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Abstract

Textile-reinforced concrete (TRC) is a new innovative construction material that 

leads to light-weight and cost-effective construction. TRC consists of a finely grained 
cement-based matrix and high-performance, continuous multifilament yarns made 
of alkali-resistant glass, carbon, or polymer. Using these fibers provides superior 
mechanical properties and corrosion resistance in comparison with ferroconcrete. The 
application of epoxy resin coating to the textile materials improves the utilization of 
mechanical performance and handling properties as well. In recent years, researchers 
have studied alternative methods because coating process is very detailed and epoxy 
resin is of high cost. The experimental part of this chapter focuses on the experimen-

tal investigation carried out on high-strength concrete reinforced with hybrid yarns. 
Braiding technology was used to manufacture hybrid yarn from alkali-resistant glass 
fiber (ARG) and polypropylene (PP) filament. Next step, thermoplastic part of braided 
yarn was melted on press heating. Finally, TRC was produced from ARG, coated ARG, 
carbon fiber, coated carbon fiber, and heated hybrid yarns. Although the contribu-

tion of the heated hybrid yarn is limited, it is expected that the desired results will be 
obtained by changes in braiding yarn production and yarn composition ratios.

Keywords: technical textiles, hybrid yarn, composites, buildtech, textile-reinforced concrete

1. Introduction to textile composites for construction

The principal necessities of human are nutrition, clothing, and shelter. The clothing comes 
after nutrition and has got many selection factors such as social, economic, environmen-

tal, and physiological. The main material of clothing is textile. Textiles always have played 
an important role in protecting from different environmental conditions and making feel 
 comfortable. Nowadays, the textile industry has to accelerate research on innovative and 
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attractive products in many fields from agriculture to space. Recently, construction sector is 
one of the fields that used these innovative textile materials, and these textile materials are 
named “Buildtech.” Buildtech products are defined as membrane, lightweight and massive 
construction materials, etc. for engineering and industrial buildings [1].

Construction is improving from the earliest times. At ancient times, people built kinds of 
buildings to shelter. To reduce cracking and to increase bearing capacity of buildings, they 
added hairs and vegetables in the mortar. Later with technology, construction materials 
changed. Different materials were used for each period. In the early period, mortar was used, 
but later various materials such as wood, stone, marble, and steel were used. Finally, with 
the discovery of concrete, its use in the construction industry has become widespread [2, 3].

Since 1800s, quick developments in construction materials technology have allowed civil 
engineers to achieve impressive gains in the safety, economy, and functionality of structures 
built to serve the common needs of the community [4]. Today, in the construction sector, steel-
reinforced concrete is most important, and it is used widely for structural applications. For 
several decades, textile-reinforced concrete (TRC) has been innovative material for construc-

tions. TRC can be used instead of conventional composite-building materials for many new 
applications [5]. TRC is a new composite material consisting of a fine-grained concrete matrix 
and corrosion-resistant high-performance multifilament yarns such as alkali-resistant glass, 
carbon, basalt, and polymer [6]. These raw materials are used to produce different textile 
forms for TRC. Those suited for the reinforcement of concrete matrix are yarns, warp knits 
(plain, circular or three-dimensional), multi-plies (plain or circular), and woven [7]. Thanks to 
these textile materials, production of TRC leads to thin structural elements with high strength, 

high durability, and corrosion resistance [8].

In the present architectures and constructions, there is a specific trend toward innovative 
structures of high-quality materials such as carbon, glass fibers, basalt, and aramid that con-

tinuously increase the requirements placed on the construction materials and that demand 
a continuous development of their properties. Using nonmetallic high-performance fibers 
as concrete reinforcement allows for the production of thin and light-weight elements with 

high durability and the potential of economic savings. These advantages together with the 
high scope of design options given to the architects have made glass-fiber–reinforced con-

crete (GFRC) a widespread construction material around the world. A disadvantage of the 
reinforcement with chopped strands (for example, AR-glass or PP) is the partial unorientated 
distribution of the fibers over the total cross-section, reducing their effectiveness. In contrast 
to steel reinforcement, AR glass or carbon fibers in the textile can be positioned in almost any 
direction and afterward nearly perfectly adopted to the orientation of the applied load. It is 
thus possible to create an extremely effective reinforcement. The use of corrosion-resistant 
technical textiles reduces concrete covers significantly and thus allows for light weight and 
thin concrete structures [9, 10].

