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Abstract

Hypertrophic cardiomyopathy (HCM) is a common genetic cardiovascular disease pres-
ent in 1 in 500 of the general population, leading to the most frequent cause of sudden 
death in young people (including trained athletes), heart failure, and stroke. HCM is an 
autosomal dominant inheritance, which is associated with a large number of mutations 
in genes encoding proteins of the cardiac sarcomere. Over the last 20 years, the recogni-
tion, diagnosis, and treatment of HCM have been improved dramatically. And moreover, 
recent advancement in genomic medicine, the growing amount of data from genotype-
phenotype correlation studies, and new pathways for HCM help the progress in under-
standing the diagnosis, mechanism, and treatment of HCM. In this chapter, we aim to 
outline the symptoms, complications, and diagnosis of HCM; update pathogenic vari-
ants (including miRNAs); review the treatment of HCM; and discuss current treatment 
and efforts to study HCM using induced pluripotent stem cell–derived cardiomyocytes 
and gene editing technologies. The authors ultimately hope that this chapter will stimu-
late further research, drive novel discoveries, and contribute to the precision medicine in 
diagnosis and therapy for HCM.

Keywords: cardiac sarcomere, gene, hypertrophic cardiomyopathy, microRNA, 
pharmacology

1. Introduction

Hypertrophic cardiomyopathy (HCM) is a heterogeneous cardiac disease with a diverse clini-

cal presentation and course, presenting in all age groups from infancy to the very elderly, 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



which was first described in 1868, its functional consequences in 1957, left ventricular (LV) 
asymmetric and especially septal hypertrophy in 1958, and its familial nature in 1960 [1, 2]. 

HCM is a global disease, affecting 1 in every 500 people [3]. And, the existing epidemiological 

studies might have underestimated the prevalence of HCM because majority of the origi-

nal prevalence studies enrolled unrelated adults only and employed a diagnostic criterion 

of maximal wall thickness (MWT) ≥15 mm, or both, thereby resulting in under-recognition 
of early, familial disease [1, 4]. Enhanced recognition of HCM is important, allowing more 

timely diagnosis and the implementation of appropriate treatment options for many patients.

HCM is characterized by left ventricular hypertrophy with histological features of myocyte 

hypertrophy, myofibrillar disarray, and interstitial fibrosis [5]. The thickened and stiff ventricle 
reduces the compliance of the heart muscle, decreases preload, and leads to the most frequent 

cause of sudden death in young people (including trained athletes), heart failure, and stroke [6].

Since its first description in the 1950s, much progress has been made in elucidating the 
extremely heterogeneous genetic, morphogenic, diagnosis, and patient management. The 

goals of this chapter are to outline the symptoms, complication, and diagnosis of HCM; update 

published pathogenic variants; and discuss current treatment and efforts to study HCM by 
using induced pluripotent stem cell-derived cardiomyocytes, next-generation sequencing, 

and gene editing technologies.

2. Symptoms and complications

HCM is a common inherited cardiomyopathy with a diverse clinical presentation. Most 

patients with HCM are asymptomatic and have a normal life span but some develop symp-

toms. The most frequent symptoms of HCM included chest pain, dizziness, shortness of 

breath, palpitations, fatigue, and inability to perform vigorous exercise. Another devastating 

manifestation of HCM is sudden cardiac death (SCD) [7].

Furthermore, HCM is related with disease complications that may be profound, with the 

potential to result in disease progression or premature death [8, 9]. Atrial fibrillation (AF) is 
the most common sustained arrhythmia in HCM. Paroxysmal episodes or chronic AF ulti-

mately occur in 20–25% of HCM patients, increase in incidence with age, and are linked to 
left atrial enlargement [10]. AF is a precursor of stroke (incidence, about 1% annually; preva-

lence, 6%), which is associated with death as well as disability most frequently in the elderly, 
and progressive heart failure, particularly for patients who have AF before 50 years old and 

accompanied basal outflow obstruction [11, 12].

