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Abstract

Temporal and spatial biogeographical boundaries are usually associated with extinction 
processes. However, some boundary regions seem to be places of speciation. It is unclear 
if boundaries are favored by generalized or specialized species. Recent studies suggest 
that narrow-ranging species can be strong competitors and they can replace wide-rang-
ing species while shifting their range boundaries under the effect of climate change. In 
other boundary regions, the decline of both passive- and active-dispersing specialists 
has been observed. Core regions are also weakening. They are jeopardized mainly by 
extreme climate events and fragmentation and by the accompanied non-native invasions. 
Biodiversity loss and homogenization have been observed globally.

Keywords: biogeographical boundary, ecotone, core region, climate change, mass 
extinction, specialist, generalist

1. Introduction

Temporal and spatial biogeographical patterns change in space and time. Historical bio-

geographical boundaries usually mark great mass extinction events. The role of spatial 

boundaries is controversial in recent global changes. Some suggest that species at sharp bio-

geographical boundaries are at the edge of their existence and doomed to extinction, others 

allege that transition zones can serve as biodiversity hot spots. They harbor either wide-

ranging species adapted to broad environmental circumstances or narrow-ranging species 

occurring in unique environments. Researchers assuming specialized species in boundary 

regions imply that biogeographical boundaries are suitable for climate change detection and 

specialists can be used as early warning signals. Several studies suggest that specialization 

is the greatest extinction risk [1]. However, mass extinction events affect both specialized 
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and generalized species. Studies show that both groups are declining under global changes. 

Interactions between specialists and generalists are not exactly clear. It is urgent to detect their 

locations globally and clarify their roles. It is also an alarming trend that not only boundaries 

but also core regions are weakening, which leads to homogenization, the abundance of gen-

eralized species, and biodiversity loss. Recent anthropogenic changes are complex including 

not only climatic changes but also habitat destruction, fragmentation, and pollution which act 

synergistically.

This chapter addresses the following issues: (1) Are biogeographical boundaries the scenes 

of extinction? (2) Which factors weaken spatial boundaries and core regions? (3) Are core 

areas threatened by climate change? (4) Are biogeographical boundaries unique regions? 

(5) Do they harbor generalized or specialized species? (6) What are the roles of specialists and 

generalists in extinction processes?

2. Temporal biogeographical pattern

Temporal and biogeographical boundaries cannot be separated from each other. Temporal 

boundaries eliminate old spatial boundaries and create new ones. Temporal boundaries are 

usually associated with extinction processes. It is suggested that mass extinctions start at local 

scales and spill over to higher scales in time [2].

2.1. Succession

Local species and communities replace each other in time. At ecological time scale, this pro-

cess is induced by repeated disturbances, and it is called succession. The Clementsian school 

considers succession as a deterministic process that culminates in a predictable stable, “cli-

max” community [3]. Succession is not random, because it is determined by climatic and soil 

conditions. In contrast, the stochastic Gleasonian school suggests that a single region can have 

several successional stages at the same time and more than one stable stages or climaxes [1].

2.2. Mass extinction

Major extinction events indicate boundaries in geological time. Approaching an extinction 

event, ecosystems display specific traits serving as warning signals of a catastrophic shift. 
(Post-extinction periods also show distinctive pattern of biotic restructuring.) Extinction 
events as temporal boundaries eliminate old spatial boundaries and create new ones. Non-

catastrophic extinctions affect biological systems at different spatial scales and different tro-

phic levels in a selective way. The inherent extinction proneness of taxa also contributes to the 

selective nature of extinctions. In contrast, catastrophic extinction events or, in other words, 

mass extinctions affect the whole global ecosystem in a non-selective way wiping out most 
living creatures. Several studies suggest that we are undergoing the sixth mass extinction.

Non-selectivity is the main characteristic that makes a difference between background and 
mass extinction. During mass extinction events, widespread and abundant species also extinct 
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[4, 5]. The disappearance of generalists is a sign of shifting toward nonselectivity [6, 7]. (Large 

body as a main extinction trait is often mentioned in literature; therefore, losing large-body 

mammals [8] is an early indicator.)

At global spatial scale and at longer time period (historical time scale), sudden and large 

environmental perturbations wipe out whole biotas causing mass extinction. This large-scale, 

repeated replacement is similar to local succession. Apart from mass extinctions, changes in 

biotas are of smaller magnitude and rather gradual. That is why an increase in frequency and 

magnitude of changes in communities or biotas is an early signal of a regime shift. At geo-

logical time scale, mass extinctions usually mark a boundary between time units (e.g., eras, 

period, epochs), the tipping point of a biotic shift. They are associated with drastic environ-

mental perturbations (sudden climate change, volcanism, sea-level changes, meteor impact 

events). Referring back to recent climatic changes, historical mass extinctions accompanied 

with global warming can provide valuable information for us to be able to presage future 

trends.

