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Abstract

This chapter deals with the reliability of die interconnections used in plastic discrete 
power packages, dedicated to on‐board electronic systems used in a wide range of appli‐
cations such as automotive industry. A complete reliability analysis of two bonding tech‐
nologies—aluminum wire and ribbon bonding—is proposed. This study is particularly 
focused on interconnection technologies’ aging, when the package is subjected to thermal 
cycling or power cycling with high‐temperature swings. For thermal cycling, the experi‐
mental reliability test results highlight that wire bond package aging is about 2.5 faster 
than the ribbon bond package. For power cycling, this acceleration factor is about 1.5. In 
both cases and whatever the bonding technique, the failure mechanism of the package 
is of a fatigue‐stress nature. Many failure analysis results show wire bond lift‐off. The 
degradation of the ribbon bond is more difficult to observe. Thermo‐mechanical simu‐
lations using finite elements show a high stress concentration in the heel area. For the 
wire‐bonding technique, the wire is subjected to repeated flexing and pulling that lead 
to its lift off. The ribbon‐bonding process shows a higher robustness, thanks to a higher 
contact surface on the die, the low‐loop profile and the stiffness of the ribbon.

Keywords: discrete power electronic packages, bonding techniques, wire and ribbon, 
thermal cycling, power cycling, reliability

1. Introduction

Over the last few years, due to the global energy crisis and the threat of climate change, 

transition toward a low carbon electricity system has increasingly become a major issue for 

all governments around the world [1, 2]. The Intergovernmental Panel on Climate Change 

(IPCC) has recently reported that greenhouse gas emissions, covered by the Kyoto Protocol, 

increased by 80% from 1970 to 2010. In particular, the IPCC has specified that the global 
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energy consumption doubled over that period of time. In Europe, with about 20% of global 

emissions (excluding land use and forestry) in 2013, the transport industry is still a major 

contributor of greenhouse gases [3, 4].

Despite this worrying background and as pioneer in CO
2
 emission reduction, European Union 

(EU) has strengthened its engagement with the development of an efficient and sustainable 
transport industry. In the automotive sector, electric vehicles (EVs) have gradually become 

popular over the past decade [5]. In recent years, hybrid EVs (HEVs) have been developed 

to combine the use of an internal combustion engine with one or more electric motors (EMs) 

connected to a battery pack. Such hybridization improves the fuel economy, but all of the 
available energy still comes from the fuel tank. Plug‐in HEVs (PHEVs) have then been intro‐

duced to displace petroleum energy with multisource electrical energy. Therefore, PHEVs are 

able to draw power from the electric grid, store it in batteries, and use it for transportation 
[6]. These batteries play an important role due to their cost‐effectiveness, energy and power 
densities, reliability, and charging time that depend on practical applications. In particular, 

the lifetime and charging duration strongly depend on the features of the battery charger.

Nowadays, power electronics plays an increasing role in the development of EVs. In par‐

ticular, it is a key element of the traction inverter, the DC‐DC converter used to supply the 

vehicle’s onboard systems, as well as the battery charger [7]. But new important challenges 

are emerging, including a significant reduction in production costs, greater compactness, and 
cooling efficiency [8–10]. To achieve these goals, the packaging is of the utmost importance, 

because it ensures both electric connections of the chip and its power dissipation [11]. With 

excellent performance of existing power semiconductor devices, driven also by wide band‐

gap materials, the packaging typically acts as the main limiting factor [12, 13].

Thermal management of power packages is still an important issue to increase the system’s 

lifetime [14]. In particular, it is important to limit thermal gradients and consequently thermo‐

mechanical stresses due to multi‐physics couplings [15, 16]. The automotive market in Europe 

has largely adopted qualification according to the AEC‐Q101 test flow for discrete compo‐

nents [17]. Such standard highlights that the lifetime has to be equal to 15 years when the 
power device is subjected to high‐temperature variations. One way to address these needs 

consists in optimizing bonding technologies [18].

