause, 
at least from a perspective of comparative life history [6]. This is because most of the oldest 

individuals in all wild species studied showed no signs of ovarian failure, while studies 

of captive primate species have observed that 67% of old females continued reproducing 

throughout their lives [7].

It has been suggested that the differences between the human fertility pattern and those of 
other NHPs are evident in the maximum age of reproduction and mean life expectancy at 

maturity of both. This refers to the fact that human beings have an early fertility peak that 

begins to decrease when they are in their mid-1920s, followed by a general decline and then 

a steep drop that normally begins around age 35; being this age the specific moment fertility 
functions of NHPs as macaques remain relatively constant over a long period, terminating 

abruptly only a few years before age death [9].

NHPs are used in medical and scientific research due to their similarities in physiology, neu-

roanatomy, reproduction, development, cognition, and social complexity to humans, which 

reflect their close phylogenetic relationship between NHPs and human beings. Primates are 
divided phylogenetically into strepsirrhines (galagos, lorises, and Malagasy lemurs) and hap-

lorhines (tarsiers and anthropoids). There are three major branches of extant anthropoids or 

higher primates: the Platyrrhini or New World monkeys (South and Central America) and 

two groups of Catarrhini (the Cercopithecoids or Old World monkeys (Africa, Europe, and 

Asia) and Hominoids (Apes and human beings)) (Figure 1) [10].

The aim of the present chapter is to discuss and analyze some similarities between female 

NHPs and human females during natural or surgically induced menopause, since expanding 

our knowledge of this phenomenon in mammals with such a close phylogenetic relationship 

so to human beings should lead to a more comprehensive understanding of this biological 

process.
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2. Reproductive cycles in nonhuman primate females and their relation 

with cycles in human beings

For many mammals, estrus is not only confined to a brief portion of the reproductive cycle 
that is characterized by an increase in attractivity and in the proceptive and receptive behav-

iors of females but is also strictly seasonal. In NHPs the reproductive cycles occur for only a 

few weeks of the year, as occurs among Madagascar prosimians, such as the sifakas. In some 

New World primates, such as squirrel monkeys, sexual cycles occur only during 3 months of 

the year [11], but many catarrhine primates do not follow this strict pattern circumscribed by 
the estrous period [12]. The literature mentioned that apes, human beings, and many mon-

keys have reproductive cycles that differ in two ways: first, the cycles include menstruation, 
a cyclical sloughing of the uterine lining. Second, there is greater flexibility in the time of 
proceptive and receptive behaviors with a longer duration of estrus [13]. Apes and Old World 

Primates

- Strepsirrhines

- Haplorhines

Galagos (Galago)

Lorises (Loris)

Malagasy lemurs (Lemur)

- Tarsiidea (Tarsius)

- Anthropoidea

(Higher primates)

Catarrhini

Platyrrhini

(New World monkeys

America)

Pitheciidae Ti� monkeys (Callicebus)

Atelidae Howler monkey (Aloua�a)

Woolly monkey (Lagothrix)

Spider monkey (Ateles)

Cebidae

Cebinae
Capuchin monkeys (Cebus)

Squirrel monkeys (Saimiri)

Ao�nae Owl monkey (Aotus)

Callithrichinae
Marmosets (Saguinus, Leontopithecus)

Tamarins (Callithrix, Mico )

Goeldi’s monkeys (Callimico)

Cercopithecoidea

(Old World monkeys)

Cercopithecinae

(Africa, Asia, Europe)

Macaques (Macaca)

Mangabeys (Cercobus)

Mandrils (Mandrillus)

Geladas (Theropithecus)

Babbons (Papio)

Colobinae (Colobus)

Hominoidea

Hyloba�dae Gibbons (Hylobates)

Hominidae

Great apes

Humans (Homo)

- Asia:

Orangutans (Pongo) /

- Africa:

Gorillas (Gorilla)

Chimpanzees (Pan troglodytes)

Bonobos or Pygmy chimpanzee (Pan paniscus)

Figure 1. Taxonomic classification of extant primates with branch lengths in millions of years. Representative genus is 
shown in brackets (modified from Ref. [10]).
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monkeys, meanwhile, exhibit menstrual cycles that range from 25 to 35 days similar to those 

human females. Also in NHPs, mating activity is not restricted to the periovulatory period as 

occurs in other mammals since female receptivity is not under strict control of ovarian hor-

mones, but is more closely related to the social context, also as in human beings [14]. Finally, 

circulating steroid hormones reflect the process of ovulation and ovarian cycling [15].

2.1. Ovarian cycle in nonhuman primates

Ovarian cycles in primates begin with a follicular phase during which the follicle matures, fol-

licular secretion of estrogen increases, and the circulating concentration of progesterone (P
4
) 

decreases [16]. In most primates, only one follicle ovulates in each cycle. It emerges during the 

mid-follicular phase and inhibits maturation of other follicles by secreting large amounts of 

estrogen that, in turn, reduce concentrations of the follicle-stimulating hormone (FSH) below 

the threshold level required for maturation of early antral follicle [17]. Second, ovulation occurs 

immediately after the follicular phase, and this maintains high circulating concentrations of 

estrogens from the mature follicle while exerting positive feedback on the hypothalamus and 

pituitary that triggers secretion of the gonadotropin-releasing hormone (GnRH), as well as FSH 
and luteinizing hormone (LH). The increased LH reaches the ovaries where it causes the follicle 

to rupture [18]. Third, during the luteal phase, the concentration of P
4
 rises, but that of estrogens 

declines. Fertilization can take place during the early luteal phase of the cycle only during the first 
24 h after ovulation. This is because the oocyte has a short life span. If the ovum is fertilized, then 

the corpus luteum does not degrade and continues to secrete P
4
 until the placenta develops [19].

Some of these processes are similar to the ovarian cycles in the human beings [20]; however, 

studies have found that in all primate species studied, follicular development, ovulation, and 

corpus luteum formation occur spontaneously and independent of mating-induced stimuli 

[21]. Also, NHPs have been shown to have extended ovarian cycles, especially prolonged 

luteal phases, compared to those of other mammals [22]. Also, the duration of the follicular 

and luteal phases differs among NHPs. Cycle lengths vary among different primate groups: 
in prosimians, from 30 to 50 day; in New World monkeys, from 16 to 30 days; in Old World 

monkeys, from 24 to 35 days; in lesser apes, from 20 to 30 days; and in great apes—including 

humans—from 25 to 50 days [14, 15, 21, 23]. In contrast, squirrel monkeys have a mean cycle 

length of just 7–12 days, with a follicular phase of about 5 days [24].

Menstruation appears to be absent in all prosimians and possibly in tarsiers, presumably 

associated with the noninvasive form of placentation characteristic of these primates [21]. 

However, menstruation does occur in most Old World monkeys and apes, as well as in sev-

eral New World monkeys [25], and prosimians may be considered to have an estrous cycle, 

because they exhibit distinct cyclical changes in relation to sexual receptivity, with a peak 

during the periovulatory period. Finally, many New World monkeys do not exhibit either 

menstruation or strict estrous cyclicity [20].

2.2. Ovarian cycle in humans

In human beings menstrual bleeding is the visible sign of cyclicity; it has a length of 3–6 days 

and occurs at the end of the luteal phase and the beginning of the follicular. While fertile phase 
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has a length of 5 days and is associated with the end of follicular phase and an increase of estra-

diol (E
2
) before ovulation, during this period conception can occur. Recent studies have found 

that human females possess dual sexuality, which consists of a fertile phase where they are 

more sexually attractive to men and a phase extended (non-fertile), which presents a motivation 
or interest in sex with the aim of obtaining some benefits, without conception occurring [26].

2.3. Reproductive aging

Female reproductive output differs markedly in relation to species and time. As females of 
many species age, a period of reproductive instability with perimenopausal-like hormonal 

changes has been observed. Like many other mammals, NHP females show fertility param-

eters that are related to age [7]. Anovulation, insufficient luteolysis, and impairment of ges-

tation and lactation processes all become more common toward the end of reproductive 

life [27]. Female reproductive senescence differs among mammalian taxonomic groups. For 
example, in NHPs, the end of reproductive life is characterized by the loss of the follicular 

pool, whereas in rodents, variations are seen in the size of the follicular pool that remains at 

the end of reproductive life. In humans, experiencing follicular depletion early in the maxi-

mum life span is not usual; rather, it is the result of an extended period of altered hormonal 

environments. These alterations may be caused by reduced circulating estrogens, P
4
, and 

inhibin, resulting in elevated gonadotropin concentrations (GTHs) for a time, followed by 

their decline [28]. Monkeys and apes also experience follicular depletion and associated hor-

monal alterations [8, 29], but the stage of life at which these occur is generally later than in 

humans. Some reports on lemurs and callitrichids indicate an age-related decline in reproduc-

tion in many species that is reflected in diminished reproductive success [30]. Older female 

sifakas (Propithecus edwardsi), a Madagascar lemur, show decreased rates of infant survival, 

and studies have affirmed that this effect can be attributed to the females’ deteriorating denti-
tion resulting in inability to support lactation [31]. This indicates that reduced fertility in old 

age does not, in and of itself, reflect impaired neuroendocrine or gonadal function [20].