Glass fiber is widely used in construction since 1950s. The cementitious matrix has highly 
alkaline environment (pH-value > 12.5), and glass fiber has poor corrosion resistance in a 
highly alkaline environment. Despite the glass fiber being considered as a reinforcement of 
cementitious materials for several decades, because of poor alkaline resistance, the limitation 
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of structural applications still remains. For this reason, the alkali-resistant glass fiber (ARG) 
was preferably designed to reinforce cementitious matrices. Enhanced mainly by a high per-

centage of zirconia (ZrO
2
 > 15% by weight) content, the alkali-resistant glass fiber (ARG) was 

designed to reinforce cementitious matrices that have been used in construction and civil 

engineering since the late 1960s. Despite ARG being more resistant to highly alkaline environ-

ment than normal glass fiber, many attempts have been made to modify either matrix or fiber 
by adding fillers or by surface coatings of polymer and carbon layers. In the composites sec-

tor, a coating is known as a widespread method of providing corrosion protection in order to 

improve the durability of engineering structures. For alkali-resistant glass fibers (ARGs), mul-
tifunctional sizings are required to provide the surface protection, abrasion resistance, and 
strength maintenance in the concrete. However, both durability in alkali environment and 
economic considerations have limited the commercial use of these materials. For enhancing 
the long-term resistance of glass-fiber–reinforced cement products, it is thus very important to 
develop an inexpensive and applicable coating to modify the ARG fiber surface and examine 
how the coatings interact with the surrounding cementitious matrix [11–13].

In the production of TRC, the application of polymer coating to the textile materials improves 
the utilization of mechanical performance and handling properties as well. Generally, thermo-

set resin is used as a coating material. Coating process is very long term and tough, and also, 
cost of coating materials is very expensive. Hence, researchers have searched for alternative 
methods to provide the surface protection, abrasion resistance, and strength maintenance for 

textile materials in the concrete.

In this study, hybrid yarn was used in the production of TRC as a reinforcement material. First 
of all, hybrid yarn was produced with braiding technology. In the hybrid yarn production, 
while alkali-resistant glass fibers (ARGs) were used as a reinforcement material, polypropyl-
ene filament (PP) is used as a matrix material. After production of hybrid yarn was heated in 
the oven, melted polymer covered alkali-resistant glass fibers (ARGs). Melted hybrid yarns 
were used in the production of TRC. All TRC samples were tested to see the effect of the 
hybrid yarn on the strength of the concrete. Information about hybrid yarn technology and 
braiding technology will be mentioned in the following sections.

2. Hybrid yarn technology

For many years, thermoset and thermoplastic composites are often used to produce advanced 
lightweight structures. Thermoset prepregs, which were previously a combination of resin 
and fiber, as preformed materials must be kept refrigerated to interrupt the ongoing curing 
reaction [14]. Generally, in many composite processing methods, the matrix is added to the 
fibers at the time of manufacture. By using additives and fillers, it improves the surface qual-
ity of the part, alleviates some processing problems and reduces the total cost [15, 16].

In the thermoset composite materials, the curing process requires heat and pressure. To 
improve its usability, the prepreg is typically stored in a freezer and then cured at a high 
 temperature. In the 1960s prepregs produced necessitated quite high cure temperatures and 
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had very short out-lives; nowadays, it is possible for them to be stored in a freezer, have an 
out-life of possibly several months and a cure temperature of between 50 and 200°C. Prepregs 
tend to be epoxy resins reinforced with carbon, glass, or aramid fibers. High-temperature 
polymer composites are occasionally used as other matrix materials [16].

In thermoplastic polymers, the organic molecular units are bonded together. They differ from 
thermoset polymers in this way. Thermoplastic composites are preferred for their ability to 
be formed by heat at low pressure. While thermosets are produced with manual production, 
the thermoplastic processing techniques are machine friendly and enable short processing 
cycles [14, 17].

Thermoplastic polymers are divided into two groups of amorphous and semicrystalline poly-

mers according to their molecular structure. While amorphous polymers have randomly ori-
ented molecular chains, in semicrystalline polymers, the chains are symmetric enough to be 
fitted into an ordered crystalline state. Because of the large molecular chain length, complete 
crystallinity cannot be obtained, and both crystalline and amorphous regions coexist in the 
solid. When a polymer is cooled, there are some changes. From above, the melt temperature 
(T
m
) to glass transition (T

g
), the chains lose mobility and begin to interact segment by  segment. 

At T
g
, the molecular chains are locked in place, and the polymer assumes a “glassy” state. In 

this case, the molecular orientation is random due to the irregular chain structure. At semicrys-

talline state, polymers crystallize at temperatures so high from the T
g
, regions of amorphous, 

and crystalline phase coexist [17].

