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1. Introduction  

Friction accounts for more than 60% of the motor torque, and hard nonlinearities due to 
Coulomb friction and stiction severely degrade control performances as they account for 

nearly 30% of the industrial robot motor torque. Although many friction compensation 

methods are available (Armstrong-Helouvry et al., 1994; Lischinsky et al., 1999; Bona & 

Indri, 2005;), here we only introduce relatively recent research works. Model-based friction 
compensation techniques (Mei et al., 2006; Bona et al., 2006; Liu et al., 2006) require prior 
experimental identification, and the drawback of these off-line friction estimation methods 
is that they can’t adapt when the friction effects vary during the robot operations (Visioli et 
al., 2001). The adaptive compensation methods (Marton & Lantos, 2007; Xie, 2006) take the 
modelling error of Lugre friction model into account, but they still require the complex prior 
experimental identification. Consequently, implementation of these schemes is highly 
complicated and computationally demanding due to the identification of many parameters 
and the calculation of the nonlinear friction model. Joint-torque sensory feedback (JTF) 
(Aghili & Namvar, 2006) compensates friction without the dynamic models, but high price 
torque sensors are needed for the implementation of JTF.  
To give satisfactory solution to robot control, in general, we should continue our research in 
modelling the robot dynamics and nonlinear friction so that they become applicable to 
wider problem domain. In the mean time, when the parameters of robot dynamics are 
poorly understood, and for the ease of practical implementation, simple and efficient 
techniques may represent a viable alternative.  
Accordingly, the authors developed a non-model based control technique for robot 
manipulators with nonlinear friction (Jin et al., 2006; Jin et al., 2008). The nonlinear terms in 
robot dynamics are classified into two categories from the time-delay estimation (TDE) 
viewpoint: soft nonlinearities (gravity, viscous friction, and Coriolis and centrifugal torques, 
disturbances, and interaction torques) and hard nonlinearities (due to Coulomb friction, 
stiction, and inertia force uncertainties). TDE is used to cancel soft nonlinearities, and ideal 
velocity feedback (IVF) is used to suppress the effect of hard nonlinearities. We refer the 
control technique as time-delay control with ideal velocity feedback (TDCIVF). Calculation 
of complex robot model and nonlinear friction model is not required in the TDCIVF. The 
TDCIVF control structure is transparent to designers; it consists of three elements that have 
clear meaning: a soft nonlinearity cancelling element, a hard nonlinearity suppressing 
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element, and a target dynamics injecting element. The TDCIVF turns out simple in form and 
easy to tune; specifying desired dynamics for robots is all that is necessary for a user to do. 
The same control structure can be used for both free space motion and constrained motion 
of robot manipulators.  
This chapter is organized as follows. After briefly review TDCIVF (Jin et al., 2006; Jin et al., 
2008), the implementation procedure and discussion are given in section 2. In section 3, 
simulations are carried out to examine the cancellation effect of soft nonlinearities using 
TDE and the suppression effect of hard nonlinearities using IVF. In section 4, the TDCIVF is 
compared with adaptive friction compensation (AFC) (Visioli et al., 2001; Visioli et al., 2006; 
Jatta et al., 2006), a non-model based friction compensation method that is similar to the 
TDCIVF in that it requires neither friction identification nor expensive torque sensor. 
Cartesian space formulation is presented in section 5. An application of human-robot 
cooperation is presented using a two-degree-of-freedom (2-DOF) SCARA-type industrial 
robot in section 6. Finally, section 7 concludes the paper.  

2. Time-Delay Control with Ideal Velocity Feedback 

2.1 Classification of Robot Dynamics from TDE Viewpoint  

The dynamics equation of n-DOF robot manipulator in joint space coordinates is given by: 

 −$$ $
sτ = M(θ)θ+ V(θ,θ) + G(θ) + F + D τ , (1) 

where ∈ℜnτ  denotes actuator torque and ∈ℜn
sτ interaction torque; ∈ℜ$ $$ nθ,θ,θ  denote the 

joint angle, the joint  velocity, and the joint acceleration, respectively; ×∈ℜn nM(θ)  a positive 

definite inertia matrix; and ∈ℜ$ nV(θ,θ)  Coriolis and centrifugal torque; ∈ℜnG(θ) a 

gravitational force; ∈ℜnF stands for the friction term including Coulomb friction, viscous 

friction and stiction; and ∈ℜnD  continuous disturbance.  