Considering the taxonomic scale of primates, we can observe the variability in physiologi-

cal characteristics, like it is reflected in aging process. As much NHPs get closer to human 
beings, more similarities are found, going through estrous cycles for strepsirrhines (galagos, 

lorises, and lemurs), to ovarian cycles, and hormonal profiles similar to human being females, 
in great apes (orangutans, gorillas, and chimpanzees), and Old World monkeys (macacos 

and baboons). Also in both cases, at the end of their reproductive life, different physiological 
and hormonal changes occur, which are associated with the loss of ovarian function that are 

characteristic of aging, where this gives us the opportunity to study in a comparative way dif-

ferent alterations that could be related to the absence of ovarian hormones.

3. Menopause in Homo sapiens females and nonhuman primates

Menopause has been defined as a series of changes in the termination of reproductive viabil-
ity, of which the discontinuation of menstruation is but one component. Menstrual bleed-

ing is a marker of the ovarian and neuroendocrine phenomena of reproductive viability in 
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humans [32], but not all NHPs exhibit this [24]. Consequently, menopause must encompass 

hormonal, physiological, and biochemical changes that play essential roles in the cessation 

of ovarian cyclicity, regardless of whether menstrual bleeding is present. However, Walker 

and Herndon [1] have defined menopause in NHPs as the permanent, non-pathological, 
age-associated cessation of ovulation, so to infer this event would require considering such 

biological parameters as menstrual bleeding, perineal swelling, follicular depletion, and 

hormonal changes.

Some species of NHPs seem to present processes that are quite similar to what human females 

experience during menopause, but differences also exist, such as the shorter postmenopausal 
life span and differences in the timing of hormonal changes during the menopausal transition 
[33]. It is important to consider the time of menopause relative to the average and maximum 

life span of individuals. For example, humans may be unique among primates in that they 

have a long post-reproductive survival potential [34]. In human females, the reproductive 

function does not begin with puberty nor does it end with menopause at a certain chronologi-

cal age. Instead, both of these are dynamic periods for the reproductive axis, during which 

development or senescence occurs relatively rapidly. In fact, the reproductive axis ages to 

a nonfunctional state (menopause) much earlier than other organs, while the reproductive 

system reaches the point of failure at a relatively young average age of 51 + 8 years [35]; con-

sidering that the maximum span for humans is around 80 years, they spend nearly 35% of 

her life in a post-reproductive state and in very special cases to 60% (122 years). Also, there 

are significant differences between species of NHPs and humans in terms of life span. For 
example, the life span of animals after menopause is short compared to humans, as they usu-

ally die not long after menopause [1].

Human females are born with a finite number of oocytes; thus, reproductive aging entails the 
steady loss of these oocytes through atresia and ovulation, processes that do not necessar-

ily occur at constant rates [36]. Peak fertility in humans occurs in the mid-20s, after which it 

declines steadily until a steep decrease begins after age 35 [37]. This decline in fertility occurs 

despite normal hormone secretion by the ovaries of “older” reproductive-age humans, which 

continues until 3–4 years prior to menopause [38].

In spite of the wide age range at which ovarian dysfunction and reproductive failure occur 

in these species, the sequence of terminal events is fairly predictable. At the beginning of the 

process, the menstrual cycle length is shortened due to early follicular development and ovu-

lation [39], which reduces fertility (premenopause). This is followed by disruption of regu-

lar menstrual cyclicity (perimenopause) and, finally, complete ovarian failure (menopause). 
Studies have observed that perimenopause is an indication that the number of remaining 

ungrown ovarian follicles has dropped below a critical threshold [40]. The period of transi-

tion from the reproductive phase to the nonreproductive state is called climacteric. Finally, 

postmenopause is the period following climacteric and occurs when the hormonal instability 

that characterizes perimenopause is replaced by the relative stability of the post-reproductive 

life stage when the reproductive function has ceased [41].

Declining fertility with age is manifested more commonly in monkeys and apes, to the point 

that some females cease to reproduce altogether before they die. Some reports on Old World 
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monkeys in the wild mention that old toque macaque (Macaca sinica) and gray-cheeked mang-

abey (Lophocebus albigena) females no longer breed, perhaps due to increasingly long birth 

intervals that terminate with death or the cessation of ovulation [42]. In contrast, NHP females 

living in captivity may show life cycles marked by irregular and lengthened menstrual cycles, 

reduced estrogen levels, very long birth spacing and, in a few cases—such as chimpanzees—

total cessation of ovulation [8, 43]. In captive rhesus monkeys (Macaca mulatta), menstruation 

ends at approximately 25 years of age [44], and their maximum life span is around 30 years 

[45]; thus, this species may have a maximum post-reproductive life span of approximately 

20%, similar to what happens in chimpanzees (Pan troglodytes). There are also differences in 
life span among species of NHPs and humans. For example, the life span of other animals 

after menopause is short compared to humans, since they usually die after only a short time, 

while humans have an extended postmenopausal life expectancy [1].

The perimenopause period is also highly variable in human beings, as age at the onset of 

this period ranges from the mid-1930s to the early 1950s [46]. This wide range impedes 

gaining a better understanding of the mechanisms that control the onset of menopause in 
humans. In NHPs, this is even more difficult, since reproductive cessation occurs so late in 
their life span that relatively few individuals actually live to those ages. However, there are 

data that support the existence of a perimenopausal in NHPs [33, 47–49], a condition that 

indicates a transitional stage between fertility and age-associated infertility. Also, it has 

been reported that patterns of vaginal bleeding and serum hormone profiles of macaques 
in the third decade of life are similar to those described for peri- and postmenopausal 

human [29].

Although originally the term menopause was coined in human being context, there are some 

approaches toward NHPs, which let us build it, considering not only the cessation of men-

strual bleeding but also other changes, such as the cessation of perineal swelling, follicu-

lar depletion, and hormonal-associated changes. So this term has been adapted focusing in 

the physiological characteristics of each species. By other hand the life span between species 

should be considered, because unlike human beings, some species usually transit immedi-

ately from the reproductive end to death. Therefore, it is of great importance to know what 

are the differences between species that could help us identify the age of onset of menopause 
according to the species of the study, and, since this information, it will depend on whether 

or not our data can be extrapolated to the human.

4. Menopause in nonhuman primates in wild versus captive conditions

Specific studies over physiological mechanisms that govern the timing of menopause in wild 
NHPs are scarce [42, 50], because many factors could mask the accuracy of these results, 

including the ages of subjects—which often must be estimated [51]—predation pressures [52], 

limited survivability [23], infant mortality [53], food availability and nutrition [54], and social 

dynamics [55]. Therefore, this information is taken as complementary to data derived from 

captive animals [1].
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4.1. Macaques (Macaca spp.)

Hodgen et al. [29] reported that female rhesus monkeys (Macaca mulatta), in captivity and at 

least 22 years of age, showed true menopause, confirmed by circulating levels of pituitary and 
ovarian hormones and the pattern of vaginal bleeding. Female rhesus monkeys older than 
22 years are considered aged, as the maximum average life span for this species is estimated 

at 30 years [44, 45]. Hence, these females are close to the end of their life span, compared to 

humans, who are considered as “aged” at around 75 years.

Graham et al. [8] examined the reproductive history and histology of pigtail macaques 

(Macaca nemestrina) by observing females divided into three age classes (4, 10, and 20 years). 

They reported that one female over 20 years of age showed functional, hormonal, and mor-

phological characteristics of human menopause (i.e., complete follicular depletion, absence of 

luteal tissue, amenorrhea, increased LH levels, atrophic uterus, and vagina). Miller et al. [56], 

meanwhile, reported an age-associated decline in fertility in pigtail macaques, similar to the 

findings for Macaca sylvanus reported by Paul et al. [57].