When a thermoplastic polymer is heated above the T
m
, polymer melt viscosity reduces, and 

it melts. Many thermoplastic polymers can be used as matrix materials in textile composites. 
Generally, polymers having a lower melting temperature are preferred due to their ease in 
processing and drying. There are many approaches such as co-woven yarns, inter-dispersed 
fabrics, plied matrix, powder impregnation, and commingled materials, and they are used to 
impregnate the reinforcing textile structure with the matrix polymer [17]. In this techniques, the 
formability is improved. The first three techniques require direct flow of the polymer melt into 
the fiber bed. Powder impregnated and commingled materials have fiber and matrix constitu-

ents intimately mingled before the melt impregnation process. This reduces the distance that 
the resin must flow to achieve impregnation, offering the possibility of a fast wet-out during 
consolidation [18]. Nevertheless, the production of thermoplastic composites has some techni-
cal processing problems. For example, as thermoplastic melt has much higher viscosity than 
common thermoset resins, it is difficult to obtain homogeneous composite structure. There 
are some methods to produce homogeneous composite structure, and they are the following:

• Polymer direct melt extrusion or pultrusion that reinforce fibers are pulled through a resin;

• Solvents or low viscosity precursors; and

• Close contact between the fiber and the matrix [14].

Although there are novel thermoplastic composite manufacturing methods such as  
co-compression molding of textile preforms with a flowable core and overinjection molding 
of stamped preforms, close contact between the fiber and the matrix is widely used in textile 
composites [17].
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2.1. Types of hybrid yarns

Hybrid yarns can be produced with many methods such as ring spinning, commingling, and 
braiding. These methods provide uniform distribution of matrix and reinforcement fibers 
as well as reduce the damage to reinforcing fibers [19]. The information on methods will be 
given following sections.

2.1.1. Ring spinning

Classical ring spinning machines have a pair of rollers for the drafting, twisting, and wind-

ing mechanism and can use only one type of fiber to manufacture spun yarns. Present ring 
spinning machines need some modifications to manufacture hybrid yarns. Generally, core 
ring spinning on a modified ring frame needs with it special guiding devices and feeder 
rollers (Figure 1). With slight modifications and little investment, this technique can be used 
to produce hybrid yarns by the core spinning system, and these machines are most com-

monly used to produce core-spun yarns containing elastane as a core. While one type of 
fiber is used in classical ring spinning, staple fibers and filaments can be used in core ring 
spinning [19–21].

Figure 1. Modified core spinning system [21].
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2.1.2. Rotor spinning

As in ring spinning, rotor spinning needs some modifications to manufacture hybrid yarns. In 
the modified rotor spinning machine, hybrid yarns can be produced by combining staple fibers 
with filament yarns under varying filament overfeeds. Figure 2 shows the modified rotor and 
the diagram of spinning process. In this machine, the staple fiber and the continuous filament 
were fed into the rotor to produce hybrid yarn. This technology has a tendency to introduce fil-
ament misalignment in the core yarn, which is not desirable for composite application [19, 22].

2.1.3. DREF spinning

This spinning system can be used to manufacture core-spun hybrid yarns for thermoplastic 
composites. In classical DREF spinning, the completely opened fiber strand is brought into 
engagement with the rotating open end of the yarn by a perforated drum. Attachment and 
strengthening of the fibers are accomplished by continuously rotating the yarn in the converg-

ing region of the two drums. The spinning of the yarn takes place with the help of the rotational 
movement of the two cylinders, and the friction on the cylinder surface contributes to this [19].

This system can be used to fabricate a hybrid yarn consisting of reinforcement filaments of 
high-performance fibers in the core and staple fibers of the thermoplastic matrix material such 
as polyester, poly-ether-etherketone or liquid crystal polymers in the sheath. Hasan et al. stud-

ied the application of carbon filament yarn (CFY)–based conductive hybrid yarn as the heating 
element in a textile-reinforced concrete structure. In order to manufacture this hybrid yarn, 
they used DREF-2000 spinning technique. Carbon fiber was used as a core, and a mixture of 
short glass and polypropylene fibers was used as a sheath. Figure 3 shows friction spinning 

machine and cross-section of hybrid yarn [19, 23].

Figure 2. (a) Diagram of spinning process (b) Modified rotor [22].
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2.1.4. Wrap spinning

In this system, a roving or a sliver feedstock passes through a hollow spindle without receiv-

ing true twist. The continuous filament yarn, which is mounted on the hollow shaft, is passed 
through the hollow spindle as shown and is wound on the central component (Figure 4). 
Hence, this filament strand is wound around the twistless strand in the core. With some modi-
fications, this system can manufacture hybrid yarn using filament for both core and wrapping. 
When thermoplastic filament is used as a wrap yarn, during the consolidation process, this 
component will melt and it becomes part of the matrix [19, 24].