In this chapter, a comparative reliability study of two aluminum bonding technologies—

wire bonding and ribbon bonding—is presented. At the moment, these bonding technologies 

are widely used for through‐hole and surface‐mount power packages. The reliability study 

focuses on both thermal‐cycling and power‐cycling tests.

2. Interconnection technologies for discrete power packages

2.1. Relevance of discrete packages in industrial applications

Packaging is an important step in the assembly process of an electronic chip. A package has 

the following main functions [19]:
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• Mechanical resistance and die protection. The aim is to ensure the die disposing (as a function 

of package dimensions, shape, weight, etc.), and its mechanical and chemical protection 

against environment (vibrations, temperature variations, dust, moisture, etc.).

• Consistence with the needs of the application. A specific interest is granted to electrical proper‐

ties (electrical insulation), heat transfer capacity, and protection against radiation.

• Interface between the die and the electrical system (terminals).

• Favorable costs.

Nowadays, power semiconductor devices can be assembled into two kinds of packages: dis‐

crete packages and power modules. A discrete package contains only one die, while a power 

module is composed of several dies which are appropriately connected to build one or more 

basic functions. Although power modules are widely deployed today (e.g., automotive power 

train, aircraft power distribution, or railway traction inverters), where rated voltage and cur‐

rent can easily reach 6.5 kV and more than 1 kA, respectively, discrete power semiconductor 

devices still find numerous applications, and especially at power levels up to several kilo‐

watts. D. O. Neacsu has recently highlighted that discrete power packages target the follow‐

ing markets [20]:

• IT (information technology) and consumer electronics for about 34%.

• Consumer appliances for about 30%.

• Industrial equipment for about 24%.

• Automotive for about 12%.

For most of these applications, manufacturing costs must be optimized to reach mass produc‐

tion. The discrete’s cost per ampere will always be lower than that of a high‐current module 

because this package is simple to manufacture facilitating series production.

2.2. Package manufacturing process and importance of die interconnections

The manufacturing process of a discrete power package (e.g., medium packages such as 

TO‐220, D2PAK, etc.) is composed of the following steps. First of all, a copper lead‐frame con‐

stitutes the skeleton of the package. It provides both the heat‐sink and the terminals (leads). 

For non‐insulated package, the semiconductor die is directly soldered on the lead‐frame. 

Regarding insulated package, a ceramic layer (e.g., alumina) is first soldered on the lead frame 
to provide insulation, either for safety reasons (if the end user can access the heat‐sink) or 

functional considerations (if the heat‐sink is connected to another potential). Then, the die is 

soldered on the ceramic. Whatever the package (insulated or not), all the layers are stacked up 

with lead‐based solder alloys. These Pb‐rich alloys are still used in industry due to the good 

trade‐off between their low cost, and their good thermal and mechanical properties (melting 
temperature, wettability, thermal conductivity, and coefficient of thermal expansion). The 
interconnection between the die and the terminals can be done using several technologies: wire 

bonding, clip bonding, or ribbon bonding. These techniques will be described in the next sections 

of this chapter. Encapsulant is the final constituent of the package. Its main role is to protect the 
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die and its interconnections against physical damage (shocks, vibrations, etc.) and external fac‐

tors (temperature, humidity, etc.). Epoxy is currently the most commonly used organic‐resin 

encapsulant material in use because it offers a beneficial mix of properties and thermal perfor‐

mances at a relatively low cost.

For applications in the low‐voltage and high‐current ranges, specific attention should be paid 
to die interconnections. These interconnections necessarily lead to electric resistance, and 

inductance which is important to minimize to reach performance requirements, especially in 
high‐speed electronics. Their geometric dimensions are also a key factor to optimize.