Heart failure is another severe complication of HCM. Symptoms of chronic heart failure are 

frequent; however, the clinical profile of advanced heart failure varies between patients. In 
some, the thickened and stiff ventricle reduces the compliance of the heart muscle, decreases 
preload, and contributes to diastolic heart failure [6]. On the other end of the spectrum, typi-

cal DCM cases show chamber volume dilatation and thin walls, which reduces contractile 

force and causes systolic heart failure [13].
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Myocardial ischemia: the other common pathologic features of HCM are the thickened and 

narrowed intramural coronary arteries and myocardial fibrosis by increased collagen deposi-
tion, leading to symptoms related to myocardial ischemia [14].

3. Diagnosis

Accurate diagnosis is vital for the management of HCM patients. Echocardiography is the 

primary method of diagnosis of HCM by determination of left ventricular hypertrophy (LVH) 
[15], left ventricular outflow tract gradients [16], systolic and diastolic function, as well as 

mitral valve anatomy and function. Cardiac magnetic resonance imaging (MRI) is becoming 

more widely used in diagnosis of HCM by determining the extent and location of LVH and 
the anatomic abnormalities of the mitral valve and papillary muscles [17]. Besides, genetic 

testing that is now commercially available is currently used most effectively in the identifica-

tion of affected relatives in families known to have HCM.

3.1. Echocardiography

Echocardiography (echo) was first used to aid diagnosis in HCM in 1969 [18]. Forty years later, 

echo is central to diagnosis and monitoring of HCM. Diagnostic criteria of HCM by echo: in 

an adult, HCM is defined by a wall thickness ≥15 mm in one or more LV myocardial segments. 
However, in some cases, genetic and nongenetic disorders may present with a lesser degrees 

of wall thickening (13–14 mm); for these patients, the diagnosis of HCM requires evaluation of 
other factors including electrocardiogram (ECG) abnormalities, laboratory tests, and MRI, as 

well as family history [19]. For children, HCM diagnosis requires an LV wall thickness more 
than two standard deviations greater than the predicted mean (z-score > 2, where a z-score is 

defined as the number of standard deviations from the population mean) [19, 20].

HCM typically can be classified in three categories (Table 1), “nonobstructive,” “labile,” or 

“obstructive at rest” depending on their degree of left ventricular outflow tract obstruction 
(LVOTO), which result from a hypertrophied interventricular septum and/or abnormal mitral 
valve morphology. About one-third of patients will have obstruction at rest (peak gradient 

>30 mm Hg), and one-third will have labile obstruction (peak gradient >30 mm Hg only 

Hemodynamic state Conditions Outflow gradients*

No obstruction Rest <30 mm Hg

Physiologically provoked <30 mm Hg

Labile obstruction Rest <30 mm Hg

Physiologically provoked ≥30 mm Hg

Basal obstruction Rest ≥30 mm Hg

*Gradients are the peak instantaneous continuous wave Doppler gradient.

Table 1. Definition of dynamic left ventricular outflow tract obstruction [2].
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 during provocation, which includes the Valsalva maneuver, administration of a potent 
inhaled vasodilator, such as amyl nitrite, and exercise treadmill testing [7]. Another one-third 

will have no obstruction under provocation or resting conditions (peak gradient <30 mm Hg). 

It is clinically important to distinguish between the obstructive and nonobstructive forms of 

HCM because management strategies are largely dependent on the presence or absence of 

symptoms caused by obstruction.

3.2. Cardiovascular magnetic resonance

Magnetic resonance imaging (MRI) and computed tomography imaging are being used 

increasingly to evaluate patients with HCM. Cardiovascular magnetic resonance (CMR), with 

its superior spatial resolution as well as tomographic imaging capability, has provided the 

opportunity to more accurately characterize the diverse phenotypic expression of HCM [21]. 