Walker’s study [47], of 15 female Macaca mulatta aged 8–34 years, was designed to character-

ize the endocrine and menstrual changes associated with menopause in this species. Findings 

indicate that females aged 24–26 years were in transition to menopause, evidenced by ele-

vated LH concentrations consistent with a low E
2
 concentration and no indication of bleed-

ing menstrual. Also, the histological analysis of their ovaries showed little or no evidence of 
follicular activity. Finally, the females aged 27–34 years clearly showed a postmenopausal 

process, marked by high LH concentrations and uniformly low E
2
 concentrations. This find-

ing was corroborated by Gilardi et al. [48], who suggest that in female rhesus monkeys meno-

pause does not occur until the second half of the third decade of life. Recent studies have also 
reported that postmenopausal females show low E

2
 and P

4
 levels, high indexes of FSH and 

LH, and a significant decline in the anti-Mullerian hormone and inhibin B. All these findings 
indicate that these endocrine parameters may be associated with menopause [49]. On the 

other hand, Johnson and Kapsalis [58] reported a median age >27 years for menopause in 

free-ranging rhesus monkeys.

Recent studies have concluded that reproductive senescence correlates with overall health [23]. 

Gore et al. [59], for example, reported that neuroendocrine changes in senescent rhesus mon-

keys are consistent with those reported in humans [60] and that ovarian changes are related 

to menopause [61], thus suggesting that these NHPs undergo ovarian changes as a function 

of aging, similar to humans [40] and chimpanzee [62]. A study of Japanese macaques (Macaca 

fuscata) reported that in free-ranging individuals, fertility rates diminish at around 25 years 

of age [63], but those normal menstrual cycles continue when they are in captivity, despite a 

loss of fertility [64]. Finally, recent studies of cynomolgus monkeys (Macaca fascicularis) have 

shown an endocrine pattern similar to that of humans during the postmenopause period [65].

4.2. Great apes

The menstrual cycles, pregnancy, and genital pathology of common chimpanzees (Pan 

troglodytes) were analyzed to determine the extent of perimenopausal changes in females 
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with aged approximately 35–48 years. However, those analyses showed no clear evidence 

of menopause, because several females continued cycling until death [8]. But the authors 

did observe a reduced likelihood of conception in those female chimpanzees, even though 

they did not “run out” of oocytes before the end of the maximum life span. They concluded 

that female chimpanzees aged 35 years of age or more show increased reproductive senes-

cence that is quite comparable to what is seen during human climacteric.

Other studies of common chimpanzees aged approximately 48–50 years and of bonobos—

pygmy chimpanzees (Pan paniscus)—aged approximately 40 years reported that even though 

the former were extremely aged, they continued to have menstrual cycles and perineal swell-

ing but with increased cycle length. Also, these aged females continue to secrete GnRH in a 
pulsatile fashion, although the levels of this hormone are higher than younger females [43]. 

Recent studies by Lacreuse et al. [66] found that many aged chimpanzees continued to men-

struate at age 50 or more, but the length of their cycles increased after age 20. Similar results 

were reported by Videan et al. [67], who concluded that menopause in Pan troglodytes occurs 

at approximately 35–40 years of age. These data concur with the report on wild chimpanzee 

by Nishida et al. [50]. These authors reported that the females ceased cycling after 30 years of 

age. On the other hand, Thompson et al. [68] observed that healthy free-ranging chimpanzees 

remained reproductively viable well past 40 years. They suggested that in Pan troglodytes, 

menopause occurs as a by-product of ill health, interpreting that the onset of menopause 

may be delayed in relatively healthy, long-lived animals. Studies of female chimpanzees have 

shown that reproductive aging is similar to that seen in human females, including higher fetal 

loss as a function of advancing age [69] and the age-related depletion of ovarian follicles [62]. 

Thus, these studies showed that Pan troglodyte females continued cycling into extreme old 

age, which distinguishes them from human females in terms of menopause.

Other studies in Pan paniscus females, aged at least 40 years, showed no external evidence of 

menstrual cycling preceding death, and hormone levels consistent with clinically observed 

amenorrhea, but an exaggerated response to the exogenous GnRH challenge. Histological 
examination of ovaries showed similar characteristics to those described for senile ovarian 

tissue in humans [43].

Studies of captive orangutan (Pongo ssp.) females have reported the endocrine characteristics 

of their menstrual cycle and similarities to the human cycle [70]. These reports considered 

births and inter-birth intervals across the life span and demonstrated an age-specific decline 
in the fertility of captive female orangutans (Pongo pygmaeus; [7]). Other studies with wild 

female Sumatran orangutans (Pongo abelii) failed to document menopause, inferred from 

increased inter-birth intervals in females of estimated age [51]. Interpreting data from wild 

animals is difficult because of such countervailing factors as female rank, uncertain age, infant 
mortality, and food availability [1].

An earlier study that described the reproductive physiology of female gorillas (Gorilla gorilla) 

mentioned a correlation of perineal tumescence with circulating hormones and reported a 

pattern of cyclic hormone secretion similar to that of humans [71]. Recently, fecal hormone 
determination in two captive female gorillas aged approximately 40 years showed evidence 

of the protracted luteal phases that are typical of aging human females [72].
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Information related to the occurrence of menopause in baboons (Papio ssp.) was based on 

menstrual cycle length, total cessation of cycling that occurs at 26 years of age in captivity 

[73]. Similar results were reported by Lapin et al. [74], and other studies of wild baboons have 

reported increased cyclic variability with age and a complete loss of fertility by the age of 25 

years. This suggests that baboons undergo age-linked alterations in reproductive function 

similar to those of humans.

The living conditions of primates have an impact over the animal life span, so the observa-

tions in captivity are not always the same as in wild conditions. Although there are some 

reports about NHP aging process and menopause, they are scarce. Most of the studies report 

animal physiology and behavior in captivity, because to follow animals in wild by a long 

period is a very difficult process due to the NHP living conditions.

5. Nonhuman primates as a model to study human being menopause

Due to the biological similarities between human beings and NHPs, the latter have been stud-

ied in the search for an adequate model of menopause. However, it is necessary to clearly 

delimit the similarities and differences among reproductive characteristics, perimenopausal 
and menopausal changes, and the average life span of different species [1]. Establishing sim-

ilarities with humans during this search requires considering the characteristics of meno-

pausal processes when animals are in captivity versus those who are free-ranging, in order to 

avoid the confusions that have led to the assertion that menopause is a uniquely human event 

[1]. Walker and Herndon [1] suggested that a comparative analysis of female reproductive 

senescence should focus on the anatomical, physiological, and biochemical changes that are 

essential to the cessation of ovarian cyclicity, regardless of the presence of menstrual bleed-

ing. There are few reports on menopause in New World primates compared to Old World 

monkeys, but studies of the latter have observed declines in sexual activity and decreased 
birth rates. Also, reports on captive apes suggest a long post-reproductive life span, though 

this has not been confirmed in the wild [30].

Among the different primate taxa, menopause is manifested along an evolutionary continuum: 
in some species—such as cercopithecines and apes—it is followed by an extended post-repro-

ductive life span, while in others it may presage death. In terms of NHPs as models for meno-

pause, the species that have most often been employed are baboons and chimpanzees. Studies 

of these primates have attempted to simulate all the consequences that characterize meno-

pause, namely, hormonal and cognitive changes, cardiovascular alterations, and osteoporosis.

Until recently, the occurrence of reproductive termination in NHPs was widely questioned. 

However, numerous studies have reported that this does indeed occur in several species of Old 

World monkeys and great apes. Most of this research has been conducted with Macaca mulatta 

[29, 33, 47–49, 59, 61], but other species also experience menopause, including Pan troglodytes 

[43, 62, 67] and Gorilla gorilla [27]. For example, the hormonal profiles of peri- and postmeno-

pausal macaques, chimpanzees, and gorillas [1, 61, 67], as well as the age-related decline in the 

number of primordial follicle in macaques [61] and chimpanzees [62], share many similarities 
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and occur in a pattern like to that of aging women [40]. On the basis of data from various 

studies, Fedigan et al. [75] affirmed that “from an endocrinological perspective, reproductive 
decline may well follow a similar pattern in all primates, and we could use cases of individual 
post-reproductive monkeys and apes as clinical models of the physiological basis for meno-

pause in human being. However, from an evolutionary perspective, these studies fail to dem-

onstrate similarity between reproductive senescence in NHPs and menopause in the human 

female. Instead, they highlight the critical differences: female macaques and chimpanzees that 
cease to cycle very close to age at death, whereas human females cease to cycle in middle age; 

female macaques and chimpanzees cease to cycle on an idiosyncratic basis, whereas human 

females universally cease to cycle at the average age of approximately 50 years.”

In light of these data, it is clear that regardless of the age at the onset of menopause, there 

are numerous physiological similarities between the females of NHPs and human females 

with respect to the gradual decline and eventual cessation of reproductive capacity. For this 

reason, several authors of excellent reviews [1, 29, 30] have proposed that NHPs provide the 

most appropriate animal models available for analyzing menopause in human females and 

the processes associated with it.