2.3. Wire‐bonding technology: scope and reliability limitations

2.3.1. Wire‐bonding techniques

Wire bonding is the oldest and the most widespread technology used in industry because 

this is a straightforward, flexible, and cost‐effective solution. Right now, it is estimated that 
over 90% of the manufactured packages in volume are wire bonded [21]. The wire‐bonding 

technology consists in soldering a wire between two metal parts of the elements that must 

be interconnected, that is, the leads and the die metallization for a discrete power package. 
The most established wire materials are aluminum (Al), copper (Cu), and gold (Au) because 

of their high diffusion rates. For Al wires, some alloys (in the ppm range) can be used, either 
to harden aluminum (silicon or magnesium alloy) or to reduce corrosion (nickel alloy). Die 

metallization and wire must be made of the same material to prevent the formation of inter‐

metallic layers.

Two basic techniques are currently used: wedge wire bonding and ball wire bonding. For each 

technique, there are three wire‐bonding processes: thermo‐compression, thermo‐sonic, and ultra‐

sonic. Wedge wire bonding typically uses the thermo‐sonic and ultrasonic techniques depend‐

ing on the application requirements, whereas ball wire bonding uses the thermo‐compression 

and thermo‐sonic processes.

Thermo‐compression bonding requires high temperature (higher than 300°C) and force to 

deform wire and make bonds. The first wedge wire bonder, which was designed in the mid‐
twentieth century, used the thermo‐compression method. Ultrasonic wedge wire bonding 

was then introduced in the early 1960s. This process, which combines force and ultrasonic 

power, is performed at room temperature. In comparison with thermo‐compression bond‐

ing, the welding time is shorter. Thermo‐sonic bonding consists in adjusting heat, force, and 

ultrasonic power to bond a wire. Nowadays, even if this process was first implemented in a 
wedge bonder in 1970, thermo‐sonic bonding is typically used to bond a gold wire to either a 

gold or an aluminum surface on a substrate.

Among these three bonding processes, ultrasonic bonding is primarily used for Al wire in 

power electronics device applications (see Figure 1). In that case, the wire diameter range can 

easily reach 100–500 µm depending on the applications requirements (in particular, current‐

carrying capacity) and the process compatibility [22].
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2.3.2. Reliability issues

Many authors have highlighted that wire‐bonding failures of power packages are mainly 

caused either by shear stresses generated between the die and the wire, or due to repeated 

flexure of the wire. Two main failure mechanisms can particularly occur: wire bonding lift‐off 

and heel cracking [23–26].

Wire bond lift‐off (see Figure 2) occurs due to crack propagation along the interface between 

the wire and the die. The initiation of a fracture mechanism within the wire tail itself is respon‐

sible for the crack development. Its propagation is thermally activated. In particular, during 

active or passive temperature cycling, the CTE (coefficient of thermal expansion) mismatch 
between the wire bond material (e.g., aluminum) and die material (e.g., silicon) induces the 

crack propagation that finally leads to the wire bond lift‐off. Many studies have reported the 
numerical methods to calculate such strength applied onto the wire. Many authors have also 

reported that it is possible to strengthen wire bond reliability by gluing the wire to the die 

metallization using a coating layer (e.g., a polyimide cover layer).

Figure 1. 2 × 20 A, 170‐V Schottky diode assembled in a D2PAK package using Al‐wire bonding.

Figure 2. Aluminum wire bond lift‐off (2 × 20 A, 170‐V Schottky diode assembled in a D2PAK package).
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Heel cracking is amplified by temperature cycling. In that case, a crack propagation occurs 
at the wire heel (see Figure 3). This phenomenon can lead to partial wire disconnection. As a 

consequence, the electrical conductivity is not completely achieved. As widely reported in the 

literature, when a wire bond is subjected to thermal cycles, the wire dilatation induces a flex‐

ure. For example, 50°C temperature swing can produce a 10‐µm increase of length. However, 

because the wire is bonded on a metallization layer, it leads to 0.05° additional angle face to 
the bonded region.

2.4. Clip‐bonding technology

Clip interconnection may be an alternative to wire bonding because it is a “bond‐less” pack‐

aging technology. This technique consists in connecting the active area of a die to the package 

lead frame using a small metal slab which is directly soldered on die’s top surface. At the 

moment, a solid copper bridge, also called “clip,” is widely used in discrete power packages 

(see Figure 4) [27].