3. Spatial biogeographical pattern

The geographic ranges of species evolve under limited environmental conditions creating a 

spatial pattern. Broad-ranging species perceive fewer boundaries than species with restricted 
geographic ranges, and they can shift their ranges relatively more easily under changing envi-

ronmental conditions.

Spatial boundaries are affected by natural biotic and abiotic factors and anthropogenic dis-

turbation which enhance each other’s effect through interactions. Extreme changes in these 
factors and in the inherent traits of boundaries can lead to extinctions.

3.1. Abiotic factors

The abundance and the distribution of species are usually affected by the synergy of multiple 
environmental factors, such as temperature, water availability, soil and water chemistry, etc. 

For example, the tolerance of high temperature is typically lower in plants, which don’t toler-

ate decreased soil moisture. Local extinctions at the boundaries of species ranges are common 

during droughts [1, 9, 10].

3.1.1. Extreme perturbation

Disturbances such as fires, storms, and volcanic eruptions either destroy or maintain bound-

aries, depending on their magnitude and frequency. Natural ignition (lightning), for exam-

ple, prevents woody encroachment and exotic species invasion at forest and shrub/grassland 

boundaries; therefore, artificial fire suppression leads to forest expansion. In arid regions, the 
decrease in natural fires coupled with livestock grazing often results in desertification. Desert 
shrublands expand at the expense of grasslands [1, 11, 12]. Synergistic processes have an 

important role in this case as well. Fragmentation lowers the probability of lightning-ignited 
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fires. Increased fragmentation along with the disappearance of an important boundary regu-

lator leads to the local extinctions of native grassland species which can spill over to higher 

spatial levels supporting the homogenization processes.

The investigations conducted by du Toit et al. [13] in the South African Nama Karoo transition 

zone confirmed that more frequent and/or more intensive fires can lead to a biome shift if the 
most abundant species fails to recover after an extreme disturbance in a transition zone. The 

dominant vegetation of Nama Karoo is grass, and shrub and fires are rare. They monitored 
the recovery of the vegetation after a natural ignition. Most of the species managed to recover 

except the most abundant Karoo shrub species seven months after the fire. This might suggest 
a biome shift from shrubland to grassland.

3.1.2. Extreme weather pattern

Climate change enhances the magnitude and the frequency of extreme events [14]. Frequent 

extreme climatic events, e.g., extreme droughts, weaken both core areas and boundary 

regions by altering species composition, diversity, and functional and structural attributes. 
Native species being less adaptive to extreme events may be displaced by non-native general-

ist invaders [15].

Boundaries are more exposed to extreme events than core regions; therefore, even the events 

of low magnitude can degrade their structure. Several studies confirm that relatively weak 
winds can contribute to the invasion of weedy species by dropping wind-transported seeds 

at the edges [16, 17].

Recent droughts have induced forest canopy thinning in the core areas of tropical forests. In 

some high-rainfall places, forests have disappeared probably because of the relatively long 

dry season in Australia [18, 19]. Longer dry periods have also been experienced in tropi-

cal montane forests in Costa Rica with severe consequences [20]. Drier climatic conditions 

opened a path for pathogenic invaders from lower altitudes [21] resulted in the die-off of most 
endemic frog and toad species during the 1980s [22]. This example illustrates the devastating 

effects of synergistic extinction drivers on endemic species. According to Fjeldså [23], the lack 

of endemic species in a tropical montane forest indicates that the local biotic community can-

not maintain a hydrological balance anymore and withstand global changes.

3.1.3. Habitat destruction and fragmentation

Habitat destruction and fragmentation can be considered as extreme anthropogenic pertur-

bation. Fragmentation is detrimental for specialized species. It eliminates intact core zones 

and reduces the imperviousness of edges providing open space for non-native, wide-rang-

ing species. The higher trophic level and large body size make terrestrial species sensitive to 

fragmentation. This can further enhance the extinction proneness of African megaherbivores 

maintaining biome boundaries.

Janzen [24] confirmed that fragmentation leads to weed expansion in habitat patches. Forest 

fragmentation results in smaller patches which probably become more and more distinct 
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from the intact forest, because the mortality of native tree species along the edges is higher 

than that of environmentally more tolerant weedy species [24]. The success of weed invasion 

depends on the width and the imperviousness of buffer zones as well as their relative disper-

sal abilities [25]. Buffer zones are the zones between the core areas and edges, or, in another 
point of view, they can be considered as wider edge zones. If they are occupied by weedy 

species, native interior tree species cannot reestablish [26]. In small patches, forest specialists 

can be completely replaced by generalists after perturbation [27]. Conservationists emphasize 

that it is important to preserve larger habitat patches which presumably contain more spe-

cialist species. Nevertheless, Beier et al. [28] pointed out that the generalists inhabiting small 

habitat patches provide important ecosystem services; therefore, they can be the centers for 

future ecosystem recovery [28].