Although NHPs present a rich opportunity to study the process of reproductive senescence 

or menopause (i.e., the permanent, non-pathological, age-associated cessation of ovulation, 

[1]) and play a unique role in translational science by bridging the gap between basic and 

clinical research [76], their use as experimental subjects is limited by the lack of available 

NHPs that are undergoing the perimenopausal transition and natural menopause, their short 

menopausal compared to that of human being, high costs, and the strict ethical guidelines 

that researchers must follow when studying them (see Ref. [33, 76]).

Despite these difficulties, the use of NHPs as study models has several advantages. Macaques 
(Macaca spp.), including Macaca mulatta and Macaca fascicularis monkeys, for example, have been 

particularly useful due to their availability, moderate size, and ability to adapt to laboratory con-

ditions. Also, approximately 95% of the overall genetic coding sequence of macaques is identical 

to that of humans [77], and many of their physiological systems are comparable. Finally, because 

they are relatively long lived, they are effective models for studying a number of diseases and 
conditions that increase in frequency with aging. These factors explain why female macaques 

have been the preferred model for examining critical health concerns of human beings, includ-

ing luteal phase deficiencies and hypothalamic amenorrhea [78], obesity and diabetes [79], car-

diovascular diseases [80], osteopenia, osteoporosis [81], osteoarthritis [82], cognitive deficits 
associated with age [76], and—at least potentially—decreased interest in mating [83].

If a single conclusion can be gleaned from this brief summary, it is that a large number of 

physiological conditions and pathologies that human beings experience during their life-

time appear to be broadly manifested in primate taxa, though information is lacking in other 

regards, such as the interaction between deficits in cognitive processes and their effect on the 
modulation of social and sexual interaction.

Primates are mammals distinguished by their large brains, advanced cognitive abilities, flex-

ible behavior, and sophisticated social systems [84]. For example, chimpanzees have the ability 
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to recognize themselves in a mirror [85] and perform tasks involving concept formation [86]. 

Moreover, the structure and function of human and NHP brains are very similar. In this regard, 

we can mention nuclear organization, projection pathways, and innervation patterns [87], as 

well as similar cortical development and organization [88], including visual cortical functional 

divisions and prefrontal cortex subdivisions [89] that are critical for cognitive processes [90].

In human beings and NHPs, cognitive and reproductive functions decline gradually with 

advancing age and more precipitously with the loss of circulating estrogen that occurs during 

menopause. Cognitive deficits in NHPs can be quantified over their life span using a battery 
of cognitive tests that are similar to, if not the same as, those used with humans [91]. These 

include the monkey version of the Wisconsin Card Sorting Test (WCST) [92], which is the gold 

standard for assessing cognitive flexibility in humans. Using a version of WCST (without the 
numerosity category), executive function deficits have been reported in both middle-aged 
and older rhesus monkeys [93], as well as in middle-aged menopausal rhesus monkeys [91]. 

However, the limited availability of animals of adequate age [33] means that studies with 

monkeys typically involve only a few animals and use premenopausal ovariectomized sub-

jects rather than naturally menopausal females.

Given the dramatic effects of sex steroids on neuronal morphology and brain activity in 
regions involved in cognition, one might expect that age-related changes in the endocrine 

milieu will have important consequences for cognitive functions. In effect, data on aged, natu-

rally or surgically menopausal monkeys indicate that estrogen does indeed modulate a broad 

range of cognitive domains, such as learning and memory. These effects observed appear 
to be task specific and sensitive to the time that passed without estrogen prior to estrogen 
replacement. For example, on the delayed response (DR) task—a test of prefrontal function-

ing—it was noted that performance was impaired in postmenopausal individuals compared 

to age-matched premenopausal rhesus monkeys [94]. This result suggests that the absence of 

estrogen, associated with menopause, could be detrimental to prefrontal functioning.

Although the effects of the menstrual cycle, estrogen withdrawal, and estrogen replacement 
in young monkeys appear limited to non-mnemonic functions, such as attention or aspects 
of face processing [95], a broad range of cognitive functions, including memory, are sensi-

tive to estrogen deprivation and replacement in older monkeys [92]. Neurobiological data 

are consistent with such cognitive findings and demonstrate an array of morphological and 
physiological changes following ovariectomy and/or estrogen replacement in brain areas that 

are important for cognition.

Although the specific mechanisms through which estrogens may affect cognition remain to 
be elucidated, it is clear that these hormones have broad effects on areas of the brain that play 
key roles in cognitive functions [96]. Estrogen receptors are found in the cerebral cortex, hip-

pocampus, and amygdala in both monkeys [97] and human beings [98]. Estrogens alter the 

neuronal morphology and physiology of some of these areas [99].

NHPs provide valuable animal models that have significantly advanced our understanding of 
numerous behavioral and biological phenomena in humans and other primates. Their value 
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as models for studying menopause in humans derives from their common ancestry, as well 

as a series of hormonal, cognitive, and social influences that are similar to those experienced 
by human beings. The aging process or menopause has been also explored focusing through 

the neural basis of cognitive functioning, revealing not only alterations over specific neural 
systems but also differences in the affectation level among brain regions and neurobiological 
parameters. Therefore, further research into the interactions among hormones and various 

neurotransmitter systems could potentially produce improved knowledge of the neural and 
hormonal bases that comprehend the gamma of alterations that human beings suffer before, 
during, and after menopause.

5.1. Anxiety and depression during natural or surgical menopause of nonhuman  

primates

The decrease in ovarian hormones during natural and surgical menopause is associated with 

a higher incidence of psychiatric disorders, such as anxiety and depression in vulnerable 

women, where the decrease of hormones—principally E
2
 and P

4
—can induce neural changes 

that exert affects on both the emotional and affective levels [100]. In this regard, ovariectomies 

in NHPs have been used as a model of surgical menopause at the experimental level, given 

that the absence of certain hormones induced by ovariectomy can reproduce the physiologi-

cal, emotional, and affective change characteristic of menopause.

At the behavioral level, ovariectomized primates may exhibit anxiety and depression-related 

behaviors. For example, long-term ovariectomy may increase anxiety in Japanese macaques 

(Macaca fuscata), associated with decreases in such behaviors as positive social contact, domi-

nance, and the time spent receiving grooming. Similarly, temperament tests performed on 

these individuals show an increase in anxiogenic behavior [101]. Furthermore, ovariectomized 

pigtail macaques (Macaca nemestrina) present higher scratching rates [102], a well-established 

indicator of anxiety in NHPs, while in Japanese macaques, a reduction in locomotion has been 

observed after ovariectomy [101], in association with depressive behavior. Therefore, these 

behavioral alterations are probably due to the absence of ovarian hormones, given that after 

ovariectomy in rhesus (Macaca mulatta) and pigtail macaques a reduction in E
2
 and P

4
 concen-

trations is detected, in relation to increased anxiety [102].

The absence of ovarian hormones in NHPs may also generate neural changes in the brain 

(Table 1). Studies of ovariectomized Japanese monkeys have detected downregulation of 

estrogen receptor beta (ER-β) in the subiculum of hippocampal formation, while postmeno-

pausal monkeys of the same species have shown upregulation of ER-β [103]. On the other 

hand, in ovariectomized African green monkeys (Cercopithecus aethiops sabaeus), a reduction 

of synaptic plasticity of the hippocampus was detected [104]. Given that the reduced density 

of dendritic spines and ER-β in the hippocampus is related to an increase in indicators of 
anxiety and depression in ovariectomized rodents [105], this is probably occurring as well in 

nonhuman primates that experience surgical menopause. In addition, the long-term absence 

of ovarian hormones may impact serotonergic activity. For example, it has been demonstrated 

that ovariectomy in rhesus macaques reduces expression of the mRNA of the tryptophan 
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hydroxylase-2 (TPH-2) enzyme, increases the expression of MAO-A, and increases DNA frag-

mentation of serotonin neurons in the dorsal raphe nucleus [106]. These events could lead, on 

the one hand, to greater serotonin degradation and, on the other, neuronal death and, finally, 
a malfunction of the serotonergic system.