2.1.5. Air-jet texturing

Air-jet texturing is completely a mechanical process, and reinforcing and matrix filaments 
are combined by air. In this process, the air nozzle is the heart of the air-jet texturing process. 
Supply yarn is overfed into the turbulent zone, and here, compressed air is guided mainly 
parallel to the yarn path. This compressed air flow opens up filament bundles and then builds 
mingling sections (Figure 5), as a result, mixed filament yarn is manufactured, but, while fila-

ments mix, some loops occur [19, 25].

2.1.6. Commingling

Like air-jet texturing, in the commingling process, compressed air is used to generate entan-

glements in and among filaments. In this process, two or more yarns, such as carbon or glass, 
and a thermoplastic matrix yarn are converted to a single strand. Commingled yarn consists 

Figure 3. (a) DREF-2000 friction spinning machine (Fehrer AG, Linz, Austria), (b) Sketch and (c) Microscopic image of the 
cross-section and (d) Longitudinal view of the FS hybrid yarn produced to be used as the heating element [23].
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Figure 5. Air-jet yarn texturing [25].

Figure 4. Filament wrap spinning [19].
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of blended two parts combination, reinforcing filament yarn and filament yarn spun from 
thermoplastic polymers. In the beginning, the multifilament yarns are scattered by com-

pressed air, and then they are often mixed with each other in parallel. Unlike air-jet texturing, 
loops do not occur, and generally, filaments are parallel to each other (Figure 6). Thanks to 
the changes in main production parameters such as degree of overfeeding, production speed, 

and air pressure, it can be manufactured as a hybrid yarn in the desired filament distribu-

tion. It is possible to obtain a homogenous distribution of reinforcement and matrix, and this 
reduces the mass transfer distance of the matrix during processing. In this way, a fast and 
complete impregnation of the reinforcement filaments is possible [19, 25, 26].

2.1.7. Parallel winding

In this simple process, the two components of the hybrid yarns are brought together side by 
side, as shown in Figure 7. Parallel winding is also called tape winding or the side-by-side 
technique. In this process, the continuous reinforcement filaments and the thermoplastic fila-

ments are combined in the form of a band. Then, after the heating process, this tape is con-

verted to a composite material [19, 24].

2.1.8. Stretch breaking

In this process, hybrid yarns consist of discontinuous thermoplastic fibers and filaments. They are 
brought together into a well-oriented coherent bundle by the insertion of a degree of twist. Thanks 
to this technology, a broken fiber feed on one or two tows of high-modulus filaments such as car-

bon or glass and also produces highly consistent yarns with minimal fiber  damage. When heating 
is applied, the composite structure is formed by melting the thermoplastic structure [19, 24].

2.1.9. KEMAFIL technology

This technology has been developed in Germany for geotextiles. In this technology, a type 
of circular knitting machine is used to manufacture hybrid yarn. In this machine, a parallel 

Figure 6. Hybrid yarn by commingling process [19].
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arrangement of matrix fibers is surrounded by parallel reinforcing filaments. In this hybrid 
yarn, while the core consists of matrix and reinforcing filaments, the knitted sheath consists 
of only matrix fibers [19, 24].

2.1.10. Schappe technology

Schappe technology is same as stretch breaking. This technology is used to obtain more bulky 
and higher tenacity hybrid yarn from long fibers. These types of hybrid yarns are composed 
of a mixture of discontinuous reinforcing and matrix filaments surrounded by continuous 
matrix filaments. As this consists of transforming the continuous filaments put on top of long 
fibers, this technique removes the weak points of the fibers [19, 24].

2.1.11. Braided yarn

Braiding has been used since 1800s to produce textile fabrics and is generally used for produc-

ing narrow rope-like materials. In this technology, three or more strands of filaments or yarns 
are interlaced diagonally like in a Maypole dance. The filament bundles forming the braid are 
combined in a manner similar to the formation of the ribbon to form the braided yarn. In this 
way, tubular woven structure occurs. Researchers have focused braiding technology to meet 
new demands in composite production [27, 28]. Details of braided yarn and its production are 
discussed in Section 3.

2.2. Fiber distribution in hybrid yarns

The type of hybrid yarn production technique is very important on the fiber distribution 
in the hybrid yarn. The homogeneity of component fiber distribution within the matrix is 
strongly dependent on the hybrid yarn structure. Fiber distribution is influential in the 
quality of the composites, as it will affect the flow distance of thermoplastic polymer when 
heat is applied. When they are ranked according to the flow distance, the flow distance 
increased in the order of Schappe yarn, commingled yarn, Kemafil yarn, side-by-side yarn, 
and lastly, friction spun yarn. This means that the best degree of mixing of reinforcing and 
matrix are Schappe and commingled hybrid yarns fibers. Hybrid yarn structures are shown 
in Table 1 [19].