In general, higher trophic levels give stronger responses to fragmentation and habitat loss 

than lower trophic levels [29–31]. Krauss et al. [32] assume that lower population sizes, higher 

population variability, and dependence on lower trophic levels are the main reasons for frag-

mentation susceptibility of higher trophic levels. Large body size can also enhance the sen-

sitivity to fragmentation and increase the extinction risk of terrestrial species according to 

several sources [33].

3.2. Biotic factors

The main biotic factors forming boundaries are competition, predation, and mutualism.

3.2.1. Competition

Species limit each other’s distribution by competition. Strong competition can result in non-

overlapping range boundaries [1]. Non-overlapping boundaries display sudden regime shifts 

under environmental changes. The current shifting of species ranges is also influenced by 
competition, which affects both the generalized and specialized species.

In the last decades, woody encroachment has been experienced globally under the effects of 
global warming [34–36] mainly because of CO

2
 enrichment. Woody species which are gener-

ally superior competitors [1, 37] tend to be sensitive to abiotic stress (fire, drought). However, 
they experienced fewer detrimental perturbations recently, which also helped their expansion.

The relationship between species diversity and geographic range limitation affects spatial 
patterns [1]. Abiotic and biotic factors vary along range boundaries. Under unfavorable envi-

ronmental conditions, species diversity and hence competition are lower. When environmen-

tal conditions are beneficial for most species, diversity increases and biotic interactions (e.g., 
competition, predation) will become the limiting factors. This might be the reason why many 

biodiversity hot spots are located along the tropical biome boundaries.

The global spatial pattern of generalist and specialist species reflects the changing abiotic 
conditions in a similar way. In the tropical zone where the environmental conditions are 

favorable, the diversity and the biotic interactions are high, many species tend to be special-

ized, and the ecosystems are productive. Proceeding to the poles, environmental conditions 
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become more unfavorable, diversity and productivity decrease, and the species become more 

generalized. Isolated and small geographic ranges (small islands and forest fragments) are 

also homogenized and dominated by a few generalized species because of the unfavorable 

conditions. Decreasing geographic ranges and increasing disturbance jeopardize both spe-

cialized and generalized species.

The tropical region provides interesting examples for diffuse competition which also modifies 
species ranges under recent climate change. Proceeding to the equator, the southern limits of 

the geographical ranges become less climate dependent and more effective by competition 
in the Northern Hemisphere. MacArthur et al. [38] suggest that strong biotic competition 

restricts some tropical species to habitats with less favorable environmental conditions. The 

same species can turn into widespread and abundant species in subtropical and temperate 

zones by diffuse competition. Yellow warbler (Dendroica petechia) is a good example for that. 

Its geographic range is widely expanded in the temperate zone, while under tropic condi-

tions, it is strongly restricted [38]. According to MacArthur et al. [38], diffuse competition of 
tropical species is on increase.

Bennett et al. [37] also observed strong tropical competitors in the temperate zone. Tropical 

herbivorous fish shifted northward at the expense of seaweeds. Seaweeds are dominant, 
wide-spreading taxa in subtropical and temperate coastal zones. The poleward shift of tropi-

cal herbivorous fish prevents the recovery of seaweeds and maintains a canopy-free alterna-

tive state after the extreme disturbances (overgrazing).

In some cold regions, specialists are displacing generalized species. Directional taxonomic 

shifts of the algal communities in the Northern Hemisphere have been observed by Ruhland 

et al. [39], especially in the alpine regions and arctic zones with a tendency of an increase in 

specialized taxa which are replacing generalized species [40].

3.2.2. Predation

Predation can limit the distribution of both predators and preys. Specialization or overhunt-

ing can lead to a drop in prey abundance, and this way both groups suffer. The geographical 
ranges of highly specialized predators are usually further constricted by other limiting fac-

tors; hence, they are especially prone to extinction.

3.2.3. Mutualism

Mutualism results in the identical ranges of parasites and hosts; therefore, coevolved species 

at boundaries and in core regions are prone to co-extinction. Mutualism-related co-extinction 

is strongly enhanced by fragmentation. Co-extinction affects both specialist and generalists, 
which can lead to wider extinction.

Grasslands are endangered globally. Grassland specialists can expect a long-term decline 

because of the drastic loss of their habitats [32]. Time-delayed extinction of long-lived vascu-

lar plants may bring about the co-extinction of short-lived specialized herbivores, e.g., but-

terflies [32].
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Rainforests are also jeopardized by habitat destruction. The decline of old native trees in rain-

forests because of fragmentation may cause the co-extinction of specialized mutualists and 

herbivores [41].

Invasion can replace core super-generalists in the mutual networks, as well. Giannini et al. 