Furthermore, long-term ovariectomy in Japanese macaques reduces the expression of serotoner-

gic neurons and gene expression of TPH-2, the serotonin reuptake transporter (SERT), and 5HT
1A

 

autoreceptors in the dorsal raphe nucleus [109]. This agrees with data showing that in depressed 

female of Macaca fascicularis the binding potential of 5HT
1A

 receptors is reduced in the hippocam-

pus, amygdala, and cingulate cortex [110], three of the structures involved in the pathophysiol-

ogy of anxiety and depression. In contrast, stress-sensitive female monkeys of the same species 

decrease levels of Fev (transcription factor that determines whether a neuron is serotonergic), 

Species Natural menopause/

ovariectomy

Neural changes Related behavior References

African green monkeys 

(Cercopithecus aethiops 

sabaeus)

Ovariectomy Reduced density of 
dendritic spines in the CA1 

layer of the hippocampus

Not reported [104]

Pigtail macaques (Macaca 

nemestrina)

Ovariectomy Not reported Anxiety [102]

Rhesus macaques (Macaca 

mulatta)
Ovariectomy Increased expression 

of MAO-A protein and 

decreased expression of 

TPH and SERT proteins in 
the dorsal raphe nucleus

Not reported [107]

Rhesus macaques (Macaca 

mulatta)
Ovariectomy Decreased expression of 

TPH2 mRNA in the dorsal 
raphe nucleus

Not reported [108]

Rhesus macaques (Macaca 

mulatta)
Ovariectomy Increased DNA 

fragmentation of serotonin 

neurons in the dorsal raphe 

nucleus

Not reported [106]

Japanese macaques 

(Macaca fuscata)

Ovariectomy Not reported Anxiety and 

depression

[101]

Japanese macaques 

(Macaca fuscata)

Ovariectomy Reduced Fev, TPH-2, SERT, 
and 5HT

1A
 gene expression 

in the dorsal raphe nucleus

Not reported [109]

Japanese macaques 

(Macaca fuscata)

Natural menopause Upregulation in the 

ER-β immunoreactivity 
in the subiculum of the 

hippocampal formation

Not reported [103]

Japanese macaques 

(Macaca fuscata)

Ovariectomy Downregulation in the 

ER-β immunoreactivity 
in the subiculum of the 

hippocampal formation

Not reported [103]

Table 1. Neural changes related to anxiety and depressive-like behaviors in nonhuman primates with natural or surgical 

menopause.
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TPH-2, SERT, and 5HT
1A

 mRNAs in the dorsal raphe nucleus [111]. Thus, in the long term, the 

reduction of TPH-2, which is important for serotonin synthesis, together with determinant mark-

ers for serotonergic function, could generate a higher incidence of anxious and depressive behav-

iors in NHPs with menopause, as occurred in human beings.

On the other hand, exogenous administration of E
2
 or P

4
 in ovariectomized primates has the 

capacity to restore serotonergic neurotransmission [106]. Further, serotonin neurons can 

express the ER-β protein and ER-β mRNA [112]. And, therefore, estrogens could increase the 

availability of serotonin in the brain by interacting with its receptor. Thus, the absence of ovar-

ian hormones, such as E
2
 and P

4
, has the ability to induce changes at the level of the the central 

nervous system in primates [103]. This evidence suggests that neural changes could be related 

to anxiety and depression behaviors, which could indicate some vulnerability in NHPs that 

experience natural or surgical menopause or suffer changes in different neurotransmission 
systems in which ovarian hormones participate, all of which could affect the emotional and 
affective state of these individuals.

6. Conclusion

Menopause is a natural process that entails the permanent cessation of ovulation. It is associ-

ated with physiological and structural changes in aging females. Although it has long been 

assumed that menopause occurs only in human beings, the search for medical/clinical models 

to aid in research on this process has revealed that some species of NHPs also exhibit meno-

pause. However, certain differences between human females and NHPs are clear: shorter 
postmenopausal life spans and variations in the timing of hormonal changes during the 

menopausal transition. But NHP models allow us to better understand not only several of the 
processes that occur during human aging—such as cognitive changes, cardiovascular altera-

tions, and osteoporosis—but also similarities among species along the taxonomic scale.

On the other hand, increases in anxiety and depression behaviors may be observed in NHPs 

that undergo natural or surgical menopause. In a comparative perspective, these findings could 
improve our understanding of the neurobiological mechanisms that underlie emotional and 

affective disorders associated with the absence of ovarian hormones, given that experiments 
have demonstrated that long-term hormonal absence has the ability to affect numerous neuro-

transmission systems involved in mood disorders. In addition to reproducing various neural 

changes that can be correlated with depressive and anxious behaviors in NHPs, this might help 

understand the neurobiological substrate of emotional and affective disorders that can appear 
in women who experience natural or surgical menopause.

Acknowledgements

The authors of the present chapter received support from the following institutions: Sistema 

Nacional de Investigadores, SNI 60372-0 (AAA-T); Consejo Nacional de Ciencia y Tecnología 

(CONACyT), 297410 (AP-O); and Universidad Veracruzana, 46392 (BPV-D).

Menopause in Nonhuman Primates: A Comparative Study with Humans
http://dx.doi.org/10.5772/intechopen.69657

39



Author details

María de Jesús Rovirosa-Hernández1*, Marisela Hernández González2, Miguel Ángel 
Guevara-Pérez2, Francisco García-Orduña1, Abril de los Ángeles Aguilar-Tirado1, Abraham 
Puga-Olguín3 and Brisa Patricia Vásquez-Domínguez4

*Address all correspondence to: jrovirosa@uv.mx

1 Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México

2 Instituto de Neurociencias, Universidad de Guadalajara, Jalisco, México

3 Posgrado en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México

4 Facultad de Medicina, Universidad Veracruzana, Zona-Xalapa, Veracruz, México

References

[1] Walker ML, Herndon JG. Menopause in nonhuman primates?. Biology of Reproduction. 
2008;79:398-406. DOI: 10.1095/biolreprod.108.068536

[2] Rance N. Menopause and the human hypothalamus: Evidence for the role of kissep-
eptin/neurokinin B neurons in the regulation of estrogen. Peptides. 2009;30:111-122. 
DOI: 10.1016/j.peptides.2008.05.016

[3] Hall J. Neuroendocrine changes with reproductive aging in women. Seminars in 
Reproductive Medicine. 2007;25:344-351. DOI: 10.1055/s-2007-984740

[4] Wilson EO. The Relevant Principles of Population Biology: Sociobiology. Cambridge: 
The Belknap Press; 1975. pp. 32-47

[5] Hill K, Hurtado A. Ache life history: The ecology and demography of a foraging people. 
American Ethonologist. 1996;26:531-532. DOI: 10.1525/ae.1999.26.2.531

[6] Pavelka M, Fedigan L. Reproductive termination in female Japanese monkeys: A com-
parative life history perspective. American Journal of Physical Anthropology. 1999;109: 
455-464

[7] Caro TM, Sellen DW, Parish A, Frank R, Brown DM, Voland E, Borgerhoff Mulder M. 
Termination of reproduction in nonhuman and human primate females. International 
Journal of Primatology. 1995;16:205-220. DOI: 10.1007/BF02735478

[8] Graham CE, Kling OR, Steiner RA. Reproductive senescence in female nonhuman pri-
mates. In: Bowden DM, editor. Aging in Nonhuman Primates. New York: Van Nostrand 
Reinhold; 1979. 183-202

[9] Scott P. Menopause: Adaptation or epiphenomenon?. Evolutionary Anthropology. 2001; 
10:43-57. DOI: 10.1002/evan.1013

A Multidisciplinary Look at Menopause40



[10] Fleagle J. Apes and humans. In: Fleagle J, editor. Primate Adaptation and Evolution. 3rd 

ed. New York, Elsevier; 2013. Pp. 151-168. DOI: 10.1016/B978-0-12-378632-6.0007-0

[11] DuMond FV. The Squirrel Monkey in a Seminatural Environment. New York: Academic 

Press; 1968

[12] Keverne E. Do Old World primates have oestrus. Malaysian Applied Biology. 1981;10: 

119-126

[13] Hrdy SB, Whitten P. Patterning of sexual activity. In: Smuts BB, Cheney DL, Seyfarth 
RM, Wrangham RW, Struhsaker TT, editors. Primates Societies. Chicago and London, 
University of Chicago Press; 1986; 30:359-370

[14] Dixson AF. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, 

and Human Beings. Trends in Ecology and Evolution. Inglaterra: Oxford University Press; 

1998

[15] Ziegler T, Strier K, Van S. The reproductive ecology of South American primates: 

Ecological adaptations in ovulation and conception. In: Garber PA, Estrada A, Bicca- 

Marques JC, Heymann EW, Strier KB, editors. South American Primates: Comparative 

Perspectives in the Study of Behavior, Ecology, and Conservation. New York: Springer; 

2009. pp. 191-210 . DOI: 10.1007/978-0-387-78705-3_8

[16] Yen SC, Jaffe RB. Reproductive Endocrinology: Physiology, Pathophysiology and 
Clinical Management. Philadelphia: Saunders Company; 1986