Copper clip bonding allows both larger possible contact area and lower on‐resistance than 

wires. For example, on a MOSFET (metal‐oxide‐silicon field effect transistor) device, one cop‐

per clip may replace 15 gold wires. In that case, the static drain‐source on‐resistance (RDS(on)) 

can be reduced by about 30%, while, at the same time, providing an improved current distri‐

bution into the device [28].

Clip bonding helps to strengthen the thermal behavior of a power package by providing effi‐

cient thermal dissipation from the top of the die to the lead‐frame. Therefore, the maximum 

junction temperature during power device operation can be optimized, which is a key param‐

eter to manage in order to extend its operation life and reliability [29].

Despite these clear advantages, the clip‐bonding technology has some drawbacks. A major 

disadvantage is particularly related to the chemical aspects of the clip soldering. The clip is 

typically reflow soldered to the die and substrate pads. After clip bonding, it is very important 
to remove flux residues. This means that the cleaning agent must chemically match the prop‐

erties of solder paste residues. Thus, special attention should be paid to ensuring a high‐reli‐
ability bonding process [30].

Figure 3. Aluminum wire heel cracking (2 × 20 A, 170‐V Schottky diode assembled in a D2PAK package).
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2.5. Ribbon bonding as the most efficient and cost‐effective interconnection  
technology

Today’s industrial applications require higher current density in electronic power devices. 

These devices are implemented in more and more compact, lightweight, energy efficient, and 
cost‐effective on‐board systems. Die‐interconnection technologies have a key role to play in 
achieving these objectives. They must above all warrant the electrical, thermal, and mechani‐

cal stability of the whole package. Their process conditions must also be controlled, stable, 

reliable, and cost effective.

Ribbon bonds represent currently a very attractive solution for power electronic applications 
that carry high electrical loads [31–33]. The process consists in interconnecting a semiconductor 

die to a lead in a power package using a flexible conductive ribbon (see Figure 5). Aluminum 

as interconnect material offers a good compromise between electrical performances (in par‐

ticular, on‐resistance) and cost. Ultrasonic technology is typically used because of its main 

strengths such as high flexibility and reliability, low cost, and increased productivity.

Compared to aluminum wire bonding, aluminum ribbon bond helps to replace a significant 
number of parallel wires per device to fulfill the current or necessary on‐resistance require‐

ments. For example, one aluminum ribbon (width and thickness equal to 60 mils (1524 µm) 

Figure 4. 25 A, 1200‐V Triac assembled in a TOP3 insulated package using copper clip bonding.

Figure 5. 2 × 20 A, 170‐V Schottky diode assembled in a D2PAK package using Al‐ribbon bonding.
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and 8 mils (203 µm), respectively) can replace about two aluminum wires (20 mils (508 µm) 

in diameter) [34]. In that case, the ribbon limits the risk of non‐continuous contact area and 

inhomogeneous heat dissipation in comparison with multiple wire bonds. Moreover, the high 

cross‐sectional area of aluminum ribbon bond limits parasitic resistances and inductances 

which can lead to additional losses, especially in high‐frequency‐switching applications.

3. Relevance of aluminum ribbon bonding in temperature‐cycling 

applications

3.1. Methodology

3.1.1. Experimental reliability test procedure

A power Schottky diode (2 × 20 A, 170 V, 175°C maximum junction temperature) assembled 
in a D2PAK package was chosen as a test device for the reliability analysis. Two kinds of 

experimental tests were performed: thermal cycling (passive temperature cycling) and power 

cycling (active temperature cycling). Each test was based on automotive qualification docu‐

ments such as the AEC‐Q101 standard [35]. In particular, this standard describes the cyclic 

temperature profiles. For thermal cycling, the test conditions are as follows: −65°C/+150°C 
(ΔT

j
 = 215°C), two cycles per hour, 1000 cycles. Regarding power cycling, the devices must be 

subjected to a junction temperature mismatch at least equal to 100°C during 8572 cycles (one 
cycle lasts 7 min).