[42] observed invasive super-generalist bee species in Brazil replacing native super-generalist 

species which can modify the interactions in networks. The non-native, super-generalist bee 

species invaded into the core of the networks rapidly. Romanuk et al. [43] and Lurgi et al. [44] 

suggest that large and more generalist species are the best invaders.

Dario Palacio et al. [45] studied a highly diverse network of plant and fruit-eating birds in a cloud 

forest in the Colombian Andes. They found that the elimination of super-generalists which are 

the connectors of disconnected subsets of species makes the mutualistic network prone to col-

lapse despite its high diversity. They experienced the early decline of large frugivores forming 

the core of the network because of their high vulnerability to fragmentation. They also noted that 

the early loss of endemic and specialized species may precede the decline of central super-gen-

eralists. However, the extinction of less-connected specialized species presumably does not lead 

to the collapse of the whole network in contrast with the decline of the central super-generalist 

species. Similar networks are located in the Atlantic Forest in Brazil as well which are also threat-

ened by extinction [46]. The authors’ results suggest that generalist species play an important 

role in the ecosystem functions.

3.2.4. Dispersal abilities

Both active- and passive-dispersing specialist species are declining. Specialist species are at 

great risk even if they are active dispersal.

Good dispersals are able to shift their ranges and avoid abiotic stress. For this reason, the 

natural range boundaries of plants and sessile animals change relatively slowly. For instance, 

the contemporary biome distribution pattern in Africa does not reflect the actual current cli-
mate but historical conditions [47].

According to Terborgh [48], mainly specialization, high trophic level, and poor dispersal 

ability promote extinction. Laurance [49] and Turner et al. [50] suggest that mammals and 

plants with poor dispersing abilities are more prone to extinction than active dispersers, 

which leads to a higher abundance of generalist species [51]. Wilson and Willis [51] high-

light the early loss of specialists during extinction events. Short-lived pollinators with good 

dispersal abilities shifted their ranges in North America and Europe under climate change 
[52]. Short-lived specialists are sensitive to environmental changes [53], which makes them 

good early warning indicators of perturbation. Bartomeus et al. [54] described a decline in 

plant-pollinator networks throughout the US over the last 120 years. Scheffers et al. [55] sug-

gest that specialized pollination systems are expected to be more vulnerable and hence more 

sensitive indicators of global warming. Krauss et al. [32] found that short-lived specialist 

butterflies experienced severe decline after perturbation despite the fact that they are active 
dispersers.
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Rare species are usually more localized, sparse, and relatively more specialized [33]. Their 

geographic ranges are more fragmented; hence, metapopulation and edge effects can be sig-

nificant contributors of their decline [56]. Specialized taxa tend to be rare, which increases the 

extinction likelihood [33]. Rarity and specialization are two different traits, but they often act 
synergistically. However, Didham et al. [57] pointed out that range-restricted species may 

be more disperse and persistent than common, sessile species in small fragments. Didham et 

al. [57] investigated the effects of forest fragmentation on beetle species in central Amazonia. 
They found that rare species were better survivor in small fragments than “common” species. 
They concluded that rare species are more mobile and more persistent in contrast with com-

petitively dominant but more sessile species which are more prone to extinction under forest 

fragmentation. Hanski and Ovaskainen [58] argue that the transient abundance of rare species 

can be experienced after excessive habitat loss and fragmentation.

3.2.5. Sensitive development stages of species

Species at different development stages show different tolerance of environmental conditions, 
which affects their range sizes, their boundary types, and boundary perception. For example, 
the life cycle of a frog or a dragonfly includes very different ranges and boundaries because 
of the varied niches of stages.

Higgins et al. [59] emphasize that the growth rate of Savanna tree seedling and saplings affects 
their survival during fire events. Fire suppression, especially during the sensitive develop-

ment stages of trees, favors woody encroachment.

3.2.6. Continental drift

The theory of continental drift was formed during the last century. It was a revolutionary 

step, and it revealed the secret of several vague biogeographical issues, for example, the omni-

presence of sessile animals, which are not able to cross oceans. Plate tectonics is responsible 

for the birth and the destruction of continents. The assemblage and the positions of continents 

are changing. Their union creates bridges between terrestrial biotas providing free gene flow, 
and their separation may lead to their isolation. These processes are selective as species are 

sensitive to boundaries to different degrees especially considering their dispersal abilities, 
but it can be stated that global changes of large magnitude affect most species uniformly in 
many cases.

According to Lyell’s geoclimatic theory, the concentration of continents near the equator trig-

gers global warming, while the juxtaposition of landmasses close to the poles evokes global 

cooling. Hence, continental drift can be considered as a climate regulator and thus a temporal 

boundary “creator.”