Figure 7. Structure of side-by-side hybrid yarn [19].
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Hybrid yarn structure Position of performance filaments

Ring core-spun yarn (RS)

Performance filaments in core and covered spun fibers in 
a twisted form

Rotor core-spun yarn (ROS)

Performance filaments in core and covered spun fibers in 
a wrapped form

DREF core-spun yarn (DF)

Parallel arrangement of performance filaments in core 
and covered spun fibers

Wrap yarn (WS)

Parallel laid fibers in core and covered by performance 
filaments

Air-jet textured yarn (AT)

Thermoplastic filament and performance filaments are 
interlaced forming loop structure

Commingled (COM)

Thermoplastic filaments and performance filaments in a 
mingled form

Parallel winding (SBS)

Parallel arrangement of performance filaments and 
thermoplastic filaments

Stretch break (SB)

Stretched break thermoplastic filaments covered by 
performance filaments

Kemafil technology (KEM)
Parallel arrangement of thermoplastic filaments 
surrounded by parallel performance filaments in the 
core, sheath in continuous filament in a knitted form
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3. Braiding technology

In composites manufacturing, the molten thermoplastic must flow through the capillaries 
between the reinforcement filaments. Theoretically, this can be achieved with a commingling 
method. In our previous studies, this method was tried, and some results were realized. It 
produced hybrid yarns approximately 1100 tex from 640 tex AR-glass roving and 400 tex 
polypropylene (PP) filament. In textile reinforcement concrete, generally 2400 tex or more 
linear density is used as a reinforcement material. In our study with approximately 1100 tex, 
it could not get a good homogeneity of fiber distribution. A further development of higher 
linear density with homogeneous fiber content is necessary. Therefore, the braiding yarn was 
used in this study as a new approach in order to obtain hybrid yarn for TRC production. Also, 
braiding technology offers minimum or no damage to the reinforcement fiber bundles, when 
compared to using commingled yarns.

3.1. Introduction to braiding technology

Braiding has been used for 200 years to produce textile fabrics. In this process, three or more 
threads are interlaced diagonally to the product axis [28, 29].

As the threads pass diagonally, they make an angle between 1 and 89° with the product axis of 
the yarns, usually within the range of 30–80° (Figure 8). This angle is called the braiding angle 
and is the most important geometric parameter of braided structures [29].

It is possible to produce a thicker, wider, or stronger product or cover some profiles in braid-

ing technology. These products can be linear products (ropes), curved or plane shell, or solid 
structures (one, two, or three-dimensional (3D) fabrics) with constant or variable cross-section 
and of closed or open appearance. Researchers have focused braiding technology to meet new 
demands in composite production [28, 29].

Hybrid yarn structure Position of performance filaments

Schappe technology (SCH)

Mixture of discontinuous performance material and 
fibers surrounded by thermoplastic filaments

Braiding technology

Filament or yarns in core and covered by performance 
filaments

Table 1. Hybrid yarn structures based on production method [19, 24].
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3.2. Machine and product classification

There are several different classifications of the braided processes, machines, and prod-

ucts. Generally, braided products of maypole braiding machines are divided into two main 
groups: Braids with constant cross-section and variable cross-section form. While there is flat 
braiding, tubular braiding, and form braiding for braids with constant cross-section, there 

are only 3D Braids for variable cross-section form. Each group has normal or biaxial braiding 
and triaxial braiding types. The classical and mainly used braiding machines are known as 
maypole braiding machines. This name will always be used where these machines have to be 
distinguished from the other (spiral, lace) braiding machines. Details of these classification 
are mentioned in the following sections. In the future, it is expected that with the increasing 
speed of electromechanical drives, maypole braiding machines with switches (3D braiding) 
will be able to work continuously [29].

3.3. Basic principle

Braiding has been used for many years in different application areas such as braiding of yarns, 
flowers, and hair. The application areas for braided products are widespread such as medical 
items, electric cables, ropes, laces, the huge ropes, and tubes used in the marine oilfield sector. 
Also, use of braids is growing in the production of fiber-reinforced composites. All the products 
are manufactured in the same way, i.e., by the interlacing of yarns at an angle of about 40–60° to 
the main product axis. Figure 9 shows the principle of hand braiding for a simple braid of three 

yarns. Initial structure (Figure 9(a)) is transformed to the interlacement in two steps:

• In the left two yarns, the outer left yarn goes over the next one (Figure 9(b));

• In the right two yarns, the right yarn goes over the left next nearest yarn (Figure 9(c)), and 

it repeats in the same way [29].