CMR is mainly used in the following situations: (1) the patients are suspected with HCM, 

but the echocardiogram is inconclusive, mostly because of suboptimal imaging from poor 

acoustic windows or when hypertrophy is localized to regions of the LV myocardium not well 
visualized by echocardiography [22]. (2) Hypertrophy confined to the apex (i.e., apical HCM) 
may be difficult to visualize with echocardiography but is evident with CMR [23]. (3) CMR 

can more readily detect the presence of apical aneurysms, which are potential implications 

for management with ICDs and/or anticoagulation; then CMR may identify high-risk status 
on the basis of massive hypertrophy [24].

4. Hypertrophic cardiomyopathy-associated genes

Hypertrophic cardiomyopathy is a common genetic cardiovascular disease. Genetic disor-

ders account for 60–70% of HCM etiology. Since the identification of the first locus for famil-
ial HCM and the first mutation in MYH7-encoded beta-myosin heavy chain 20 years ago 
[25], over 1500 causal mutations associated with HCM encode sarcomeric proteins have been 

revealed [26]. According to gene susceptibility, HCM can be divided to “myofilament (sar-

comeric) HCM,” “Z-disk HCM,” and “calcium-handling HCM,” with “myofilament (sarco-

meric) HCM” being the most common genetic form of HCM, account for 50% of all HCM 
cases [13]. Recently, large genotype-phenotype analysis correlation studies established impli-

cations for septal morphology, disease onset, and prognosis of certain sarcomeric genes, 

which may further facilitate commercialized genetic testing. On the other hand, unexplained 

left ventricular hypertrophies that mimic HCM appear in some syndromic diseases. These 

diseases are usually called phenocopies and may contain rare variants in metabolism genes. 

These mutations alter myocardial metabolism, resulting in increased wall thickness, cardiac 

storage abnormalities, and conduction irregularities second to multiple systematic disorders. 

The information of HCM susceptibility genes and HCM phenocopies are listed in Tables 2 

and 3 [13, 27, 28].

Although more than 1500 mutations linked to hypertrophic cardiomyopathy, most of which 

are unique to individual families and less evident for pathogenicity. There are four sarcomeric 
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Gene Chromosomal 

positiona

Protein HCM-associated 

mutations

Location or functionb

ACTA1 1q42.13–q42.2 Actin, alpha 1 1 Sarcomere, skeletal muscle

ACTC1 15q11–q14 Actin, alpha, cardiac muscle 1 25 Actin, alpha, cardiac  

muscle 1

ACTN2 1q42–q43 Actinin, alpha 2 5 Z-disk

ANKRD1 10q23.33 Ankyrin repeat domain 1 3 Z-disk and nucleus 

(transcription factor)

BRAF 7q34 v-Raf murine sarcoma viral 

oncogene homolog B1

1

COA5 2q11.2 Cytochrome c oxidase assembly 

factor 5

1 Mitochondrial

CALM3 19q13.2–q13.3 Calmodulin 3 (phosphorylase 

kinase, delta)

1 Calcium sensor and signal 

transducer

CALR3 19p13.11 Calreticulin 3 2 endoplasmic reticulum 

chaperone

CASQ2 1p13.3–p11 Calsequestrin 2 1 Sarcoplasmic reticulum; 

calcium storage

CASQ2 1p13.3–p11 Calsequestrin 2 1 Sarcoplasmic reticulum; 

calcium storage

CAV3 3p25 Caveolin 3 1 Plasma membrane

COX15 10q24 Cytochrome c oxidase assembly 

homolog 15

2 Mitochondrial respiratory 

chain

CSRP3 11p15.1 Cysteine and glycine-rich 

protein 3

15 Z-disk

DES 2q35 Desmin 1 Intermediate lament

FHL1 Xq26 Four and a half LiM domains 1 3 Biomechanical stress sensor

FHOD3 18q12 Formin homology 2 domain 

containing 3

1 Actin-organizing protein

FXN 9q13–q21.1 Frataxin 1 Mitochondrial iron transport 

and respiration

GLA Xq22 Galactosidase, alpha 765 Lysosome

JPH2 20q13.12 Junctophilin 2 6 Junctional membrane 

complexes; calcium signaling

KLF10 8q22.2 Kruppel-like factor 10 6 Transcriptional repressor; 