The collision of continental plates can establish a connection between biotas, but paradoxi-

cally it can create a spatial boundary as well, since continental collisions produce towering 

mountain ranges which are restrictive to lowland species. The union of landmasses is a vio-

lent event erasing and reshaping boundaries. The Great Permian Extinction may have also 
been associated with the formation of the Pangea supercontinent which brought about a sig-

nificant drop in the sea level and the drying of the continental shelves [1]. However, Pangea 
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also served as a cradle for many survivors and novel species which expanded their range 

boundaries over the continent. When the continents separated, global climatic conditions 

changed dramatically again. The species survived this event radiated and diversified under 
new environmental circumstances.

4. Some important spatial traits of biogeographical boundaries

Biogeographical boundaries can be categorized in many ways [60, 61]. Here, mainly sharp 

boundaries are discussed in relation to global changes.

Controversial views on boundaries are partly generated by incoherent spatial scales applied 

in studies.

4.1. Spatial scale

Climate has a great effect on the biogeographical pattern. Geography and meteorology apply 
similar spatial scales which makes the scientific investigations more consistent. Saunders and 
Briggs [62] emphasize the importance of proper scale. If biogeographical problems are not 

managed at the proper scale, it can lead to the loss of biota. The mismatches of human-related 

and natural boundaries can deteriorate the environment. Improper scale also brings about 

biased and controversial data.

Sub-local spatial scale (< a few meters) includes microhabitats and small boundaries. For 

example, the boundaries between surfaces of different exposures on a boulder also mark the 
borders between the patches of different lichens. Local spatial scale (a few meters to 1 km) 
deals with the level of communities. Regional spatial scale (1–100 km) can be related to land-

scape boundaries, and continental spatial scale (>100 km) is appropriate for researches on 

landmass boundaries. Increasing spatial scale is usually associated with increasing temporal 

scale, from a couple of hours or days to millions of years.

4.2. Spatial origin: natural vs. anthropogenic

Natural boundaries are the formations of the nature which divide two or more different units 
of natural origin, like timberlines, mountain chains, and watercourses. Anthropogenic bound-

aries are usually man-made objects (transportation, industrial, residential elements) and the 

boundaries of anthropogenic plant communities (croplands and plantations). Anthropogenic 

boundaries are always sharp representing an obstacle or filter to migration and gene flow. 
They can be either physical objects or boundaries of high contrast between the adjacent units, 

for instance, edges between forests and croplands where different microclimatic and ecologi-
cal conditions meet.

4.3. Spatial structure: sharp vs. gradual

Nature can produce relatively quick changes at boundaries as well; however, along environmen-

tal gradients, abiotic and biotic changes are gradual. This leads to an important difference between 
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sharp and gradual biogeographical boundaries. They are usually referred to as “ecotones” and 

“ecoclines” in ecology.

Starting with the latter one, ecoclines are ecosystems in which the associated communities 
show a gradual change along an environmental gradient. The environmental heterogeneity 

results in gradual phenotypic and/or genetic differences of species which are also called eco-

types. This gradual variation reflects an adaption to the changing environment. In an ecocline 
the physiological characteristics of plants and animals change gradually proceeding to higher 

latitudes (e.g., the skin color in human populations). This phenomenon can lead to speciation 

only if the environmental conditions change dramatically.

Researchers usually show more interest in ecotones which represent sharp biogeographical 

boundaries between ecosystems.

5. Ecotones

Sharp boundaries are usually referred to as ecotones in literature. It is suggested that sharp 

boundaries (hereinafter ecotones) might be unique environments.

Ecotones have been studied for more than a century [63–65]; however, researchers have 

devoted more attention to the investigation of distinct, relatively homogeneous ecological 
units until recently. Various authors suggest that understanding boundaries may have an 

important role in the early detection of global climate change [66–70] and in conservation 

works [71–74].

Ecotones are also referred to as transition zones, junction zones, tension belts, edges, borders, 
etc. Ecotones can be considered as the edge or the periphery of an ecological system or as a 
transient zone between two or more adjoining ecological units. Ecological boundaries which 
have sharp environmental and ecological gradients are usually unstable [75]. They share com-

mon traits with the adjoining regions but also hold unique features [76]. Ecotones promote 
high biodiversity and unique, rare, specialized, vulnerable species, which make them biodi-

versity hot spots [74] and may be central regions for future conservation efforts.

Ecotones harbor range-restricted species which are mostly considered to be vulnerable to 
climatic changes and fragmentation and thus prone to extinction. According to researchers, 

specialists will be the first to extinct under the sixth mass extinction. The role of specialists 
prior to extinction processes has a main priority in most studies as they can be used as early 

warning signals. Generalists as the main survivors of environmental changes are usually dis-

regarded in approaching havocs, though they maintain the communities as well. Kark and 

van Rensburg [74] argue that not only ecotones but also core regions are threatened by global 

changes.

Kark and van Rensburg [74] raised an important research question related to ecotonal spe-

cies assemblage: “Are they young species currently diverging in the ecotone region via para-

patric speciation or rather wide-ranging species that have expanded their ranges to ecotonal 
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environments?” Studies are controversial in this respect, and they emphasize the importance 

of both generalist and specialist species in core regions and in boundary regions as well.

