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Abstract

NK cells play an important role in host immunity against cancer by exerting cytotoxicity 
and secreting a wide variety of cytokines to inhibit tumour progression. Their effector 
functions are regulated by the integration of opposing signals from activating and inhibi‐
tory receptors, which determine NK cell activity against tumour targets. NK cell cytotox‐
icity requires successful progression through discrete activation events that begin with 
NK cell adhesion to a tumour target cell and culminate in the polarized release of cyto‐
toxic granules into the immunological synapse. Tumour cells can evade NK cell attack 
through numerous mechanisms such as shedding of activating ligands, upregulation of 
inhibitory ligands, or stimulation of inhibitory regulatory T lymphocytes. A better under‐
standing of specific NK cell responses to tumour targets can generate better NK cell‐based 
immunotherapeutic strategies for cancer. This chapter discusses NK cell immunosurveil‐
lance of cancer, NK cell tumour recognition strategies, cancer immune evasion from NK 
cells, and different approaches to NK cell modulation for cancer therapy.
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1. Introduction: cancer immunosurveillance by NK cells

Natural killer (NK) cells were discovered more than four decades ago and were the focus of 

some of the earliest trials of cancer immunotherapy. With our more sophisticated understand‐

ing of their functional requirements, NK cells are once again attracting attention for their 
potential in cancer therapy [1]. Initially thought to be an artefact in cytotoxicity assays, NK 

cells are now known to play an important role in host immunity against tumourigenesis. The 

theory of cancer immunosurveillance was proposed by Burnet and Thomas in 1957, postu‐

lating that immune cells continuously monitor the body such that any threat to the immune 

system is detected and eliminated [2]. In 1975, NK cells were discovered in mice as a subpopu‐

lation of lymphocytes capable of killing tumour cells without prior sensitization [3–5]. This led 
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to considerable enthusiasm over the possibility that they function as one of the main effector 
cells of immunosurveillance. Several studies in the 1980s reported a higher cancer incidence 

in individuals with genetic disorders such as Chediak‐Higashi syndrome and X‐linked lym‐

phoproliferative syndrome, which lead to defective NK cell function [6, 7]. Subsequent mouse 

studies showed increased tumour growth in mice with impaired NK cell activity or mice 

treated with an NK cell‐depleting agent [8, 9]. A long‐term epidemiological study following 

cancer patients reported that subjects with lower NK cell activity had a higher incidence of 

several types of cancer [10]. Collectively, data from both mouse and human studies support 

the theory of cancer immunosurveillance and the concept that NK cells play a critical role in 

tumour control and eradication [11, 12]. The two main effector functions observed by NK cells 
against tumour targets are target cell elimination and cytokine secretion [13]. Until recently, 

these two effector functions were thought to follow similar mechanisms of activation, but now 
it is recognized that cytokine secretion by NK cells is distinct from cytotoxicity [14].

1.1. Target cell elimination

NK cells kill tumour cells through granule exocytosis or death receptor ligation. Following 

NK cell activation, NK cells release the contents of their granules for target cell elimination. 

The membrane disrupting protein perforin, and a family of serine proteases termed gran‐

zymes, are the critical effector molecules contained in their granules [15]. Perforin results in 

the disruption of endosomal trafficking and binds in a calcium‐dependent manner to phos‐

pholipid components of the lipid bilayer to facilitate entry of granzymes into the target cell 

cytosol [16]. Once granzymes enter the target cell, they induce apoptosis. In addition to gran‐

ule exocytosis, NK cells can directly eliminate target cells through the engagement of cell sur‐

face death receptors. NK cells express Fas ligand (FasL) and TNF‐related apoptosis‐inducing 

ligand (TRAIL), which are both members of the TNF family and are shown to induce target 

cell apoptosis once bound to their respective receptors on target cells [16].

1.2. Cytokine secretion

Resting NK cells secrete a plethora of cytokines that help eliminate target cells and amplify acti‐

vation signals for a more efficient immune response. NK stimulation results in enhanced secre‐

tion of cytokines, which in turn influence the activity of other immune cells. Pro‐inflammatory 
cytokines secreted by NK cells, which include interleukin (IL)‐1, IL‐6, IL‐12, and the chemokine 