For each test, two sets of samples were used. The first one was composed of 77 units man‐

ufactured using the aluminum wire‐bonding technique (20 mils (508 µm) in diameter). 

The second one was composed of 77 devices under test manufactured using the alumi‐

num ribbon‐bonding process (width and thickness equal to 60 mils (1524 µm) and 8 mils  

(203 µm), respectively). It is important to note that all devices under test had the same die size  
(4.87 mm × 4.24 mm × 280 µm).

Several readouts were carried out during the experimental reliability tests. This means that 
all units were removed from the test bench at several fixed time intervals. For thermal cycling, 
the readouts were 100 cycles, 500 cycles, 1000 cycles, 1250 cycles, and 2000 cycles. Regarding 

power cycling, the devices under test were removed at 4286 cycles and 8572 cycles. For each 

duration mentioned earlier, the following electrical and thermal parameters were measured 

for each unit under test: forward voltage drop (V
F
), reverse leakage current (I

R
), and junction‐

to‐case thermal resistance (R
th(j‐c)

).

For both sets (the first one using the Al‐wire‐bonding technique and the second one using 
the Al‐ribbon‐bonding process), the evolution of each parameter (in relation to the number 

of passive or active temperature cycles) can be shown on a normal probability plot (Henry’s 

chart). This chart is typically used to extract the mean and standard deviation of the statistical 

distribution. Regarding the targeted failure mechanism (bond lift‐off), we only focused on 

System Reliability192



the V
F
‐parameter. In particular, its evolution decided when a power device reached its end 

of life. This parameter was evaluated using the temperature dependence of the forward volt‐

age drop. Regarding the initial V
F
‐values, both sets of 77 units under test were homogeneous 

before the reliability test launching (average value and standard deviation equal to 0.85 V for 

40‐A forward current and 5 mV, respectively). The failure criterion we took into consider‐

ation was a V
F
‐parameter increase higher than 5% with respect to its initial value. This failure 

criterion is severe as compared to that of the AEC‐Q101 standard, for which allowable shift 
values within ±20% of the initial readings are tolerated [35]. This aims to establish a reliability 

analysis as quickly as possible (considering the duration of the passive or active temperature‐

cycling tests).

3.1.2. FEM thermo‐mechanical modeling

Thermo‐mechanical simulations (for instance, with ANSYS® Workbench software) using the 

FEM (finite‐element method) are commonly used to get a better understanding of devices’ 
failure mechanism.

In this study, a three‐dimensional model of the D2PAK package was generated. As mentioned 

previously, the test device was composed of two Schottky diodes. However, one diode was 
only taken into consideration to simplify the modeling and optimize the simulation dura‐

tions. The numerical model was composed of quadrilateral meshed elements with a refined 
meshing at the wire and especially the heel, as well as the contact area between the silicon 

die and the wire (see Figure 6). The highest element edge length was equal to 200 µm and the 

lowest one was equal to 20 µm.

The thermo‐mechanical properties of the materials are summarized in Tables 1 and 2 [14]. 

Regarding the thermal loads, the passive temperature‐cycle profile (−65°C/+150°C, rise time, 
fall time, and cycle duration equal to 15, 15, and 30 min, respectively) was used. For power 

cycling, a heat flow was adjusted to meet the junction temperature profile described in the 
previous paragraph. Regarding the mechanical loads, the X‐, Y‐, and Z‐displacements were 

blocked at the origin of the plan to freely authorize the expansion of materials

Figure 6. FEM model of the D2PAK package (an example of assembly using Al‐wire‐bonding process).
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3.2. Main results and discussion

3.2.1. Reliability analysis

For each reliability test and each set of samples, the distribution of the units’ lifetime was 

fitted with a two‐parameter Weibull distribution. At the moment, this law is widely used in 
reliability engineering due to its versatility and relative simplicity.