5.1. Generalized and specialized species in ecotones

In literature, wide-ranging species are implied to in many ways, such as generalist, gener-

alized, widespread, abundant, r-strategist, weed, ruderal, tolerant, invasive, opportunistic, 

pioneer, and widely dispersing. Narrow-ranging species are referred to as range restricted, 

narrowly adapted, specialist, k-strategist, competitive, endemic, rare, unique, vulnerable, sen-

sitive, etc. Generalized species are able to adapt to a broad variety of environmental condi-

tions, and they can shift their diet. Specialists are less flexible in adaptation, and they occupy 
only a narrow range of niche.

Gosz [77] suggests that edge species are likely to be generalist, wide-ranging, and dominant. 

Generalists are able to cross boundaries. Wide-ranging, generalist taxa are more mobile than 

sensitive, vulnerable taxa which tend to be sessile; that’s why generalists perceive fewer 

boundaries and detect the landscape more homogenous [78, 79]. Generalist can be forced 

to leave their habitat and cross boundaries by habitat destruction or overpopulation. For 

instance, wide-ranging predators leave overpopulated habitat patches and cross the bound-

aries in cross-edge spillover predation [80–82].

Some studies suggest that generalists might have an important role both in core regions and 

at boundaries by maintaining communities. For example, krill have an important role in con-

necting different trophic levels in oceans. They are widespread globally; however, Antarctic 
krill occur only along the boundary between sea ice and ocean water, because they can find 
both rich food and shelter from predators there [83].

According to traditional textbooks, specialized species tend to become rare or even lost in a 

deteriorated environment. In contrast, generalist species prefer impaired habitats where they 

are found in great number. Disturbed and damaged sites are occupied by generalist species 

adopting disturbance strategy. However, ecotones can be under disturbance, still having lots 

of specialized species, and damaged tropical grasslands are rich in specialists as well.

Others studies suggest that the unique environmental conditions favor specialized and 

endemic species in ecotones [71, 84].

According to Morelli [85], both specialists and generalists should be applied as bioindicators 

in disturbed landscapes because of the homogenization of communities. He used bird obser-

vation data to identify avian hot spots. He selected specialized species in natural environments 

and both generalized and specialized species in disturbed environments. The selected species 

varied in different environments. He found that only a few common species are enough to 
detect high species richness hot spots. He also observed that two specialized bioindicators 

occurred both in cultivated and natural landscapes (in forest and in grassland, respectively).

McKinney [33] points out that extinction promoting traits tend to covary. According to 

Brown’s hypothesis [86], species having narrow niche are adapted narrowly in several param-

eters, whereas species with broader niche are broadly adapted in not only one but several 
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parameters. Furthermore, narrow niche is characterized by low local abundance and small 

geographical range [87, 88]. Considering the synergistic combination of traits related to nar-

row niche, the fate of specialist species is sealed under anthropogenic threats [87, 88].

Generalists are usually broadly adapted in not only one but several parameters, while special-

ists are narrowly adapted in many respects [87, 88] so they represent two extremes of adap-

tation and thus two extremes of extinction proneness. However, it is important to note that 

the degree of specialization and generalization can urge or delay extinction processes in the 

transition zones and in the core regions as well.

Broadly adapted biotas are able to shift their ranges in response to climatic changes [89]. 

Biotas which are broadly adapted can keep pace with global warming more easily and may 

experience lower rate of extinction. Several paleontological records confirm the extinction 
resistance traits of generalist species [90–92]. Generalist species are more resistant to back-

ground and mass extinction than specialist ones. Mammals are more specialized than insects, 

and small mammals are more generalized than large mammals [93]. Scheffers et al. [55] evalu-

ated literature on climate change impacts. They concluded that warming climate may result 

in a decreased body size in most cases as a large surface-to-volume ratio is more favorable 

under warm climate [94].

Despite the long history of ecotone investigations [63, 65], studies show mixed results on the 

role of transition zones in maintaining high diversity [95]. Odum [76] suggested among the 

first ones that ecotones may have high species richness and unique, endemic species. Since 
then, several studies seem to have confirmed that near ecotones, species richness and rarity 
are increased. Kark and van Rensburg [74] claim that boundary regions sustain high diversity 

because of the adjoinings and overlapping ecoregions (mass effect), but they are also loca-

tions for speciation and hence rare and unique species. Kark et al. [95] found that passerine 

birds, including rare species, occur in higher number in transition zones than in the adjacent 

ecoregions in the New World. van Rensburg et al. [96] concluded that range-restricted birds 

and frogs are frequently located closer to ecotones in South Africa. Kark [95] pointed out that 

rainforest ecotones in Central Africa may be the centers of speciation as a result of evolution-

ary and ecological processes, hence supporting the biodiversity of the whole biome. Kark et 

al. [97, 98] observed a biodiversity hot spot at a sharp ecotone between the Mediterranean and 

semi-arid regions in southern Israel. It is important to note that rarity is one of the best predic-

tors of extinction [33, 91, 99].