3.4. Flat braiding

Flat braiding structures can be obtained when basic braiding is applied to more yarns, e.g. 5, 7. 
Flat braiding principle is seen in Figure 10(a,b). In this case, at the first step, all left pairs interlace 

Figure 8. Structure of braided yarn [29].
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Figure 10. Hand braiding of odd (here seven) yarns (a,b) and of even (here six) yarns(c,d) [29].

so that the left goes over the right, and in the second step, all right pairs interlace so that the right 

yarn goes over the left [29].

Flat braiding is possible for both odd and even numbers of yarns. Figure 10(c,d) shows the 

sequence in the case of six yarns: at every second step, yarns from both the left and right 
sides stay and wait, while when using an odd number of yarns, only one yarn per cycle stays 
unused during the interlacement [29].

3.5. Tubular braiding

In this system, even number of yarns arranged around a circle interlace for production of 
tubular braids or ropes (Figure 11). The sequence of steps in this case is the same as for the flat 
yarn. In order to produce a regular structure, all yarns have to be kept under constant tension 
during the braiding process [29].

The interlacing sequence in the case of tubular braiding is same in flat braiding, but unlike 
flat braiding, all the yarn ends are located around a circle (Figure 12). The process can be 
described as follows:

Figure 9. Principle of hand braiding with three yarns [29].
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• Interlacement of the left yarn over the right yarn in each pair (the yarn at position 1 goes 
over the yarn at position 2 and the yarn from position 2 goes to position 1, but interlacing 
under the first yarn; the pairs are 1–2; 3–4; 5–6; 7–8).

• After shifting the positions (the pairs become 8–1; 2–3; 4–5; 6–7), the right yarn goes over 
the left yarn in each pair [29].

In tubular braiding, the beam is slowly covered from the top down. In braiding terminology, 
the beam is called the core (if it had a regular form) or the mandrel (if it had a more complex 

geometry), and this braiding system is used today for overbraiding of profiles with carbon 
or glass fiber composites for aerospace, cables, high pressure ropes, etc., for automotive and 
other applications [29].

3.6. Biaxial and triaxial braids, inlay yarns

Inlay yarns can be put in between the core and the yarns. These are named differently in each 
every different application areas, e.g., middle ends, inlays, and triaxial braids (Figure 13) [29].

Inlay yarns can be inserted into all kinds of braided structures; however, the core or the mandrel 
requires a hollow structure and is mainly used in tubular braids (Figure 14) [29].

3.7. Industrial maypole braiding

In industrial braiding, the machine dancer element is called a carrier, and the path of the 
carrier is called the track. If the motion of the dancers/carriers is analyzed carefully, it can be 
seen that all dancers/carriers in one direction are following the same track, while the dancers/

Figure 11. Tubular braids (rope). (a) Geometrical model and (b) Single (upper part) and Tripple (over-) braided part [29].

Figure 12. Sequence for tubular braiding [29].
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Figure 14. Tubular braid with core and inlay yarns (triaxial) [29].

carriers in the opposite direction follow the opposite track. Hence, for tubular braiding, there 
are two tracks and two systems of carriers [29].

The path of the motion is determined by the track, but the carriers are moved forward by the 
horn gears (Figure 15). At the beginning of the process, all outer ends of the yarns are connected 
together at the braiding point. When the carriers start their motions, the yarns interlace together. 
With this move, the next piece of braid is built at the braiding point. Finally, the braid produced 
is finally pulled out with the help of a take-off system [29].

3.8. Form braiding and 3D braiding

For different applications, such as thicker braided products of square or other cross-sectional 
type is required. For example, gaskets or fiber-reinforced composites can be manufactured 
with these products. In this case, the braiding process is called packing braiding, or 2.5D 
braiding (2.5D means more than the two dimensions of length and width, but less than 

Figure 13. (a) Normal (biaxial) braids and (b) Braids with inlay yarns (triaxial) [29].
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three dimensions), or alternatively, 3D braiding (due to the braided product having thick-

ness in all three directions). However, according to some classifications, they may also be 
named 3D, 4D, etc., braiding, but D means “diagonal” here. In the new generation of braid-

ing machines, they are controlled by a computer, and the track is not constant. The carrier 
can change its motion and can travel along a set of connected curves, and the selection of 

the next curve can change dynamically during the braiding process. Thanks to diversity, the 
braids do not have a constant cross-section, they are called 3D braids, and the process itself 
is 3D braiding [3, 29].

3.9. Applications of braiding yarns

The application of braids is various from medical items to electric cable. Also, use of braids is 
growing in the production of fiber-reinforced composites [3, 29].

If we summarize, we can classify the application fields as follows:

• Clothing: women’s and men’s wear, outwear, underwear, shoes (laces).