From the Weibull cumulative probability density function (cdf), in accordance with Eq. (1), it 

is possible to extract the characteristic lifetime (η) at which 63.2% of the devices under test in 

a set failed, and the shape parameter (β) is also known as the Weibull slope

  F  (  t )    = cdf = 1 −  e   −  (    t __ η   )     
β

    (1)

• t: time to failure.

• η: characteristic lifetime (F(t) = 63.2%).

• β: shape parameter (Weibull slope).

For both reliability tests (thermal cycling and power cycling), the two‐parameter Weibull 

analysis is presented in Figure 7. Figure 7 highlights that the D2PAK package failure mode 

Young’s modulus (GPa) Poisson’s ratio CTE (10−6 K−1)

Copper heat‐sink 120 0.34 16.8

Al wire/ribbon 64 0.3 23

Silicon die 130 0.28 2.6

Epoxy resin 16.5 0.3 19

Solder joint (PbSn
5
Ag

2.5
) 20.9–0.04 × T (°C) 0.3 27

Table 2. Typical mechanical data of D2PAK materials [14].

Dimensions Thermal 

conductivity 

(W.m−1.K−1)

Specific heat 
(J.kg−1.K−1)

Density (kg.m−3)

Copper heat‐sink 10.4 × 10.75 × 1.36 mm 330 385 8900

Al wire 508 µm in diameter 195–0.059 T 920 2680

Al ribbon Width and thickness equal to 1524  

and 203 µm, respectively

Silicon die 4.87 × 4.24 × 280 µm 156 703 2330

Epoxy resin 10.4 × 9.35 × 4.60 mm 0.75 800 1820

Solder joint 
(PbSn

5
Ag

2.5
)

4.87 mm × 4.24 mm × 15 µm 44 130 11,070

Table 1. Typical thermal data of D2PAK materials [14].
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is of a fatigue‐stress nature because the shape parameter (β) is higher than one, whatever the 

bonding technique used. For the thermal‐cycling tests (see Figure 7(a)), the β‐values of the 

units using Al‐wire bonding and Al‐ribbon bonding are about 10.5 and 11.5, respectively. 

Regarding the power‐cycling tests (see Figure 7(b)), the β‐values of the units using Al‐wire 

bonding and Al‐ribbon bonding are about 19.2 and 14.8, respectively. Many failure analy‐

sis results show the expected failure mechanism, that is, wire bond lift‐off as described in 
Figure 2.

For the thermal‐cycling tests, Figure 7(a) shows that the characteristic lifetime (η
2
) of the 

D2PAK assembly using the Al‐ribbon‐bonding process is about 2.3 times higher than the units 

using the Al‐wire‐bonding technique (Al‐wire bonding: η
1
 ≈ 1,155 cycles; Al‐ribbon bonding: 

η
2
 ≈ 2,702 cycles). Therefore, the failure acceleration of the wire bond package is more than 

two times higher than the ribbon bond package.

Regarding the power‐cycling tests, Figure 7(b) shows that the characteristic lifetime (η
4
) of the 

D2PAK assembly using the Al‐ribbon‐bonding process is about 1.4 times higher than that of 

the units using the Al‐wire‐bonding technique (Al‐wire bonding: η
3
 ≈ 7,899 cycles; Al‐ribbon 

bonding: η
4
 ≈ 10,704 cycles). Thus, the failure acceleration of the wire bond package is about 

1.5 times higher than that of the ribbon bond package.

3.2.2. Failure mechanism understanding

This part of the paper focuses on the wire bond lift‐off explanation since the degradation of 
the ribbon bond is more difficult to observe. In the latter case, the number of thermal cycles 

Figure 7. Relevance of Al‐ribbon‐bonding reliability during thermal cycling (a) and power cycling (b).
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must be much higher to have the same failure mechanism. For example, as can be seen in 

Figure 8, for thermal cycling, the ribbon bond lift‐off phenomenon cannot be observed, even 
after 2000 temperature cycles.