Biogeographic regions with the significant level of biodiversity and high rate of endangered 
species are considered as biodiversity hot spots. It is an interesting question if biodiversity 

hot spots are ecotonal or rather core regions. The tropical zone is the most abundant of bio-

diversity hot spots. It has approximately ten times more biodiversity hot spots than the non-

tropical zones do [100]. Stevens [101] claims that tropical species are generally more endemic 

and smaller and they have narrower ranges than temperate species, which make them extinc-

tion prone. This might suggest that in the tropical zone both core areas and ecotones have an 

important role in maintaining biodiversity. Several studies suggest that future extinction will 

affect the humid tropics the most severely [102, 103].
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Tropical grasslands are also diverse and rich in endemic species, and they are as endangered 

as forests. Grassy biomes include biodiversity hot spots with lots of endemic species. Non-

forest habitats are rich in endemic vertebrates and invertebrates. Non-forests hold 30–50% 

of plant diversity [104]. Ancient grasslands which are alternative stable states of forests are 

probably rich in endemic species. For example, Cerrado tropical grassy biome in Brazil is a 

threatened biodiversity hot spot [105].

High rainfall grasslands in Brazil [106], Africa [107], Thailand [108], etc. have a particularly 

high level of plant diversity and many endemic species. The Indian montane grasslands have 

many endemic species [109]. Madagascan grasslands are also rich in endemics [110, 111].

Grassy biomes have high light requirements and disturbance tolerance. The similar may be 

true for sharp boundaries between tropical grasslands and forests. These boundaries are 

maintained by megaherbivores and fires. High diversity and high number of specialized 
(and endemic) species are typical for grasslands. Open savannas labeled as “disturbed” 

or “degraded” harbor many specialists and maintain high diversity in Madagascar and 

Indonesia [104]. Grassland fauna resists to fire and has great resilience. Savanna species are 
usually competitive, are mobile, and have a wide range of diet, which means that they can 

shift their diet, and they prefer open environments [112]. Bond and Parr [104] allege that the 

loss of grassland specialist birds can be used as early warning signals of shifts to forest at 

landscape scale considering their large habitat requirements. According to Skowno and Bond 

[113], specialized bird species of different levels of forest already appeared in significant num-

ber in grassy ecosystems.

According to Strayer et al. [114], species assemblage and interactions along boundaries may 

be unique, or they may represent the average of the adjacent patches. They refer to these two 

types as “interactive and noninteractive boundaries.” Under certain circumstances, ecotones 

may be unique environments separately from the adjoining communities and not the mix of 

the adjacent environments.

5.2. Ecotones and climate change

The Earth’s climate can be characterized by natural cycles of cooling and warming phases. 
Cooling usually results in less diverse and broadly adapted biotas with selectively eliminated 

tropical biotas. Warming is beneficial for the development of more complex and specialized 
biotas [91]. Currently, we are in a controversial situation. Despite the fact that we are under-

going a natural cooling process lowering the diversity level, we are experiencing anthropo-

genic global warming, which also contributes to extinctions because of its high rate.

The role of ecotones in climate change processes is unclear. Gaston et al. [115] suggest that 

ecotones are sensitive to global warming as ecotonal species are already at the edge of their 

ranges, which make them prone to extinctions. Others argue that ecotones are places of tem-

poral and spatial fluctuations; hence, ecotonal communities should be more resistant to global 
warming [74]. Some also suggest that changes in ecotones might serve as early warning sig-

nals of ecosystem shifts [50, 51]. Ecotones may be viable areas that sustain themselves over 
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time, or they are temporary product of constant flow from the adjacent communities [116]. 

This might have an effect on their persistence to future global changes.

5.2.1. Importance of ecotones in mass extinction

Conservation works have shifted from protecting of individuals to identifying regions with 

high diversity [117]: botanical hot spots [118] and hot spots of endemic birds [119], which are 

targets of mass extinction as rare species are concentrated in small areas. We can assume that 

a part of the biodiversity hot spots might be transition zones, some of which are rich in young 

and novel species. Brooks and McLennan [120] and Erwin [121] propose that these regions 

will be the first victims of mass extinction as they contain restricted-range species in small 
place so they can be wiped out completely. On the other hand, they might be also the centers 

of repopulation after mass extinction.

5.2.2. Low latitude ecotones as future refugia

Hampe and Petit [122] suggest that southern (rear) edge of species ranges should deserve 

greater attention or at least should not be neglected compared to the more studied north-

ern (poleward) expanding edge, as the rear-edge populations store the species’ genetic 

diversity. This might be applied as analogue in case of greater transition zones serving 

as biodiversity hot spots. It is an interesting question whether low latitude transitional 

zones are the most important biodiversity hot spots serving as a refugium in future mass 

extinction.