inhibits cell growth

MAP2K1 15q22.1–q22.33 Mitogen-activated protein kinase 

kinase 1

1 MAP kinase kinase; signal 

transduction

MAP2K2 19p13.3 Mitogen-activated protein kinase 

kinase 2

1 MAP kinase kinase; signal 

transduction

MRPL3 3q21–q23 Mitochondrial ribosomal  

protein L3
1 Mitochondrial ribosomal 

protein
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Gene Chromosomal 

positiona

Protein HCM-associated 

mutations

Location or functionb

MTO1 6q13 Mitochondrial tRNA translation 

optimization 1

2 Mitochondrial tRNA modi 

cation

MYBPC3 11p11.2 Myosin-binding protein C, 

cardiac

506 Sarcomere

MYH6 14q12 Alpha-myosin heavy chain 3 Sarcomere

MYH7 14q12 Beta-myosin heavy chain 491 Sarcomere

MYL2 12q23–q24.3 ventricular myosin regulatory 

light chain

20 Sarcomere

MYL3 3p21.3–p21.2 Myosin light chain 3 16 Sarcomere

MYLK2 20q13.31 Myosin light chain kinase 2 2 Calcium/calmodulin-
dependent kinase

MYO6 6q13 Myosin VI 1 Actin-based reverse-

direction motor protein

MYOM1 18p11.31 Myomesin 1 1 Sarcomere

MYOZ2 4q26–q27 Myozenin 2 2 Z-disk

MYPN 10q21.3 Myopalladin 8 Z-disk

NDUFAF1 15q11.2–q21.3 NADH dehydrogenase 

(ubiquinone) complex I, 

assembly factor 1

2 Mitochondrial chaperone

NDUFV2 18p11.31–p11.2 NADH dehydrogenase 

(ubiquinone) avoprotein 2

1 Mitochondrial respiratory 

chain

NEXN 1p31.1 Nexilin 2 Z-disk

OBSCN 1q42.13 Obscurin 1 Sarcomere

PDLIM3 4q35 PDZ and LiM domain 3 1 Z-disk

PRKAG2 7q36.1 5′-AMP-activated protein  
kinase subunit gamma-2

7 energy sensor protein kinase

PLN 6q22.1 Phospholamban 7 Sarcoplasmic reticulum; 

regulates Ca2+ -ATPase

RAF1 3p25 v-Raf-1 murine leukemia viral 

oncogene homolog 1

1 Serine/threonine-protein 
kinase; signal transduction

SLC25A3 12q23 Solute carrier family 25,  

member 3

1 Phosphate carrier protein 

(cytosol to mitochondria)

SLC25A4 4q35 Solute carrier family 25,  

member 4

2 Adenine nucleotide 

translocator (cytosol/
mitochondria)

SOS1 2p22–p21 Son of sevenless homolog 1 1 Guanine nucleotide 

exchange factor for RAS 

proteins; signal transduction

SRI 7q21.1 Sorcin 2 Calcium-binding; modulates
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Gene Chromosomal 

positiona

Protein HCM-associated 

mutations

Location or functionb

TCAP 17q12 Telethonin 7 Z-disk

TNNC1 3p21.3–p14.3 Troponin C 14 Sarcomere

TNNI3 19q13.4 Troponin I 70 Sarcomere

TNNT2 1q32 Troponin T 90 Sarcomere

TPM1 15q22.1 Alpha-tropomyosin 38 Sarcomere

TRIM63 1p34–p33 Tripartite motif-containing 63 3 Sarcomere; regulates protein 

degradation

TTN 2q31 Titin 6 Sarcomere

VCL 10q22.1–q23 Vinculin 1 Sarcomere

aHuman genome mutation database (http://www.hgmd.cf.ac.uk/ac/index.php).
bNational Center for Biotechnology information (http://ncbi.nlm.nih.gov/). Abbreviations: HCM, hypertrophic 

cardiomyopathy;tRNA, transfer RNA; AMP, adenosine monophosphate; ATP, adenosine triphosphate.