CXCL8 (also known as IL‐8), can enhance the activation and proliferation of T cells, dendritic 

cells (DCs) and macrophages [17]. By contrast, anti‐inflammatory cytokines such as IL‐4 and 
IL‐10 suppress T cell and macrophage function, but activate humoral responses. Chemokines, 

which are chemotactic cytokines, play an important role in directing various immune cells to 

target sites, such that more potent responses are achieved. Chemokines released by NK cells 

include, in addition to CXCL8, the macrophage inflammatory protein (MIP)‐1α and MIP‐1β; 
chemokine (C‐C motif) ligand 5 (CCL5), also known as “regulated on activation normal T cell 

expressed and secreted” (RANTES); monocytes chemoattractant protein (MCP)‐1; and eotaxin 
[18, 19]. The signalling pathways and mechanisms required for cytokine secretion also appear 

to be distinct from secretion of cytotoxic granules [14]. The localization and trafficking of IFN‐γ 
and TNF‐α were shown to take place in  compartments and vesicles that do not overlap with 
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perforin or other late endosome granule markers. Recycling endosomes (REs) are not needed 

for release of perforin, but are required for cytokine secretion in NK cells. Although perforin 

granules are released in a polarized fashion at lytic synapses, distinct carriers transport both 

IFN‐γ and TNF‐α to points all over the cell surface, including within the synapse, for non‐
polarized release.

2. NK tumour recognition

Prior to the discovery of NK cell receptors, it was unclear how NK cells could identify tumour 

targets for lysis. The ‘missing‐self’ recognition model was initially proposed based on the 

observation that NK cells kill targets with reduced or absent expression of major histocompat‐

ibility complex class I (MHC I) molecules [20, 21]. This model explains why tumour or virally‐

infected cells with deficient MHC class I expression are targeted by NK cells, whereas healthy 
autologous cells remain protected. It also explains the hybrid resistance phenomenon, in which 

F
1
 hybrid mice reject parental bone marrow cells donated by either parent, despite the fact that 

the transplant does not express foreign MHC molecules [22]. Early experiments supported the 

‘missing‐self’ model by demonstrating selective rejection of an MHC class I‐deficient version 
of the tumour cell line RMA in mouse models, in which the results were reversed after treating 
mice with an NK‐depleting agent [20]. The characterization of NK cell inhibitory receptors fur‐

ther supported this recognition model by explaining the molecular mechanisms by which NK 

cells sensed the downregulation of MHC class I expression [23–29]. NK cell‐mediated killing 

of MHC class I‐deficient cells also provides a safeguard mechanism for MHC class I‐restricted 
elimination by cytotoxic T lymphocytes. However, the ‘missing‐self’ hypothesis alone failed 

to explain why NK cells spare autologous cells with absent MHC class I expression or kill 
tumour cells with sufficient MHC class I expression [30, 31]. The discovery of a wide array of 

activating NK cell receptors that detect stress‐induced ligands on damaged or stressed cells 

led to the proposition of the ‘induced‐self’ model, by which NK cells kill targets with upregu‐

lated expression of activating ligands. It is now understood that NK cell functions are tightly 

regulated by the integration of opposing signals from activating and inhibitory receptors [32]. 

Together these models suggest that NK cells detect changes in self‐ligands on the surface of 

autologous cells. NK cells can also be activated through antibody‐dependent cellular cytotoxic‐

ity (ADCC) whereby the NK cells are triggered directly through ligation of CD16 to kill tumour 

target cells to which the antibody has bound. The anti‐CD20 antibody, Rituximab mediated 

lysis of CD20+ve lymphoma cells through this mechanism. Figure 1 summarizes tumour rec‐

ognition strategies by NK cells.

2.1. NK cell inhibitory receptors

Human NK cell inhibitory receptors fall into two groups: the killer immunoglobulin‐like 

receptors (KIRs), and the lectin‐like receptor NKG2A, which forms a heterodimeric complex 

with CD94. KIRs bind to human leukocyte antigen (HLA)‐A, ‐B, or ‐C, whereas the NKG2/

CD94 complexes ligate HLA‐E. Human KIRs contain either two (KIR2D) or three (KIR3D) 

immunoglobulin (Ig)‐like domains in their extracellular domain. KIR2D receptors recognize 
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HLA‐C alleles, whereas KIR3D receptors recognize HLA‐A or HLA‐B alleles. The common 

pathway generated by ligation of inhibitory receptors is characterized by tyrosine phosphory‐

lation of immune tyrosine‐based inhibitory motifs (ITIM) that recruit tyrosine phosphatases 
such as the Src homology 2 domain‐containing phosphatase (SHP)‐1 and SHP‐2, which are 

responsible for the inhibition of various NK cell effector functions [33].

2.2. NK cell education

NK cell education refers to the mechanisms through which inhibitory input by MHC class 
I during development translates into functional responsiveness in mature NK cells [34]. 