Based on the estimation of the Late Quaternary glacial-interglacial climate displacement rate, 

Sandel et al. [123] concluded that high-velocity and unstable regions tend to have mainly 

widespread species which are resilient to climatic oscillations and have strong dispersal 

abilities. Their results show that during the Late Quaternary the northeastern part of North 

America and the north-central Eurasia had the highest velocity and the weakly dispersing 
amphibians were affected the most. They pointed out that low-velocity regions can be ref-
uges for sessile and small-ranged species [123]. Many bird and mammal endemic species are 

concentrated in the Southern Hemisphere where a higher velocity of changes can be expected 

according to predictions [123].

6. Discussion

Biogeographical boundaries are shifting globally. Late Quaternary glacial-interglacial climate 

change proves that climate displacement rate tends to vary regionally [123]. Sandel et al. [123] 

argues that high-velocity and unstable regions have mainly widespread species which are 

resilient to climatic oscillations and have strong dispersal abilities. However, the rapid expan-

sion of specialized species has been observed in the tropical, temperate, and arctic zone as 

well as in the mountains [1, 55]. Warming climate seems to favor species with strong com-

petitive and dispersal abilities. Recent studies [55] suggest that non-sessile specialized species 
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which are strong competitors thrive in high-velocity, shifting boundary regions and as Brown 

and Lomolino [1] conclude that they start to behave as generalists. Other studies describe the 

extinction of both active- and passive-dispersing specialized species [32]. Short-lived pollina-

tors and birds, for instance, are at great risk.

According to Sandel et al. [123], low latitude transitional zones harbor sessile, small-ranged 

species and can be characterized by low climate displacement rate. He suggests that low-

velocity regions might serve as refuges under anthropogenic extinction processes. Sandel et al. 

[123] predict that the climate displacement rate will be higher in the Southern Hemisphere 

than it was during the Late Quaternary climate change. The Southern Hemisphere is rich 

in endemic hot spots, which suggests a higher rate of endangerment and biodiversity loss. 

It can also mean that regions which could serve as refugia might be exterminated. Tropical 

grassland and forest biomes and their boundary regions maintain high diversity and rich in 

endemic species; therefore, they are jeopardized by global warming.

Several studies pointed out that some ecotones are biodiversity hot spots and they are places 

for speciation. These observations originate mainly from the tropical and subtropical zones 

[72, 95]. The core regions harbor specialized species as well. This raises important questions. 

What are the roles of core region and boundary specialists in extinctions and how much they 

differ (if they differ) in extinction proneness? Many studies claim that specialization is one 
of the greatest extinction risks [33], which makes specialized species good bioindicators. Can 

core region specialists expand their ranges under global warming or they are among the first 
victims because of the weakening core regions? As nothing is black and white, maybe no 

obvious answer exists. Local and regional divergences as well as the synergy of many factors 

suggest several outcomes. For example, African megaherbivores are considered to be special-

ized in diet. However, recent studies [124] show that they can shift their diet, which makes 

them more generalized than previously thought. Still, they are endangered boundary spe-

cies mainly because of overhunting and habitat destruction. Their large body size and higher 

tropic level also contribute to extinction proneness.

Some studies [77] claim that generalized species might be the beneficiaries of climate change 
as they are more adaptive than specialized species. However, specialists are displacing 

generalized species which are supposed to be weaker competitors in many places. Native 

super-generalists are being expelled by invasive super-generalists in mutualist networks. 

The decay of generalized species is a threatening issue, because they maintain communities. 

Fragmentation is a key contributor of their decline in many cases. The increasing number of 

perishing specialized and generalized species probably refers to a post-initial phase of mass 

extinction. Morelli [85] suggests the use of both specialists and generalists as bioindicators in 

deteriorated regions.

Zhu et al. [34] and others observed woody encroachment in many regions all over the world, 

which might suggest that it helps maintain biodiversity. However, it jeopardizes grassland 

biodiversity hot spots. Even degraded tropical grasslands harbor several rare, endemic, spe-

cialized species. Fragmentation and fewer numbers of natural fires also contribute to the decay 
of grasslands. At the same time, tropical forests, paradoxically, are also suffering. Extreme 
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perturbations affect not only boundary but also core regions, which can trigger the invasion of 
exotic species and the extinction of native species. Climate change–induced woody encroach-

ment is not necessarily accompanied by an increase in biodiversity. On the contrary, biodiver-

sity loss is detected worldwide.

In summary, climate change affects most levels of the global ecosystem. Both core regions 
and boundaries are eroding which leads to biodiversity loss and homogenization. Decaying 

generalized species probably refer to a post-initial stage of mass extinction.
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