Table 2. HCM susceptibility genes [28].

Gene Locus Protein Syndrome

TAZ Xq28 Tafazzin (G4.5) Barth syndrome/LVNC

DTNA 18q12 Alpha-dystrobrevin Barth syndrome/LVNC

PRKAG2 7q35–q36.36 AMP-activated protein kinase WPW/HCM

LAMP2 Xq24 Lysosome-associated membrane protein 2 Danon’s syndrome/WPW

GAA 17q25.2–q25.3 Alpha-1,4-glucosidase deficiency Pompe’s disease

GLA Xq22 Alpha-galactosidase A Fabry’s disease

AGL 1p21 Amylo-1,6-glucosidase Forbes disease

FXN 9q13 Frataxin Friedrich’s ataxia

PTPN11 12q24.1 Protein tyrosine phosphatase, Noonan’s syndrome,

nonreceptor type 11, SHP-2 LEOPARD syndrome

RAF1 3p25 V-RAF-1 murine leukemia viral Noonan’s syndrome,

oncogene homolog 1 LEOPARD syndrome

KRAS 12p12.1 v-Ki-ras2 Kirsten rat sarcoma Noonan’s syndrome

viral oncogene homolog

SOS1 2p22–p21 Son of sevenless homolog 1 Noonan’s syndrome

AMP, adenosine monophosphate; HCM, hypertrophic cardiomyopathy; LEOPARD, mnemonic for syndrome with 
clinical characteristics of lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary 

hypertension, abnormal genitalia, retarded growth, deafness; LVNC, left ventricular noncompaction; WPW, Wolff-
Parkinson-White syndrome

Table 3. HCM phenocopies [29].
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genes that carry the majority of HCM-related mutations and encode the proteins: myosin 

heavy chain (MYH7) and myosin-binding protein C3 (MYBPC3) are most common, together 
account for 75–80% of sarcomere mutations in HCM, while an additional 10% come from car-

diac troponin T type 2 (TNNT2) and cardiac troponin I type 3 (TNNI3) (Figure 1) [3].

5. Hypertrophic cardiomyopathy-associated miRNA

Despite extensive exploration of many genes, potential genetic associations remain to be 

found in approximately 30% of HCM patients. The recent newly developed field that has 
won extensive attention is microRNAs (miRNAs) in cardiovascular biology. miRNAs are 
noncoding RNAs with a length of approximately 22 ribonucleic acid molecules that bind 

mRNAs and regulate their expression through posttranslational repression or mRNA cleav-

age and degradation [30, 31]. It is estimated that the human genome contains more than 

1000 miRNAs, which regulate at least 30–60% of protein-coding genes [32]. Multiple studies 

revealed that single or combined function of miRNAs is directly involved in the pathophys-

iology of cardiac hypertrophy, fibrosis, and electrical remodeling in vivo and in vitro [33]. 

The biological functions regulated by miRNAs affecting HCM are listed below (Table 4 and 

Figure 2). Since miRNAs play a more and more important role in the development of HCM, 

they are being studied for potential diagnostic biomarkers and a promising therapeutics 

for HCM.

The schematic shows the miRNAs and their targets involving in cellular hypertrophy, gene 

switching, electrical remodeling, as well as fibrosis during cardiac hypertrophy. An upward 

Figure 1. Locations of genes within the cardiac sarcomere known to cause hypertrophic cardiomyopathy [3].
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or a downward arrow is used to represent the upregulation or downregulation of a specific 
miRNA, respectively. All listed targets have been validated: Thrap1, thyroid hormone receptor- 

associated protein 1; MuRF1, myostatin, muscle-specific ring finger protein 1; RasGAP, Ras 

miRNA Target Biological effect References

miR-340 Dystrophin Cardiac eccentric [34]