[17] Zeleznik AJ, Pohl CR. Control of Follicular development, Corpus Luteum function, 
the maternal recognition of pregnancy, and the Neuroendocrine regulation of the 

menstrual cycle in higher primates. Academic Press. 2006; 45:2449-2510. DOI: 10.1016/

b978-012515400-0/50050-6

[18] Bonello N, Jasper MJ, Norman RJ. Periovulatory expression of intercellular adhesion 
molecule-1 in the rat ovary. Biology Reproduction. 2004;71:1384-1390. DOI: 10.1095/

biolreprod.104.030650

[19] Hodgen GD, Itskovitz J. Recognition and maintenance of pregnancy. In: Knobil E, Neill 
J, editors. The Physiology of Reproduction. New York: Raven Press; 1988

[20] Saltzman W, Tardif S, Rutherford J. Hormones and reproductive cycles in primates. In: 
Hormones and Reproduction of Vertebrates. United States of America, Elsevier Inc. 
2011;5:291-327. DOI: 10.1016/B978-0-12-374928-4.10013-6

[21] Martin RD. The evolution of human reproduction: A primatological perspective. 
American Journal of Physical Anthropology. 2007;50:59-84. DOI: 10.1002/ajpa.20734

[22] Johnson MH. Everitt B. Essential Reproduction. Oxford, OXF, Inglaterra: Blackwell 
Science; 2000

[23] Thompson ME. The endocrinology of intersexual relationships in the apes. In Thorpe P,  

Grey P, editors. The Endocrinology of Social Relationships. Cambridge: Harvard Univer-
sity Press; 2009. pp. 196-222

Menopause in Nonhuman Primates: A Comparative Study with Humans
http://dx.doi.org/10.5772/intechopen.69657

41



[24] Dukelow W. Reproductive cyclicity and breeding in the squirrel monkey. In: Rosenblum 
LA, Coe CL, editors. Handbook of Squirrel Monkey Research. NY: Plenum Press; 1985. 
pp. 169-190 . DOI: 10.1007/978-1-4757-0812-7_7

[25] Strassmann BI The evolution of endometrial cycles and menstruation. The Quarterly 

Reviex of Biology. 1996;71:181-220. DOI: 10.1086/419369

[26] Gangestad SW, Thornhill R. Human oestrus. Proceeding of the Royal Society B. 
2008;275:991-1000. DOI: 10.1098/rspb.2007.1425

[27] Atsalis S, Margulis SW. Perimenopause and menopause: Documenting life changes in 

aging female gorillas. In: Atsalis S, Margulis SW, Hof PR, editors. Primate Reproductive 
Aging. Switzerland: Kargel AC; 2008. pp. 119-146 . DOI: 10.1159/000137704

[28] Wise PM. Aging of the female reproductive system. In: Masoro EJ, Austad SN, editors. 

Handbook of the Biology of Aging. London: Elsevier; 2006. pp. 570-590 . DOI: 10.1016/

B978-012088387-5/50024-8

[29] Hodgen G, Goodman A, O’Connor A, Johnson D. Menopause in rhesus monkeys: 
Model for study of disorders in the human climacteric. American Journal of Obstetrics 

Gynecology. 1977;127:581-584. DOI: 10.1016/0002-9378(77)90352-0

[30] Atsalis S, Margulis SW. Primate reproductive aging: From lemurs to humans. In: Atsalis 

S, Marguli S, Hof P, editors. Primate Reproductive Aging. Switzerland: Kargel AC. 2008. 
pp. 186-194 . DOI: 10.1159/000137710

[31] Wright P, King S, Baden A, Jernvall J. Aging in wild female lemurs: Sustained fertility 

with increased infant mortality. In: Primate Reproductive Aging. Vol. 36. Chicago, New 

York, Karger Publishers; 2008. pp. 17-28 . DOI: 10.1159/000137677

[32] Vom Saal FS, Finch CE. Reproductive senescence: Phenomena and mechanisms in 
mammals and selected vertebrates. In: Knobil E, Neill J, editors. The Physiology of 

Reproduction. New York: Raven Press; 1988. pp. 2351-2413

[33] Bellino FL, Wise PM. Nonhuman primate models of menopause workshop. Biology of 

Reproduction. 2003;68:10-18. DOI: 10.1095/biolreprod.102.005215

[34] Hawkes K, O’Connell JF, Blurton Jones NG, Alvarez H, Charnov EL. Grandmothering, 
menopause, and the evolution of human life histories. Proceedings of the National 

Academy of Sciences. 1998:95:1336-1339

[35] Hansen K, Knowlton N, Thyer A, Charleston J, Soules M, Klein N. A new model of 

reproductive aging: The decline in ovarian non-growing follicle number from birth to 

menopause. Human Reproduction. 2008;23:599-708. DOI: 10.1093/humrep/dem408

[36] Soules M, Sherman S, Parrot E, Rebar R, Santoro N, Utian W, Woods N. Executive sum-

mary: Stages of Reproductive Aging Workshop (STRAW). Climacteric. 2001;4:267-272. 

DOI: 10.1080/cmt.4.4.267.272

[37] Van Noord-Zaadstra B, Looman C, Alsbach H, Habbema J, te Velde E, Karbaat J. Delayed 

childbearing: Effect of age on fecundity and outcome of pregnancy. British Medical 
Journal. 1991;302:1361-1365

A Multidisciplinary Look at Menopause42



[38] Hansen K, Thyer A, Sluss P, Bremner W, Soules M, Klein N. Reproductive ageing and 
ovarian function: Is the early follicular phase FSH rise necessary to maintain adequate 

secretory function in older ovulatory women? Human Reproduction. 2005;20:89-95. 

DOI: 10.1093/humrep/deh54

[39] Klein NA, Harper AJ, Houmard BS, Sluss P, Soules M. Is the short follicular phase in 

older women secondary to advanced or accelerated dominant follicle development? The 

Journal of Clinical Endocrinology and Metabolism. 2002;87:5746-5750. DOI: 10.1210/

jc.2002-020622

[40] Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal tran-

sition: Evidence for accelerated loss and ultimate exhaustion. The Journal of Clinical 

Endocrinology & Metabolism. 1987;65:1231-1237. DOI: 10.1210/jcem-65-6-1231

[41] Gosden RG. Biology of Menopause: The Cause and Consequence of Ovarian Ageing. 
London: Academic Press; 1985

[42] Waser P. Postreproductive survival and behavior in a free-ranging female mangabey. 

Folia Primatologica. 1978;29:142-160. DOI: 10.1159/000155836

[43] Gould K, Flint M, Graham C. Chimpanzee reproductive senescence: A possible model 

for evolution of the menopause. Maturitas. 1981;3:157-166. DOI: 10.1016/0378-5122(81) 

90007-4

[44] Van Wagenen G. Menopause in subhuman primate. The Anatomical Record. 1970;166:392.

[45] Tigges J, Gordon TP, McClure HM, Hall EC, Peters A. Survival rate and life span of 

rhesus monkeys at the Yerkes Regional Primate Center. American Journal Primatology. 
1988;15:263-273 DOI: 10.1002/ajp.1350150308

[46] Zapantis G, Santoro N. The menopausal transition: Characteristics and management. 

Best Practice and Research: Clinical Endocrinology and Metabolism. 2003;17:33-52 DOI: 
10.1016/S1521-690X(02)00081-7

[47] Walker ML. Menopause in female rhesus monkeys. American Journal of Primatology. 

1995;35:59-71. DOI: 10.1002/ajp.1350350106

[48] Gilardi KVK, Shideler SE, Valverde CR, Roberts JA, Lasley BL. Characterization of the 
onset of menopause in the rhesus macaque. Biology of Reproduction. 1997;57:335-340. 

DOI: 10.1095/biolreprod57.2.335

[49] Downs JL, Urbanski HF. Neuroendocrine changes in the aging reproductive axis of 

female rhesus macaques (Macaca mulatta). Biology of Reproduction. 2006:75:539-546. 

DOI: 10.1095/biolreprod.106.051839

[50] Nishida T, Corp N, Hamai M, Hasegawa Y, Hiraiwa-Hasegawa M, Hosaka K, et al. 

Demography, female life history, and reproductive profiles among the chimpanzees of 
Mahale. American Journal Primatology. 2003;59:99-121. DOI: 10.1002/ajp.10068

[51] Wich SA, Utami-Atmoko SS, Setia TM, Rijksen HD, Schürmann C, van Hooff JA, et 
al. Life history of wild Sumatran orangutans (Pongo abelii). Journal Human Evolution. 