The temperature cycles are connected to the stress cycles at the link between the wire and the 

die. As can be seen in Figure 9, the fatigue mechanism is likely due to two phenomena. The 

first one corresponds to the wire flexure at the bond heel. Indeed, repeated flexing and pull‐
ing of the wire occur as the Schottky diode heats and cools during temperature cycling, due 
to temperature swings. This phenomenon has already been widely described. For example, 

Meyyappan et al. developed a wire fatigue model to predict failure due to flexure in wedge‐
bonded power modules [36].

The Von Mises stress can typically be used to determine whether an isotropic and ductile 

material (such as aluminum) will yield when subjected to a complex loading condition. 

This is accomplished by calculating the Von Mises yield criterion and comparing it to the 

material’s yield stress. Figure 10 shows the Von Mises stress distribution after one passive 

Figure 9. Fatigue mechanism explanation of Al‐wire bond subjected to high‐temperature swings.

Figure 8. Failure analysis result of a D2PAK package using Al‐ribbon bonding after 2000 passive temperature cycles 

(−65℃/+150℃, two cycles/h).
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temperature cycle (−65℃/+150℃. Rise time, fall time, and cycle duration equal to 15, 15, and 

30 min, respectively). The aluminum wire exhibits some stress concentration in the heel.

The wire bond lift‐off is also initiated by a thermo‐mechanical stress (shear stress) caused by 
the CTE mismatch between the aluminum bond wire (CTE

Al
 = 23.8 ppm.℃−1) and the silicon 

die (CTESi = 2.6 ppm.℃−1). The number of thermal cycles to failure (N
f
) is proportional to the 

maximum strain amplitude (Δε), which depends on the CTE mismatch and the temperature 

swing (ΔT) in accordance with Eq. (2)

   N  
f
   ∝ Δε =  ( CTE  

Al
   −  CTE  Si  ) ΔT  (2)

• N
f
: number of thermal cycles to failure.

• Δc: maximum strain amplitude.

• ΔT: temperature swing.

• CTE
Al

 = 23.8 ppm.°C−1. CTESi = 2.6 ppm.°C−1.

The failure analysis results highlight that the bonding rupture starts to progress laterally, 

finally causing the bond wire to lift off.

The Schottky diodes assembled in a D2PAK package using the Al ribbon‐bonding process 

exhibit a better robustness during thermal cycling. Their characteristic lifetime is about 2.3 
times higher than the D2PAK units that use the Al wire‐bonding technique. A higher contact 

surface on the silicon die, the low‐loop profile, and the stiffness of the ribbon may allow slow‐

ing down crack initiation and propagation between the Al bond and the Al metallization on 
top of the silicon die.

Figure 10. Example of Von Mises stress distribution after one passive temperature cycle (−65°C/+150°C, two cycles/h, 
D2PAK package using Al‐wire‐bonding process).
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4. Conclusions

This chapter has pointed out the relevance of aluminum (Al) ribbon bonding used in the 

assembly process of discrete power packages. The reliability analysis has been particularly 

performed on a surface‐mount device (D2PAK assembly) subjected to thermal cycling and 

power cycling. For example, at the moment, such package is widely used in automotive 

applications.

To assess the good performances of Al‐ribbon bonding, the reliability analysis has been based 

on a comparative study between Al‐wire bonding and Al‐ribbon bonding.

For both thermal cycling and power cycling, the Weibull analysis has highlighted that the 

failure mode of the D2PAK package is of a fatigue‐stress nature, whatever the bonding tech‐

nique used. Many failure analysis results have shown wire bond lift‐off. The degradation of 
the ribbon bond is more difficult to observe.

Regarding thermal cycling, the experimental test results have also shown that failure accelera‐

tion of the wire bond package is about 2.5 times higher than that of the ribbon bond package. 

For power cycling, this acceleration factor is about 1.5.

Thermo‐mechanical simulations using finite elements have shown that a stress concentration 
can be observed in the heel area. For the wire‐bonding technique, the wire is subjected to 

repeated flexing and pulling that lead to the wire lift‐off. The ribbon‐bonding process shows 
a higher robustness. It can be explained by a higher contact surface on the die, the low‐loop 

profile, and the stiffness of the ribbon.
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