Cardiac hypertrophy

Heart failure

miR-133 RhoA Cardiac hypertrophy [35, 36]

Cdc42 Heart failure

Nelf-A/WHSC2

HCN2

miR-1 IGF-1 Cardiac hypertrophy [35, 37, 38]

calmodulin Dilated cardiomyopathies

Mef2a Heart failure

RasGAP

Cdk-9

miR-208 Thrap1 Cardiac hypertrophy [39]

Myostatin

miR-21 sprouty1 Cardiac hypertrophy [40]

Cardiac fibrosis

miR-23a MuRF1 Cardiac hypertrophy [41]

miR-195 Cardiac hypertrophy [42]

Heart failure

miR-99a mTOR Cardiac hypertrophy [43]

FGFR3 Heart failure

miR-199a NFAT Cardiac hypertrophy [44]

Cardiac fibrosis

Heart failure

miR-30 CTGF Cardiac fibrosis [35]

miR-29   Cardiac hypertrophy [45]

Cardiac fibrosis

Thrap1, thyroid hormone receptor-associated protein 1; MuRF1, myostatin, muscle-specific ring finger protein 1; 
RasGAP, Ras GTPase-activating protein; Cdk9, cyclin-dependent kinase 9; Mef2a, calmodulin, myocyte enhancer factor 
2A; IGF1, insulin-like growth factor 1; CTGF, connective tissue growth factor; HCN2, hyperpolarization-activated, cyclic 

nucleotide-gated K þ 2; FGFR3, fibroblast growth factor receptor 3; NFAT, nuclear factor of activated T-cells

Table 4. MiRNA in cardiac hypertrophy.
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GTPase-activating protein; Cdk9, cyclin-dependent kinase 9; Rheb, Ras homolog enriched in 
the brain; Mef2a, calmodulin, myocyte enhancer factor 2A; IGF1, insulin-like growth factor 1; 

SPRY1, sprouty 1; CTGF, connective tissue growth factor; HCN2/4, hyperpolarization-activated, 
cyclic nucleotide-gated K þ 2/4; and FGFR3, fibroblast growth factor receptor 3.

6. Treatment of HCM

As is typical for many forms of CVD, many current therapeutic strategies for HCM try to 
alleviate symptoms and prevent complications. Although once considered rare and terminal 

with annual mortality rates of up to 6%, HCM has now emerged as a very treatable form of 
heart disease [46]. Due to contemporary management strategies and treatment interventions, 

including ICDs for SD prevention, a variety of available surgical HCM mortality rates have 

dropped to 0.5% per year [47].

6.1. Pharmacology management

It has been clearly demonstrated that left ventricular outflow tract obstruction at rest in HCM 
patients is a strong, independent predictor of progression to severe symptoms of heart failure 

and of death [48]. Considering the mechanisms underlying myocardial contraction (calcium 

ions binding to troponin C and excitation-contraction coupling), a number of medical regi-

mens have been used in these patients with the goal of lessening or eliminating the LVOT 
gradient through negative inotropy [7].

Pharmacological therapy of HCM consists of β-blockers and calcium channel blockers. 
β-Blockers and calcium channel blockers are used to improve diastolic function in patients 

Figure 2. MiRNAs in hypertrophic cardiomyopathy.
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with HCM. Small and mostly retrospective studies suggest that oral propranolol can abolish or 

reduce resting and provocable LVOTO and provide symptomatic benefit [49, 50]. Donald et al.’s 

study showed that β-blocker abolished the increase in gradient caused by isoproterenol and, 
more importantly, halved the increase in gradient caused by exercise [51]. In a 5-year follow-up, 

a study demonstrated that propranolol significantly improved the HCM patient’s syndrome 
(dyspnea, angina, palpitations, dizziness, and syncope) by 58–100% [52].