Unlike the educational processes in T‐ or B‐cell development, NK cell education remains 

a topic of intense debate, with several models proposed to explain how NK cell respon‐

siveness relates to inhibitory signalling. NK cells that lack ITIM‐bearing inhibitory recep‐

tors for self‐MHC‐I and NK cells from hosts that lack MHC‐I ligands for ITIM‐bearing 
inhibitory receptors have a reduced responsiveness to activation signals, such as stimula‐

tion by sensitive target cells or cross‐linking of NK cell activating receptors [34–37]. These 

results have led to the two main models in NK cell education. The first ‘disarming’ model 

Figure 1. Tumour recognition strategies by NK cells. A) Balanced signals delivered by activating and inhibitory NK cells 

receptors are recognized as healthy and spared from NK cell‐mediated lysis. B) Tumour cells downregulate MHC class 
I molecules, and are recognized by NK cells through ‘missing self’ for lysis. C) The upregulation of stress‐ or damage‐

related ligands is recognized by activating NK cell receptors and can overcome inhibitory signals to result in tumour 

lysis through the ‘induced‐self’. D) Antigen‐specific antibodies can bind CD16 on NK cells to result in ADCC. ADCC: 
antibody‐dependent cell‐mediated cytotoxicity; MHC: major histocompatibility complex; NK: natural killer cell.
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 proposes that in the absence of inhibition, continuous stimulation of NK cells leads to a 

state of hyporesponsiveness [38]. The second model proposes that inhibitory receptors pro‐

vide an ITIM‐dependent signal to the NK cells that renders them responsive [39]. This 

model is referred to as ‘arming’ or ‘licensing’, although the latter term is now understood 
to include any process by which NK cells that receive signals through inhibitory receptors 

for self‐MHC‐I gain responsiveness [40]. Studies reporting that NK cell responsiveness is 

calibrated according to the strength of inhibitory signals received [36, 41, 42], have led to a 

third ‘rheostat’ model that aimed to reconcile the two opposing models, and account for the 

quantitative tuning of NK cell responsiveness [42–44]. The rheostat model postulates that 

NK cell responsiveness is dynamically calibrated based on the strength of inhibitory signals 

received. More recent data demonstrating that NK cell ‘tuning’ or ‘licensing’ may be set by 
transient signals and can be reversible have led to an updated model known as the ‘revo‐

cable license’ [45]. The revocable license model argues that NK cells can keep their license 

as long as they are tightly regulated by inhibitory signals, but once this inhibitory input 

is lost, their license is revoked. Many questions regarding the molecular basis of licens‐

ing and the effect of subsequent activation signals on licensed vs. unlicensed cells remain 
unanswered. In many cases, the original concept of ‘missing‐self’ and the self‐tolerance of 

NK cells in an MHC‐I‐devoid environment cannot be explained without the involvement 
of NK cell activating receptors.

2.3. NK cell activation receptors

NK cell activation receptors can be grouped into three categories: those that associate with 

immunoreceptor tyrosine‐based activation motif (ITAM)‐containing subunits, the DAP10‐
associated NK group 2 member D (NKG2D) receptor and a number of other receptors 

including DNAX accessory molecule‐1 (DNAM‐1), CD2 and 2B4. Receptors that associate 
with the ITAM‐containing adapter proteins transmit signals through the recruitment of tyro‐

sine kinases Syk or ZAP70, and include CD16, which mediates antibody‐dependent cellu‐

lar cytotoxicity, and the natural cytotoxicity receptors (NCRs) NKp30, NKp44, NKp46 and 

NKp80, which are known to play an important role in NK‐mediated cytotoxicity against 

tumour cells [46]. NKp30 and NKp46 are constitutively expressed on all peripheral blood 

NK cells, whereas NKp44 is expressed only on activated NK cells. NKp30 binds the nuclear 

factor HLA‐B‐associated transcript (BAT)‐3, NKp46 binds to influenza haemagglutinin and 
the cellular ligand for NKp80 is the activation‐induced C‐type lectin (AICL) [47]. NKG2D 

associates with the DAP10 adaptor protein and signals through a phosphoinositide 3‐kinase 

(PI3K)‐binding motif. It binds several ligands associated with stress, infection or transforma‐

tion including MHC I chain‐related protein A and B (MICA/B) and the UL16‐binding proteins 
1–4 (UBLP1‐4) [48].