Introducing a constant matrix ×∈ℜn nM , one can obtain another expression of (1) as follows:  

 $$ $ $$τ = Mθ+ N(θ,θ,θ) , (2) 

where $ $$N(θ,θ,θ)  includes all the nonlinear terms of robot dynamics as  

 = − −$ $$ $$ $[ ] .sN(θ,θ,θ) M(θ) M θ+ V(θ,θ) + G(θ) + F + D τ  (3) 

$ $$N(θ,θ,θ)  can be classified into two categories as follows (Jin et al., 2008):  

 $ $$ $ $ $$ ,N(θ,θ,θ) = S(θ,θ) + H(θ,θ,θ)  (4) 

 −$ $ $ ,v sS(θ,θ) = V(θ,θ) + G(θ) + F (θ) + D τ  (5) 

 = + + −$ $$ $ $ $$( ,c stH(θ,θ,θ) F θ) F (θ,θ) [M(θ) M]θ  (6) 
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where ∈ℜ, , n
v c stF F F denote viscous friction, Coulomb friction, stiction, respectively. When 

the time-delay L is sufficiently small, it is very reasonable to assume that $S(θ,θ) is closely 

approximated by −
$

t LS(θ,θ)  shwon in Fig. 1. It is expressed by  

 − ≅$ $ $ˆ
t LS(θ,θ) = S(θ,θ) S(θ,θ) . (7) 

But $ $$H(θ,θ,θ) is not compatible with the TDE technique, as   

 −= ≠$ $$ $ $$ $ $$ˆ
t LH(θ,θ,θ) H(θ,θ,θ) H(θ,θ,θ) . (8) 

In this paper, •̂  denotes estimated value of • , and −•t L  denotes time delayed value of • .  

Incidentally, time-delay estimation (TDE) is originated from pioneering works called time-
delay control (TDC) (Youcef-Toumi & Ito, 1990; Hsia et al., 1991). However, little attention 
has been paid to hard nonlinearities such as Coulomb friction and stiction forces in previous 
researches on TDC. 

 

 (a) TDE of soft nonlinearities  (b) TDE of hard nonlinearities 
Figure 1. Description of TDE of soft and hard nonlinearities 

2.2 Target Dynamics  
The control objective is to make the robot to achieve the following target impedance dynamics: 

 − − −$$ $$ $ $
d d d d d d sM (θ θ) + B (θ θ) + K (θ θ) + τ = 0 , (9) 

where ×∈ℜn n
dM , ×∈ℜn n

dK , ×∈ℜn n
dB , denote desired mass, spring, and damper, 

respectively; ∈ℜ$ $$ n
d d dθ ,θ ,θ the desired position, desired velocity, desired acceleration, 

respectively. When the robot is performing free space motion, the sensed torque sτ  is 0, and 

(9) is reduced to the well-known error dynamics of motion control; it is expressed by  

 − + − + − =$$ $$ $ $( ) ( )d V d P dθ θ K θ θ K θ θ 0   (10) 

with 

 − −5 51 1,    V d d P d dK M B K M K .   (11) 
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2.3 Actual Dynamics When Only TDE is Used  
The robot dynamics equation can be rewritten (2) as  

 +$$ $ $ $$τ = Mθ+ S(θ,θ) H(θ,θ,θ) . (12) 

The control input using TDE is  

 +$ $ $$ˆ ˆτ = Mu + S(θ,θ) H(θ,θ,θ) .   (13) 

where 

  − − −$$ $ $1[ ]d d d d d d su = θ + M K (θ θ) + B (θ θ) + τ . (14) 

In (13), +$ $ $$ˆ ˆS(θ,θ) H(θ,θ,θ)  is obtained from the TDE of +$ $ $$S(θ,θ) H(θ,θ,θ)  , expressed by  

 − − − −+ = + = −$ $ $$ $ $ $$ $$ˆ ˆ .t L t L t L t LS(θ,θ) H(θ,θ,θ) S(θ,θ) H(θ,θ,θ) τ Mθ  (15) 

With the combination of (7),(12)-(15), and (17), one can obtain actual impedance error 
dynamics as  

 − − −$$ $$ $ $( ) .d d d d d d s dM θ θ + B (θ θ) + K (θ θ) + τ = M ε   (16) 

where the TDE error ε is defined as  

 
−

−−$ $$ $ $$5
1

t Lε M [H(θ,θ,θ) H(θ,θ,θ) ] . (17) 