2004;47:385-398. DOI: 10.1016/j.jhevol.2004.08.006

Menopause in Nonhuman Primates: A Comparative Study with Humans
http://dx.doi.org/10.5772/intechopen.69657

43



[52] Hamilton WD III, Busse C, Smith KS. Adoption of infant orphan chacma baboons. 

Animal Behavior. 1982;30:29-34. DOI: 10.1016/S0003-3472(82)80233-9

[53] Teleki G, Hunt EE, Pfifferling JH. Demographic observations (1963-1973) on the chim-

panzees of Gombe National Park, Tanzania. Journal of Human Evolution. 1976;5:559-

598. DOI: 10.1016/0047-2484(76)90004-X

[54] Van Noordwijk MA, Van Schaik CP. Development of ecological competence in Sumatran 

orangutans. American Journal Physical Anthropology. 2005;127:79-94. DOI: 10.1002/

ajpa.10426

[55] Machatschke IH, Wallner B, Dittami J. Impact of social environment on female chim-

panzee reproductive cycles. Hormones and Behavior. 2006;50:126-131. DOI: 10.1016/j.

yhbeh.2006.02.003

[56] Miller PB, Charleston JS, Battaglia DE, Klein NA, Soules MR. Morphometric analysis 
of primordial follicle number in pigtailed monkey ovaries: Symmetry and relationship 

with age. Biology of Reproduction. 1999;61:553-556

[57] Paul A, Kuester J, Podzuweit D. Reproductive senescence and terminal investment 
in female Barbary macaques (Macaca sylvanus) at Salem. International Journal of 

Primatology. 1993;14:105-124. DOI: 10.1007/BF02196506

[58] Johnson R, Kapsalis E. Menopause in free-ranging rhesus macaques: Estimated inci-
dence, relation to body condition and adaptive significance. International Journal of 
Primatology. 1998;19:751-765. DOI: 10.1023/A:1020333110918.

[59] Gore AC, Windsor-Engnell BM, Terasawa E. Menopausal increases in pulsatile 

gonadotropin-releasing hormone release in a nonhuman primate (Macaca mulatta). 

Endocrinology. 2004;145:4653-4659. DOI: 10.1210/en.2004-0379

[60] Gill S, Sharpless JL, Rado K, Hall JE. Evidence that GnRH decreases with gonadal ste-

roid feedback but increases with age in postmenopausal women. Journal of Clinical 

Endocrinology and Metabolins. 2002;87:2290-2296. DOI: 10.1210/jcem.87.5.8508

[61] Nichols SM, Bavister BD, Brenner CA, Didier, PJ, Harrison R, Kubisch, HM. Ovarian 
senescence in the rhesus monkey (Macaca mulatta). Human Reproduction. 2005;20:79-83. 

DOI: 10.1093/humrep/deh576

[62] Jones KP, Walker LC, Anderson D, Lacreuse A, Robson SL, Hawkes K. Depletion of ovar-

ian follicles with age in chimpanzees: Similarities to humans. Biology of Reproduction. 
2007;77:247-251. DOI: 10.1095/biolreprod.106.059634

[63] Itogawa N, Tanaka T, Ukai N, Fujii H, Kurokawa T, Ando A, Watanabe Y, Imakawa S. 

Demography and reproductive parameters of a free-ranging group of Japanese macaques 

(Macaca fuscata) at Katsuyama. Primates. 1992;33:49-68. DOI: 10.1007/BF02382762

[64] Nozaki M, Mitsunaga F, Shimizu K. Reproductive senescence in female Japanese mon-

keys (Macaca fuscata): Age- and season-related changes in hypothalamic-pituitary-ovar-

ian functions and fecundity rates. Biology of Reproduction. 1995;52:1250-1257

A Multidisciplinary Look at Menopause44



[65] Kavanagh K, Koudy Williams J, Wagner JD. Naturally occurring menopause in cynomol-

gus monkeys: Changes in hormone, lipid, and carbohydrate measures with hormonal 

status. Journal of Medical Primatology. 2005;34:171-177. DOI: 10.1111/j.1600-0684.2005. 

00114.x

[66] Lacreuse A, Chennareddi L, Johnson J, Gould KG, Hawkes K, Wijayawardana S, et al. 

Menstrual cycles continue into advanced old age in the common chimpanzee (Pan trog-

lodytes). Biology of Reproduction. 2008;79:407-412. DOI: 10.1095/biolreprod.108.068494.

[67] Videan E, Fritz J, Heward C, Murphy J. The effects of aging on hormone and reproductive 
cycles in female chimpanzees (Pan troglodytes). Comparative Medicine. 2006;56:291-299.

[68] Thompson ME, Jones JH, Pusey AE, Brewer-Marsden S, Goodall J, Marsden D, et al. 

Aging and fertility patterns in wild chimpanzees provide insights into the evolution of 
menopause. Current Biology. 2007;17(24):2150-2156. DOI: 10.1016/j.cub.2007.11.033

[69] Holman DJ, Wood JW. Pregnancy loss and fecundity in women. In: Ellison PT, editor. 

Reproduction, Ecology, and Human Evolution. New York: Aldine de Gruyter; 2001. pp. 
15-38

[70] Collins DC, Graham CE, Preedy JR. Identification and measurement of urinary estrone, 
estradiol-17-beta, estriol, pregnanediol and androsterone during the menstrual cycle of 

the orangutan. Endocrinology. 1975;96:93-101. DOI: 10.1210/endo-96-1-93

[71] Nadler RD. Reproductive physiology and behavior of gorillas. Journal of Reproduction 
and Fertility. 1980;(Suppl 28):79-89

[72] Margulis SW, Atsalis S, Bellem A, Wielebnowski N. Assessment of reproductive behav-

ior and hormonal cycles in geriatric western Lowland gorillas. Zoo Biology. 2007;26:117-

139. DOI: 10.1002/zoo.20124

[73] Martin LJ, Carey KD, Comuzzie AG. Variations in menstrual cycle length and cessation 

of menstruation in captive raised baboons. Mechanisms of Ageing and Development. 

2003;124:865-871. DOI: 10.1016/S0047-6374(03)00134-9

[74] Lapin BA, Krilova RI, Cherkovich GM, Asanov NS. Observations from Sukhumi. In: 
Bowden DB, editor, Aging in Nonhuman Primates. New York: Van Nostrand Reinhold; 
1979. pp. 14-37

[75] Fedigan LM, Pavelka MSM Campbell C, Fuentes A, MacKinnon KC, Panger M, et al. 

Reproductive cessation in female primates comparisons of Japanese macaques and 
humans. In: Campbell C, Fuentes A, MacKinnon K, Panger M, Bearder S, editors. 

Primates in Perspective. United Kingdom, Oxford University Press; 2006. pp. 437-447

[76] Shively CA, Clarkson TB. The unique value of primate models in translational research. 

American Journal of Primatology. 2009;71:715-721. DOI: 10.1002/ajp.20720

[77] Magness CL, Fellin PC, Thomas M, Korth M, Agy M, Proll, S, et al. Analysis of the 

Macaca mulatta transcriptome and the sequence divergence between Macaca and human. 

Genome Biology. 2005;6:60. DOI: 10.1186/gb-2005-6-7-r60

Menopause in Nonhuman Primates: A Comparative Study with Humans
http://dx.doi.org/10.5772/intechopen.69657

45



[78] Kaplan JR, Manuck SB. Ovarian dysfunction, stress, and disease: A primate continuum. 
ILAR Journal. 2004; 45:89-115. DOI: 10.1093/ilar.45.2.89

[79] Wagner JD, Kavanagh K, Ward GM, Auerbach BJ, Harwood H, Kaplan JR. Old world 
nonhuman primate models of type 2 diabetes mellitus. ILAR Journal. 2006;47:259-271. 

DOI: 10.1093/ilar.47.3.259

[80] Shively CA, Kaplan JR, Clarkson T. Carotid artery atherosclerosis in cholesterol-fed 
cynomolgus monkeys: The effects of oral contraceptive treatments, social factors and 
regional adiposity. Arteriosclerosis Thrombosis and Vascular Biology. 1990;10:358-366. 

DOI: 10.1161/01.ATV.10.3.358

[81] Jerome CP, Peterson PE. Nonhuman primate models in skeletal research. Bone. 2001;29:1-

6. DOI: 10.1016/S8756-3282(01)00477-X

[82] Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP. Osteoarthritis in cynomol-
gus macaques. III: Effects of age, gender, and subchondral bone thickness on the sever-

ity of disease. Journal of Bone and Mineral Research. 1996;11:1209-1217. DOI: 10.1002/

jbmr.5650110904

[83] Wallen K. Sex and context: Hormones and primate sexual motivation. Hormones and 

Behavior. 2001;40:339-357. DOI: 10.1006/hbeh.2001.1696

[84] Hartwig W. Primate evolution and Taxonomy. In: Campbell C, Fuentes A, MacKinnon, 

K, Bearder S Stumpf R, editors. Primates in Perspective. 2nd ed. New York: Oxford 
University Press. 2007. pp. 11-22

[85] Povinelli DJ, Rulf AB, Landau KR, Bierschwale DT. Self-recognition in chimpanzees (Pan 

troglodytes): Distribution, ontogeny, and patterns of emergence. Journal of Comparative 
Psychology. 1993;107(4):347

[86] Thompson R, Oden DL. Categorical perception and conceptual judgements by non-

human primates: The paleological monkey and the analogical ape. Cognitive Science. 