Calcium channel blockade is used to HCM patients since it might ameliorate the hypercon-

tractility characteristic of HCM. Verapamil, which has the best profile of the calcium antago-

nists, has been widely used in the treatment of HCM. A double-blind, placebo-controlled 

crossover trial studied oral propranolol, verapamil, and placebo, to 19 patients with HCM (17 
with hypertrophic obstructive cardiomyopathy). Most patients derived symptomatic benefit 
from drug therapy, especially with verapamil [53]. In a recent study, the calcium channel 

blocker diltiazem was used to treat 38 HCM patients carrying MYBPC3 mutation; results 

showed that diltiazem is safe and may improve early LV remodeling in HCM [54].

Another medicine used in hypertrophic obstructive cardiomyopathy (HOCM) patients is 

disopyramide, which is an effective negative inotropic agent by mediating sodium-calcium 
exchange [55]. Pollick et al. administered intravenous disopyramide to 43 patients with 

HOCM. The LVOT gradient was abolished or reduced; the effect was greater than that seen 
previously for either propranolol or verapamil [56]. By virtue of its atrial antiarrhythmic 

properties, disopyramide may be of particular benefit in HOCM patients with atrial fibrilla-

tion. Then, the ESC guideline recommended disopyramide, as Class IA anti-arrhythmic drug, 

which may be added to a maximum tolerated dose (usually 400–600 mg/day), if β-blockers 
alone are ineffective [19]. It can improve exercise tolerance and functional capacity as well as 

abolish basal LV outflow pressure gradients without proarrhythmic effects or an increased 
risk of sudden cardiac death.

6.2. Invasive treatment of LVOTO

Invasive treatment should be considered in patients with an LVOTO. The American and 
European colleges of cardiology recommend invasive treatment to (1) patients with labile 

obstruction and peak LVOT pressure gradients ≥50 mm Hg during exercise or provocation 
and resting gradients >30 mm Hg and (2) patients with moderate-to-severe symptoms (New 

York Heart Association (NYHA) functional classes III–IV) refractory to medical therapy [7, 19]. 

Two common surgical procedures performed in about 3% of obstructive HCM patients are 
septal myectomy and alcohol septal ablation [28].

6.2.1. Ventricular septal myectomy

Since the time of the first myectomy through the aortic root by Cleland in Great Britain in 
November 1958 [57], ventricular septal myectomy (Morrow procedure) is the most commonly 

performed surgical procedure used to treat LVOTO [58]. In a 10-year follow-up in 185 patients, 
the patients with hypertrophic cardiomyopathy (HCM) were treated with septal myotomy-

myomectomy (MM) with a significant reduction in left ventricular outflow gradient at rest, 
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which improves exercise capacity and symptoms. Long-term symptomatic benefit is achieved 
in 70–80% of patients with a long-term survival compared to that of the general population 
[59]. Notably, operative mortality at surgical centers is now low, reduced to less than 1%.

6.2.2. Alcohol septal ablation

Percutaneous alcohol septal ablation is an alternative to surgical myectomy, which is a selec-

tive injection of alcohol into a septal perforator artery to create a localized septal scar. There 

are no randomized trials comparing surgery and septal alcohol ablation (SAA), but several 

meta-analyses have shown that SAA procedures improve functional status with a similar sur-

gery in terms of gradient reduction, symptom improvement, and exercise capacity [60]. The 

main nonfatal complications are AV block in 7–20% of patients and a procedural mortality 
of about 2% [3]. Alcohol ablation has been recommended as a selective alternative for older 

patients, those with comorbidities, or patients with an absolute reluctance toward surgery.

6.2.3. Implant cardiac defibrillator

In addition to myectomy, the implantable cardioverter-defibrillator (ICD) has proven to be 
effective in terminating life-threatening ventricular tachyarrhythmia in HCM, altering the natu-

ral course of the disease and prolonging life [61, 62]. The indications for ICD placement are (1) 

positive family history of several sudden cardiac deaths in a distant family member, (2) nonsus-

tained ventricular tachycardia on Holter monitoring, (3) LVH >30 mm, (4) prior unexplained 
syncope during exercise or at rest, and (5) an abnormal blood pressure response during exercise, 

which can be described as progressive decrease in the systolic value by 20 mm Hg after an initial 

increase or an increase in systolic blood pressure of <20 mm Hg from the baseline value or a [2, 

63, 64]. The decision for placement of primary prevention of ICD in HCM often involves a large 

measure of individual clinical judgment, particularly when the evidence for risk is ambiguous.