2.4. NK cell activation

NK cells require the co‐engagement of multiple activating receptors in order to exhibit natu‐

ral cytotoxicity against tumour target cells [49]. Upon encounter with potential target cells, an 

immunological synapse forms at the point of contact between the NK cell and the  target cell, 
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where NK cell receptors can interact with their respective ligands. Given  sufficient  activation 
signals, NK cell cytoskeletal rearrangements are initiated, which result in the polarization 

of NK cell lytic granules toward the immunological synapse, where they eventually fuse 

and release their cytotoxic contents on to the target cell [50]. In contrast to CTLs, NK cells 

have their cytotoxic granules preformed before target cell recognition, and so their release 

is initially constrained until sufficient signalling is achieved. NK cells have also been shown 
to establish cytoskeletal polarity more slowly than CTLs, and to have a unique sensitivity 

to minor interference with cytoskeletal dynamics [51]. This stepwise progression in activa‐

tion events with specific requirements for synergistic signalling may provide a mechanistic 
explanation of how the spontaneous cytotoxic capacity of NK cells is regulated [52]. Figure 2 

outlines NK cell activation events at the immunological synapse with a tumour target cell.

Figure 2. Activating immunological synapse between NK cell and tumour target. NK cell encounter with a tumour 

cell target generates an immunological synapse at the point of contact. If the ligand combination on the tumour target 

engages NK cell activating receptors sufficiently, cytoskeletal rearrangements take place resulting in granule polarization 
and the eventual release of cytotoxic granules on to the target cell. NK: natural killer cell.
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3. Cancer immune evasion from NK cells

Although the development of any malignancy is under surveillance by immune cells, tumour 

cells can still obtain means to escape from the immune system and proliferate. The recent 

addition of immune evasion as an emerging ‘hallmark’ of cancer, sheds lights on growing 

evidence in support of cancer evasion of immune cells [53]. Malignant cells acquire a set of 
biological capabilities during their development, allowing them to overcome recognition 

and elimination by the immune system. These capabilities are acquired with the assistance 

of inflammatory cells and soluble factors in the tumour microenvironment, which play an 
active role in the tumour development process. Kiessling et al. proposed that cancer evasion 

from NK cells involves an early stage of tumour formation and growth, which is associated 

with antigen‐specific tolerance, and a later stage, which induces a state of immunodeficiency 
[54]. Cancer immunoediting, as proposed by Dunn et al. argues that less immunogenic vari‐

ants are positively selected during tumour formation as they have a better chance of sur‐

vival in a normal immunological environment [55]. This led to the formulation of the three 

Es of cancer immunoediting; elimination, equilibrium and escape [56]. The elimination phase 

involves tumour eradication by immune cells. Any tumour cells that survive the elimination 

phase enter the equilibrium phase. During this phase, immune cells and tumour cells are in a 

dynamic equilibrium, with selective pressure exerted on tumour cells, such that only the less 

immunogenic variants survive. In the escape phase, tumour cell variants which are positively 

selected in the equilibrium phase continue to grow.

Tumours can evade NK cell attack directly by insufficient expression of ligands for NK 
cell activation receptors, such that the activation threshold for NK cell granule exocytosis 

is not met. Once successful evasion from NK cell attack is achieved, the tumour cells cre‐

ate the microenvironment necessary for continued growth. There are several strategies for 

direct evasion from NK cells by tumour targets. For example, tumours have been shown 

to reduce expression or shed ligands for important NK cell receptors. The NKG2D ligands 

UBLP2, MICA and MICB are commonly shed by tumour cells to evade NK cell attack through 
NKG2D recognition. Alternatively, tumour cells can increase MHC class I, soluble MIC and 
FasL expression in order to increase NK cell inhibitory signalling [30, 57, 58]. The secretion 

of soluble factors such as IL‐10, TGF‐β and indoleamine 2, 3‐dioxygense (IDO) by tumour 
targets suppresses the adaptive immune response to exhibit significantly less anti‐tumour 
capacity [59–63].

Tumour cells employ numerous cell types from the immune system for indirect NK cell eva‐

sion mechanisms. Tumour cells have been reported to recruit, myeloid‐derived suppressor 

cells (MDSCs), regulatory T cells, which release immunosuppressive Th2 cytokines and 
phagocytes, which release reactive oxygen species (ROS) to inhibit NK cell function [64]. 

Macrophages found in the tumour microenvironment can be classified as M1 or M2. The M1 
subtype is associated with tumour control, through pro‐inflammatory cytokine and ROS secre‐

tion, whereas the M2 subtype promotes tumour growth and invasion through the production 
of anti‐inflammatory cytokines, upregulation of scavenging receptors and tissue remodelling 
[65]. Excess ROS in the tumour microenvironment can lead to tumour cell lysis. The Warburg 
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effect, by which tumour cells rely mostly on glycolysis for energy production, enables cancer 
cells to resist ROS‐related death and gain survival advantage for metastasis [66].