2.4 Hard Nonlinearity Compensation  
TDCIVF uses ideal velocity feedback (IVF) term in order to suppress ε  that causes the 

deviation of resulting dynamics from the target impedance dynamics, as  

 −
− −= − + + + − + − + −$$ $$ $ $ $ $1{ [ ( ) ( )] ( }  )  t L t L d d s d d d d idealτ τ Mθ M θ M τ K θ θ B θ θ Γ θ θ  (18) 

where ×∈ℜn nΓ denotes a positive definite diagonal matrix, and 

 − − −∫$ $$ $ $1
ideal d d d d d d s dtθ = {θ + M [K (θ θ) + B (θ θ) + τ ]} . (19) 

If we considere the integral sliding surface as  
−− − + −∫ $$ $$ $ $1 .d d s d d d d dts = {θ θ+ M [τ + K (θ θ) B (θ θ)]}  (20) 

Then, (19) reduces to = −$ $
ideals θ θ , and (18) can be expressed by 

 −
− −− − −$$ $$ $ $1{ [ ] } .t L t L d d s d d d dτ = τ Mθ + M θ + M τ + K (θ θ) + B (θ θ) +Γs   (21) 

The s-trajectory, which is integral error of target dynamics, represents a time-varying 
measure of impedance error (Slotine, 1985). According to Barbalat’s Lemma, as the sliding 

surface s(t)å0, we can expect that s$ (t)å0, which implies achieving desired impedance (9) as 

timeå∞ . When the robot is performing free space motion, the sensed torque/force, sτ is 0; 

−$ $
idealθ θå0 implies θå dθ .  

Stability analysis can be found in (Jin et al., 2008).  
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2.5 The Simple, Transparent Control Structure  
The TDCIVF has transparent structure as shown in (22). It consists of three elements that 
have clear meaning: a soft nonlinearity cancelling element, a hard nonlinearity suppressing 
element, and a target dynamics injecting element.  

 

−
− −− $$ $$ $ $
'**(**) '*******(*******)

$ $

1

cancelling soft nonlinearities injecting targ     et impedance dynamics

suppressi

                                    

t L t L d d s d d d d

ideal

τ = τ Mθ + M{θ + M [τ + K (θ - θ) + B (θ - θ)]}

+ MΓ(θ - θ)'**(**)
ng the effect of hard nonlinearities     

.
  (22) 

Among the nonlinear terms in the robot dynamics, soft nonlinearities (gravity, viscous 
friction, and Coriolis and centrifugal torques, disturbances, and interaction torques) are 

cancelled by TDE, − −− $$
t L t Lτ Mθ ; and hard nonlinearities (due to Coulomb friction, stiction, 

and inertia force uncertainties) are suppressed by IVF ⋅ −$ $
idealΓ (θ θ) ; thus, calculations of 

complex robot dynamics as well as that of nonlinear friction are unnecessary, and the 

controller is easy to implement. Only two gain matrices, M  and Γ , must be tuned for the 

control law. The gains have clear meaning: M is for soft nonlinearities cancellation and 

noise attenuation, and Γ is for hard nonlinearities suppression. Consequently, the TDCIVF 
turns out simple in form and easy to tune; specifying the target dynamics for robot is all that 
is necessary for a user to do.  

2.6 Implementation Procedure  
The implementation procedure is straightforward as follows:  

1. Describe desired trajectory dθ  according to task requirements.  

2. Select dK and dM  according to task requirements and the approximate value of robot 

inertia. 

3. Select dB by applying critically damped condition .  

4. Set Γ =0 and tune M . Start with a small positive value, and increase it. Stop increasing 

M  when robot joints become noisy. The elements of M  can be tuned separately. 

5. Tune Γ . Increase it from zero to an appropriate value. The elements of Γ  can be tuned 
separately. 

Incidentally, the digital implementation of TDCIVF is as follows:  
1. Following numerical integration is used to calculate ideal velocity: 

 −= − + + − + − +$ $ $$ $ $1  ( ) ( ) { [ ( ) ( ) ]}.ideal ideal d d d sd d dt t L Lθ θ θ M K θ θ B θ θ τ  (23) 

2. −
$$

t Lθ  and $θ  are calculated by numerical differentiation (24) to implement the  TDCIVF.  

 − − −= − = −$$ $ $ $( ) /  and  ( ) / .t L t t L t t LL Lθ θ θ θ θ θ    (24) 
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2.7 Drawbacks  

The drawback of TDCIVF inherits from TDE. TDE term − −− $$
t L t Lτ Mθ  in (22) needs numerical 

differentiations (24) which may amplify the effect of noise and deteriorate the control 

performance. Thus, the elements of M are lowered for practical use to filter the noise  (Jin et 

al., 2008). 