7. Recent advances toward precision medicine for HCM

7.1. iPSC-CMs

Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of embryonic 

stemlike cells that can be generated directly from adult cells [65–67]. The emergence of 

patient-derived induced pluripotent stem cells (iPSCs), which can be differentiated into func-

tional cardiomyocytes (CMs) in vitro, may provide an exciting new approach to understand 

disease mechanisms underpinning inherited heart diseases (Figure 3) [26, 68].

iPSC-CMs derived from a patient with HCM caused by the MYH7 mutation p.Arg442Gly and 
mutation p.Arg663His have demonstrated the pathogenic effects [69, 70]. HCM iPSC-CMs exhibited 

structural abnormalities consistent with the HCM phenotype. Similar calcium- handling abnormali-

ties were identified, consistent with observations made from animal models [70]. These studies 

explored the possible patient-specific and mutation-specific disease mechanism of HCM and dem-

onstrated the potential of using HCM iPSC-CMs for future development of therapeutic strategies.
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In vivo direct cardiac reprogramming of somatic cells into cardiomyocytes is a potential 

offshoot of current reprogramming techniques but has not yet been tested in humans 

[71]. For HCM in particular, the possibility of converting cardiac fibroblasts into func-

tional cardiomyocytes could theoretically ameliorate hypertrophy and improve diastolic 

function.

Although still in a nascent stage, direct cardiac reprogramming has undergone great advances 

and attracted considerable attention, these techniques could offer a renewable source of car-

diomyocytes and deliver medicine individually tailored to each patient [72].

7.2. Gene editing technology

Gene editing is rapidly progressing from being a research/screening tool to one that prom-

ises important applications downstream in drug development and cell therapy. As primarily 

inherited cardiomyopathies, HCM is perhaps the strongest candidate for gene editing tech-

nologies [73, 74]. Recently, genome modification technologies, such as TALEN (transcription 
activator-like effector nucleases), ZFN (zinc finger nucleases), as well as CRISPR/Cas9 nucle-

ase (clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems), allow 
for specific editing of individual gene mutations [74, 75].

This CRISPR/Cas9 system makes it possible to efficiently, easily, and cheaply modify the 
genome, which is the current front-runner of these gene modification technologies [76]. To date, 

the CRISPR/Cas9 system has been used to successfully engineer cardiomyopathy into in 
zebra fish and mice models and is currently being applied to larger animals such as pigs and 
nonhuman primates [77]. This new technology promises to provide researchers with more 

accurate model for studying and treating HCM [78].

Figure 3. Generation of iPSCs from patients and then the differentiation to cardiomyocytes and then to their use in 
different cardiomyopaties. HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; ARVC, arrhythmogenic 
right ventricular cardiomyopathy.
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8. Conclusion

Hypertrophic cardiomyopathy (HCM) is a global and is considered one of the most common 

genetic cardiovascular diseases. Genetic variants, molecular mechanisms, and clinical pheno-

types of HCM vary on a patient-by-patient basis. Fifty years ago, HCM was thought to be an 

obscure disease. Today, however, our understanding and ability to diagnose patients with 

HCM have improved dramatically, due to improvements in screening and detection of gene 

defects in the human genome as well as iPSC-CM model in HCM patients and gene editing 

technology (including CRISPR/Cas9). However, currently, treatments for HCM are directed 
at symptomatic relief, preventing sudden death. The future goal of research is focused on 

changing the natural course of the disease and preventing its phenotypic expression. Working 

group from clinical, translational, and basic science aspects should work together to develop 

novel treatments to HCM. Then, finally, with the effort of all groups, we will reach the goal of 
the precision medicine of HCM.
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