Tumour cells can also impair dendritic cell (DC) function to prevent NK cell priming, by 

changing their expressions of IL‐6, IL‐10, vascular epithelial growth factor or GM‐CSF. Finally, 
tumour cells have also been shown to lower NK cell count by decreasing the numbers of lym‐

phoid progenitor cells [67]. Figure 3 describes different tumour immune evasion strategies 
from NK cells.

4. NK cell modulation for cancer therapy

The ability of NK cells to kill tumour cells has made them very attractive in immunotherapy. 
NK cell impairments associated with tumour development and progression have been fre‐

quently reported in cancer patients, including weakened effector functions and an altered 
phenotype with downregulation of activating NK cell receptors [68]. Different strategies 
have been employed to repair, replace or enhance the biological functions of autologous or 

Figure 3. Tumour Evasion from NK cells. Tumour cells use direct and indirect mechanisms to evade NK cell attack. Direct 
mechanisms include A) upregulation of MHC class I expression B) shedding of soluble ligands for NK cell activation 
receptors and C) release of inhibitory cytokines. Indirect mechanisms include D) activation of inhibitory regulatory 

T cells E) killing of immature dendritic cells to prevent NK cell priming F) release of phagocyte‐derived inhibitory 

cytokines and G) reducing the number of NK progenitor cells to lower NK cell counts. NK: natural killer cell; DC: 
dendritic cell, IL‐10: interleukin 10; IDO: indoleamine 2,3‐dioxygenase; MHC: major histocompatibility complex; ROS: 
reactive oxygen species; Th2: T helper cell type 2.
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 allogeneic NK cells in vivo and ex vivo. In a clinical setting, the key factors to be considered are 
the number, purity, proliferative capacity and activation state of NK cells. The most limiting of 

these factors is obtaining a sufficient number of NK cells, hence the extensive development of 
ex vivo expansion methods for NK cell adoptive immunotherapy applications. The impressive 

clinical responses seen following administration of chimeric antigen receptor T cells (CAR‐T) 

has led to trials of CAR‐NK cells at centres in the US and Europe. Reports of pre‐clinical data 

are encouraging and suggest that the more constrained proliferation of CAR‐NK cells in vivo 

and the lower release of inflammatory cytokines may provide improve the safety profile.

The delivery of IL‐2, IL‐12 and IL‐15 genes to the human NK cell line NK‐92 has also been 

shown to enhance proliferative and cytotoxic capabilities. These cytokines are known to play 

important roles in the enhancement of survival and activation of many immune cells including 

T cells, B cells and NK cells. Strategies to enhance endogenous NK cell function in vivo through 

cytokines were pioneered by Rosenberg et al. who demonstrated great initial potential for IL‐2 

administration in advanced cancer patients [69]. In vitro stimulation of NK cells by activating 

cytokines such as IL‐2 is known as the lymphokine‐activated killer (LAK) phenomenon [70]. 

In early experiments, NK cells were activated ex vivo and adoptively transferred to patients 

with advanced metastatic renal cancer and melanoma along with IL‐2 infusions. However, 

overall data from clinical trials since then have failed to provide a convincing proof of efficacy 
[68]. The clinical efficacy of LAK therapy was limited by the toxicity of IL‐2 and the potential 
expansion of T regulatory cells. Mouse NK cells stimulated in vitro with a combination of IL‐12, 

IL‐15 and IL‐18 were recently shown to have enhanced effector functions and longer survival 
after adoptive cell transfer [71]. Target cell stimulation of NK cells is an alternative to in vitro 

cytokine stimulation. Recent studies reported a tumour‐priming approach, in which human 

NK cells are activated by co‐incubation with an NK‐resistant leukaemia cell line in the absence 

of IL‐2 [72]. The clinical potential of these tumour‐primed NK cells has been explored in acute 

myeloid leukaemia and multiple myeloma with promising results in autologous and alloge‐

neic settings [73].

The last three decades unravelled different molecular mechanisms governing NK cell‐medi‐
ated anti‐tumour functions. This led to the development of a variety of strategies for NK 

cell‐based immunotherapy of cancer. However, many challenges still remain as we better our 
molecular and functional characterization of NK cells and their receptors, and decipher the 

different signalling pathways involved in NK cell recognition of targets. NK cell responses 
can differ according to the type, combination and intensity of signals. Thus, a better under‐

standing of tumour‐specific responses at the bench, will lead to novel therapeutic strategies 
with better efficacy in the clinic.
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