• Sports: aerial sports (starting rope for glider pilots), sailing (anchor ropes, sailcloth), moun-

tain climbing (ropes), camping (tent ropes), fishing, tennis.

• Home textiles: curtains (laces, cords), decoration threads.

• Medical: surgery (blood veins, sewing threads, catheter), prostheses, tapes for orthopedics.

Figure 15. Principal construction of maypole braiding machine [29].
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• Machine engineering: fiber-reinforced materials, package seals.

• Civil engineering: fiber-reinforced concrete.

• Traffic: fiber-reinforced materials for aircraft and car construction, track vehicles, and shipping.

• Electrical terotechnology: cables, insulation.

• Household: packaging, clothesline, do-it-yourself requirements [3, 29, 30].

3.10. Braiding technology in future

• Replacements of mechanical controls of braiding machines by electronic controls will reduce 
setup times.

• In future decades, even if braiding machine by electronic control will be used, mechanical 
carriers will surely continue to be used in a large number of applications.

• Braiding machines for the production of 3-D braids to obtain larger and more complex 
cross sections will be developed, and they can be used for nearly every application.

• Mathematical models between machine controls and the position of threads in the braid 
will be defined [3].

4. Experimental

Experimental study is focused on use of braiding yarn for textile-reinforced concrete. Hybrid 
yarn was produced with using braiding method. Hybrid yarn to be used as reinforcement 
has a unique combination of reinforcement and matrix component that was produced using 

a tubular braiding machine consisting of 16 spindles (Figure 16). Hybrid yarn can be thought 
of as a single yarn, although it is composed of two components. Continuous AR-Glass rov-

ing was used as the straight inserted axial fibers, and matrix fibers (PP fibers) were braided 
around the reinforcing AR-Glass roving.

AR-Glass fiber roving (Cem-FIL® 5325 from OCV Reinforcements) and polypropylene (PP) 
filament yarn (Aker Textile Yarn) were used to produce hybrid yarn with braiding method. 
The linear density of AR-Glass is 2400 tex, and the linear density of PP filament is 666.6 
dtex. To produce hybrid yarn with braiding method, 1-filament AR-Glass and 16-filament 
PP were used. Yarn linear density was measured according to ISO 2060. The linear density 
of hybrid yarn, its components, and other reinforcing components are given in Table 2.

After the production of hybrid yarn, a hot compression molder was used to fabricate continu-

ous fiber-reinforced thermoplastic composites. Matrix fibers were melted by heating at appro-

priate molding temperatures and become the matrices for the fiber-reinforced composites 
that easily wet out the reinforcing AR-glass roving. Figure 17 shows the view of hybrid yarn 
before and after heating.
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Before and after heating, the cross-section of hybrid yarn was investigated on a microscope 
with 40× (Figure 18). It was observed that while structure of hybrid yarn was a bit loose before 
heating (a, b), it turned into compact structure after heating (c, d).

After hybrid yarns were prepared, coated AR-glass fibers were prepared to compare with 
hybrid yarn and uncoated AR-glass fibers. Epoxy resin (SR 8500/ SD 8605 from Sicomin) was 
applied to AR-glass fibers with roller coater. After coating, all samples were preheated and 
fixed at appropriate temperature and time. Figure 19 shows the view of AR-glass fibers before 
and after coating.

Figure 16. Braiding machine.

Yarn Linear density (tex)

AR-Glass roving 2400

AR-Glass roving (coated with epoxy resin) 3840

Polypropylene (PP) filament 66.66

Hybrid yarn 3430

Carbon 1600

Carbon (coated with epoxy resin) 2560

Table 2. Linear density of hybrid yarn and its component.
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Figure 17. (a) Hybrid yarn before heating (b) Hybrid yarn after heating.

Figure 18. Cross-section of hybrid yarn before heating (a, b), Cross-section of hybrid yarn after heating (c, d).

Prepared textile materials were placed in the mold for flexural test. For each sample, five yarns 
were placed in the mold along the long edge, and the distance between each yarn was set to 
1 cm. The yarns were placed at a distance of 3 mm from bottom of the sample (Figure 20).

After all the textile components were prepared, second component for TRC which is concrete 
was prepared as shown in the mix proportions in Table 3.

The mixtures were batched in the vertical axis concrete mixer (Figure 21). The cement and fly ash 
were dry mixed for 1 min. This was followed by the addition of fine-grained aggregate, water, 
and the superplasticiser, with a mixing time of 5 min. After pouring the mix into oiled molds, a 
vibrator was used to decrease the amount of air bubbles. The specimens were demolded after 1 
day and then placed in a curing room in the special pool which its water temperature is 20°C for 
27 days of curing according to TS EN 12390-2 standard. For 12 h prior to the tests, the specimens 
were allowed to air dry in the laboratory.