2000;24:363-396. DOI: 10.1016/S0364-0213(00)00029-X

[87] Amaral D, Lavenex P. Hippocampal neuroanatomy. In: Anderson P, Morris R, Amaral 
D, Bliss T, O’Keefe J, editors. The Hippocampus Book. New York: Oxford University 
Press; 2009. DOI: 10.1093/acprof:oso/9780195100273.003.0003.

[88] Hutchison RM, Everling S. Monkey in the middle: Why non-human primates are needed 
to bridge the gap in resting-state investigations. Frontiers in Neuroanatomy. 2012;6:1-19. 

DOI: 10.3389/fnana.2012.00029

[89] Uylings HBM, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex?. Behavioural 

Brain Research. 2003;146:3-17. DOI: 10.1016/j.bbr.2003.09.028

[90] Phillips K, Bales K, Capitanio J, Conley A, Czoty P, t Hart B, et al. Why primate models 

matter. American Journal of Primatology. 2014;76:801-827. DOI: 10.1002/ajp.22281

[91] Voytko M, Tinkler G. Cognitive function and its neural mechanisms in nonhuman 

primate models of aging, Alzheimer disease, and menopause. Frontiers in Bioscience. 

2004;9:1899-1914. DOI: 10.2741/1370

A Multidisciplinary Look at Menopause46



[92] Lacreuse A, Chhabra R, Hall M, Herndon J. Executive function is less sensitive to estra-

diol than spatial memory: Performance on an analog of the card sorting test in ovariec-

tomized aged rhesus monkeys. Behavioural Processes. 2004;67:313-319. DOI: 10.1016/j.

beproc.2004.05.004

[93] Moore TL, Killiany RJ, Herndon JG, Rosene DL. Moss M. Executive system dysfunc-

tion occurs as early as middle-age in the rhesus monkey. Neurobiology of Aging. 

2006;27:1484-1493. DOI: 10.1016/j.neurobiolaging.2006.08.004

[94] Roberts JA, Gilardi K, Lasley B, Rapp PR. Reproductive senescence predicts cognitive 
decline in aged female monkeys. Neuroreport. 1997;8:2047-2051

[95] Landauer N, Kohama SG, Voytko ML, Neuringer M. Effects of menstrual cycle status 
on visuospatial attention in aged rhesus monkeys. Society for Neuroscience Abstract. 
2004;34:779-782

[96] McEwen BS, Alves SE. Estrogen actions in the central nervous system 1. Endocrine 

Reviews. 1999;20:279-307. DOI: 10.1210/edrv.20.3.0365

[97] Gundlah C, Kohama SG, Mirkes SJ, Garyfallou VT, Urbanski HF, Bethea C. Distribution 

of estrogen receptor beta (ERbeta) mRNA in hypothalamus, midbrain and temporal lobe 
of spayed macaque: Continued expression with hormone replacement. Molecular Brain 

Research. 2000;76:191-204. DOI: 10.1016/S0006-8993(99)02475-0

[98] Osterlund M, Gustafsson JA, Keller E, Hurd YL. Estrogen receptor beta (ERbeta) mes-

senger ribonucleic acid (mRNA) expression within the human forebrain: Distinct distri-
bution pattern to ERalpha mRNA. The Journal of Clinical Endocrinology & Metabolism. 
2000;85:3840-3846. DOI: 10.1210/jcem.85.10.6913

[99] Tang Y, Janssen WGM, Hao J, Roberts JA, McKay H, Lasley B, et al. Estrogen replace-

ment increases spinophilin-immunoreactive spine number in the prefrontal cortex of 

female rhesus monkeys. Cerebral Cortex. 2004;14:215-223. DOI: 10.1093/cercor/bhg121

[100] Rodríguez-Landa JF, Puga-Olguín A, Germán-Ponciano LJ, García-Ríos RI, Soria-
Fregozo C. Anxiety in natural and surgical menopause—Physiologic and therapeutic 

bases. In: Durbano F, editor. A Fresh Look at Anxiety Disorders. Rijeka: InTech; 2015. 
pp. 173-198 . DOI: 10.5772/60621

[101] Coleman K, Robertson ND, Bethea CL. Long-term ovariectomy alters social and anx-

ious behaviors in semi-free ranging Japanese Macaques. Behavioural Brain Research. 
2011;225:317-327. DOI: 10.1016/j.bbr.2011.07.046

[102] Pazol K, Wilson ME, Wallen K. Medroxyprogesterone acetate antagonizes the effects 
of estrogen treatment on social and sexual behavior in female macaques. Journal of 

Clinical Endocrinology & Metabolism. 2004;89:2998-3006. DOI: 10.1210/jc.2003-032086

[103] Higaki S, Takumi K, Itoh M, Watanabe G, Taya K, Shimizu K, Hayashi M, Oishi T. 

Response of ERβ and aromatase expression in the monkey hippocampal formation to 
ovariectomy and menopause. Neuroscience Research. 2012;72:148-154. DOI: 10.1016/j.

neures.2011.10.007

Menopause in Nonhuman Primates: A Comparative Study with Humans
http://dx.doi.org/10.5772/intechopen.69657

47



[104] Leranth C, Shanabrough M, Redmond D. Gonadal hormones are responsible for main-

taining the integrity of spine synapses in the CA1 hippocampal subfield of female non-

human primates. Journal of Comparative Neurology. 2002;447:34-42. DOI: 10.1002/

cne.10230

[105] Velázquez-Zamora DA, González-Tapia D, González-Ramírez MM, Flores-Soto ME, 
Vázquez-Valls E, Cervantes M, González-Burgos I. Plastic changes in dendritic spines 
of hippocampal CA1 pyramidal neurons from ovariectomized rats after estradiol treat-

ment. Brain Research. 2012;1470:1-10. DOI: 10.1016/j.brainres.2012.06.012

[106] Lima FB, Bethea CL. Ovarian steroids decrease DNA fragmentation in the serotonin 

neurons of non-injured rhesus macaques. Molecular Psychiatry. 2010;15:657-668. DOI: 

10.1038/mp.2009.97

[107] Smith LJ, Henderson JA, Abell CW, Bethea CL. Effects of ovarian steroids and ral-
oxifene on proteins that synthesize, transport, and degrade serotonin in the raphe 

region of Macaques. Neuropsychopharmacology. 2004;29:2035-2045. DOI: 10.1038/

sj.npp.1300510

[108] Sanchez RL, Reddy AP, Centeno ML, Henderson JA, Bethea CL. A second trypto-

phan hydroxylase isoform, TPH-2 mRNA, is increased by ovarian steroids in the 
raphe region of macaques. Molecular Brain Research. 2005;135:194-203. DOI: 10.1016/j.

molbrainres.2004.12.011

[109] Bethea CL, Smith AW, Centeno ML, Reddy AP. Long-term ovariectomy decreases sero-

tonin neuron number and gene expression in free ranging macaques. Neuroscience. 

2011;192:675-688. DOI: 10.1016/j.neuroscience.2011.06.003

[110] Shively CA, Friedman DP, Gage HD, Bounds MC, Brown-Proctor C, Blair JB, Henderson 

JA, Smith MA, Buchheimer N. Behavioral depression and positron emission tomog-

raphy-determined serotonin 1A receptor binding potential in cynomolgus monkeys. 

Archives of General Psychiatry. 2006;63:396-403. DOI: 10.1001/archpsyc.63.4.396

[111] Lima FB, Centeno ML, Costa ME, Reddy AP, Cameron JL, Bethea CL. Stress sensitive 
female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene 
expression that is not reversed by citalopram. Neuroscience. 2009;164:676-691. DOI: 

10.1016/j.neuroscience.2009.08.010

[112] Gundlah C, Lu NZ, Mirkes SJ, Bethea CL. Estrogen receptor beta (ERβ) mRNA and 
protein in serotonin neurons of macaques. Molecular Brain Research. 2001;91:14-22. 

DOI: 10.1016/s0169-328x(01)00108-5

A Multidisciplinary Look at Menopause48