3. Simulation Studies 

Simulations are carried out to examine the cancellation effect of soft nonlinearities using 
TDE and the suppression effect of hard nonlinearities using IVF. Viscous friction parameters 
(soft nonlinearities), and Coulomb friction parameters (hard nonlinearities) are varied while 
other parameters remain constant in simulations to see how TDE affects the compensation 
of nonlinear terms.  

If Γ =0 in the TDCIVF (22), we can obtain the formulation as follows:  

 τ τ θ θ τ θ θ θ θ−
− −= − + + + − + −$$ $$ $ $1{ [ ( ) ( )]}.t L t L d d s d d d dM M M K B   (25) 

This formulation is referred to as internal force based impedance control (IFBIC) in (Bonitz 
& Hsia, 1996; Lasky & Hsia, 1991), where the compensation of the hard nonlinearities was 
not considered.  
For simplicity and clarity, a single arm with soft and hard nonlinearities is considered as 
shown in Fig. 2. The simulation parameters are as follows: The mass of the link is 
m=8.163Kg, the link length is l=0.35m, and the inertia is I=1.0Kgm2; the stiffness of the 
external spring as disturbance is Kdisturbance=10 Nm/rad; the acceleration due to gravity is  
g=9.8Kgm/s2. The parameters of environment are Ke=12000Nm/rad and Be=0.40Nms/rad; 

its location is at θe =0.2rad. The sampling frequency of the simulation is 1 KHz.  

The dynamics of a single arm is  

 τ θ θ θ θ= + + + +$$ $ $( ) ( ) ( )v cI G F F d    (26) 

where 

 θ θ=( ) sin( )G mgl   (27) 

 θ= − disturbanced K   (28) 

 θ θ= −$ $( )v vF C   (29) 

 θ θ= −$ $( ) ).sgn(c cF C   (30) 

Soft nonlinearities and hard nonlinearities can be expressed by 

 θ θ θ θ= + +$ $( , ) ( ) ( )vS G F d ,   (31) 

 θ θ θ θ=$ $$ $( , , ) ( ).cH F    (32) 

For comparisons, identical parameters are used for the target dynamics in free space motion, 
as follows: Md =1.0Kgm2, Kd =100Nm/rad, and Bd =20Nms/rad.  
The desired trajectory is given by (33)  

 θ ω ω= −[1 exp(- t)]sin( )d A t   (33) 
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where ω π= 2 / p , p =5s, A=0.15rad.  

The simulation results are arranged in Figs. 3-7. The tracking errors of IFBIC with fixed 
Coulomb friction coefficients and various viscous friction coefficients are shown in Fig. 4 (a). 
The viscous friction has little effect on the tracking error because it can be cancelled by TDE. 
The tracking errors of IFBIC with various Coulomb friction coefficients and fixed viscous 
friction coefficients are shown in Fig. 4 (b). The larger Coulomb friction results in the larger 
tracking error. These results imply that TDE can not cancel hard nonlinearities. Maximum 
absolute errors and Mean absolute errors show that Coulomb friction severely deteriorates 
tracking errors whereas viscous friction has little effect on tracking errors shown in Figs. 4 
(c) and (d).  

Fig. 5 (a) shows soft nonlinearities θ θ$( , )S and the TDE error of soft nonlinearities 

θ θ θ θ −−$ $( , ) ( , )t LS S . Because soft nonlinearities are continuous functions, the TDE error of soft 

nonlinearities is almost zero, and TDE works well on the cancellation of soft nonlinearities. 

Fig. 5 (b) shows hard nonlinearities θ θ θ$ $$( , , )H  and the TDE error of hard nonlinearities 

θ θ θ θ θ θ −−$ $$ $ $$( , , ) ( , , )t LH H . Because hard nonlinearities are discontinuous functions, the TDE 

error of hard nonlinearities cannot be ignored. The TDE error of Coulomb friction can be 
regarded as a pulse type disturbance when the velocity changes its sign. The TDCIVF can 

reduce the tracking error due to Coulomb friction by increasing Γ , as shown in Fig. 6.  

The element of control input of the TDCIVF due to IVF term, $ $
idealMΓ(θ - θ) , is plotted in Fig. 

7. The IVF term is almost zero in the presence of only soft nonlinearities in Figs. 7 (a) and (b); 
however, it activates in the presence of hard nonlinearities Figs. 7 (c) and (d).  