Figure 19. (a) Uncoated AR-Glass fibers (b) Coated AR-Glass fibers.
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Figure 20. Yarn position in the TRC sample.

Mix proportions

Cement CEM I 42.5 R (c) 480 kg/m3

Fly ash (f) 240 kg/m3

Water (w) 284 kg/m3

w/b* 0.39

Superplasticizer 1.5% b. m. of binder

Siliceous fines (0–0.3 mm) 642 kg/m3

Siliceous sand (0.2–0.5 mm) 503 kg/m3

*w/b = w/(c + f)

Table 3. Mix proportions of fine grained concrete.

Figure 21. Concrete mixer.
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For the prepared mixture, eight specimens (three 150 × 150 × 150 mm cubes for compression 
test and five 325 × 50 × 20 mm beams for three-point loading flexural test) were prepared. The 
compression tests were carried out in the UTEST compression test machine (Type UTC-5750) 
(Figure 22(a)) at a loading rate of 4 kN/s on the 150 × 150 × 150 mm cubes according to the 
requirements of TS EN 12390-3 standard. The three-point loading flexural tests were carried 
out in ELE flexural test machine (Model 37-6330; Figure 22(b)) at a loading rate of 0.4 kN/s on 
the 325 × 50 × 20 mm beams according to the requirements of TS EN 12390-5 standard. The 
mean values of the test results were shown in table at next section.

5. Results and discussion

The mechanical properties of the concrete were measured with a compression test to see the 

strength of concrete used in the TRC production. The average compressive strength (28 days) 
of a cube specimen (150 × 150 × 150 mm) was taken as 52.3 MPa. This result is good for con-

ventional concrete. This concrete mix was used in the production of all TRC samples, and 
different materials were used as a reinforcing component.

In this study, only AR-glass roving was used to manufacture hybrid yarn with braiding tech-

nology. There is only AR-glass roving inside the braided yarn, and it is covered with PP fila-

ments. To see the effectiveness of coating, carbon fiber (1600 tex from DOWAKSA) was used 
to produce TRC. The results of 3-point loading flexural test can be seen in Table 4.

As seen in Table 4, each reinforcement material contributes to the flexural strength of the 
concrete. Commonly used AR-glass roving and carbon filaments in concrete reinforcement 
have contributed to flexural strength, 41.19 and 146.57%, respectively, according to without 
reinforcement. As expected, the epoxy resin coating also has contributed to flexural strength 

Figure 22. (a) Compression test machine (b) Flexural strenght test machine.
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according to reinforcement with AR-glass roving and carbon filament, respectively, 78.44 
and 64.69%. Heat-treated hybrid yarn reinforcement has contributed to a flexural strength 
of 57.71% according to without reinforcement. While reinforcement with epoxy resin coating 
has contributed to the flexural strength of 78.44%, reinforcement with heated hybrid yarn 
has contributed to flexural strength of 11.70% according to reinforced with AR-Glass roving. 
In this study, as it is known, it was seen that the epoxy resin coating provides a significant 
contribution. It is possible to evaluate the use of heated hybrid yarns produced by braiding 
technology in the production of TRC though it has contributed less than epoxy resin, since the 
epoxy resin cost is high and epoxy resin coating process is long and difficult.

6. Conclusion

In the experimental part of this study, the braiding method for using of TRC was investigated. 
Tubular braiding technique was applied to produce hybrid yarns using AR-glass roving as the 
core reinforcement fibers and PP fibers as the matrices around AR-glass roving. At the next 
step, these hybrid yarns were heated, and they were used for TRC production. All prepared 
samples used flexural strength test. When all test results were examined:

• Reinforcing materials such as AR-glass roving, carbon filament, and heated hybrid yarn 
have been found to increase the flexural strength.

• Carbon filament is better than AR-glass roving to reinforce the concrete for higher flexural 
strength.

• As expected, the epoxy resin coating also has contributed to high flexural strength accord-

ing to reinforcement without coating.

• Also, the application of epoxy resin coating to the textile yarn improves the utilization of 
mechanical performance and handling properties as well.

• Although the contribution of the heated hybrid yarn is limited, it is expected that the 
 desired results will be obtained by changes in braiding yarn production and yarn composi-
tion ratios.

TRC samples F (MPa)

Pure concrete 10.05

Reinforced with uncoated AR-Glass roving 14.19

Reinforced with coated AR-Glass roving 25.32

Reinforced with heated hybrid yarn 15.85

Reinforced with uncoated carbon fiber 24.78

Reinforced with coated carbon fiber 40.81

Table 4. Results of 3-point loading flexural test.
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