 

Figure 2. A single arm with friction 
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Figure 3. Simulation results with Coulomb friction coefficient cC =20 and viscous friction 

coefficient vC =15 
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Figure 4. Tracking errors of IFBIC: (a) with fixed Coulomb friction ( cC =20) and various vC .  

(b) with fixed viscous friction ( vC =10) and various cC . (c) and (d)  Maximum (Mean) 

absolute errors with various cC and vC . It shows that Coulomb friction severely deteriorates 

the tracking performance, and viscous friction has little effect on tracking errors 
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Figure 5. Nonlinear terms and their estimation errors. (a) Soft nonlinearity and its estimation 

error. (b) Hard nonlinearity and its estimation error. ( cC =20, vC =15.) 
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Figure 6. The effect of gain Γ  in TDCIVF ( cC =20, vC =10). (a) Γ =0, 10, 20; (b) Γ =0, 40, 80 
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Figure 7. TDCIVF control input: Target dynamics injection torque and ideal velocity 

feedback torque. The IVF does not activate when hard nonlinearity is 0 ( cC =0) in (a) and (b); 

The IVF activates when hard nonlinearities do exist ( cC =20) in (c) and (d) 

4. Comparison with Adaptive Friction Compensation Method 

Adaptive friction compensation (Visioli et al., 2001; Visioli et al., 2006; Jatta et al., 2006) is 
regarded as a promising non-model based technique and it provides simple, effective online 
friction compensation. Hence, the TDCIVF is compared with AFC, a recently developed 
friction compensation method.  
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4.1 Adaptive Friction Compensation  
First we briefly review the AFC (Visioli et al., 2001; Visioli et al., 2006; Jatta et al., 2006). As 
shown in Fig. 11, the AFC algorithm assumes that the difference between torque estimation 

error t
iu  and its estimation iu  depends only on the friction for each joint i. Thus, the 

estimation error between the actual friction torque $( )a
i if q  and estimated one $( )i if q  can be 

approximately considered equal to the output of the PID controller, i.e.:  

 − ≅$ $( ) ( ) .a r
i i i i if q f q u   (34) 

 

Figure 11. The general model for adaptive friction compensation 

The friction terms are approximated by polynomial functions of degree h. Positive and 
negative velocities might be considered separately to obtain better results in case the actual 
friction functions is not symmetrical; hence,  

 
− − −

+ + +

⎧ + + + <⎪
= =⎨

+ + + >⎪⎩

$ $ $A$ A
$ $ $A

0 1

0 1

if 0
( ) ( 1, , ).

if 0

h
i i i ih i i

i i h
i i i ih i i

p p q p q q
f q i n

p p q p q q
  (35) 

Formally, the method can be described as follows. Define  

 
− − −

− − −

+ + +

⎧ <⎡ ⎤⎪
= ⎨⎢ ⎥

>⎪⎣ ⎦⎩

$
5

A
A

$A
0 1

0 1

0 1

if 0
[ ] 

if 0
 ii i ih

i i i ih

ii i ih

qp p p
p p p

qp p p
p   (36) 

and 

 ⎡ ⎤⎣ ⎦$ $5 A1 .  h
i i iq qv    (37) 

The algorithm can be described as follows:  

a. For = A( 1, , )i n  

1. Measure ( )iq k  and $ ( )iq k . 

2. Calculate $$ ( )iq k  by differentiation and filtering. 

3. Set =( ) ( )r
i ie k u k . 

4. Calculate η αΔ = + Δ −( ) ( ) ( ) ( 1)i i i ik e k k kp v p . 

5. Set  = − + Δ( ) ( 1) ( )i i ik k kp p p . 

6. Calculate = +t r
i i iu u u . 

b. Apply the reference command torque signal t
iu . The parameter η determines the 

velocity of the descent to the minimum and therefore the adaptation velocity. 
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Parameter α is the momentum coefficient, which helps to prevent large oscillations of 

the weight values and to accelerate the descent when the gradient is small.  

4.2 Comparisons  
For simplicity and clarity, we present experimental results using a single arm robot with 
friction. As shown in Fig. 12 (a), a single arm robot is commanded to move very fast in free 
space repeatedly (t=0-6s).  A 5th polynomial desired trajectory is used for 8 path segments 
listed in Table 1, where both the initial position and the final position of each segment are 
listed along with the initial time and the final time. The velocity and the acceleration at the 
beginning and end of each path segment are set to zero.  

TIME(S) 0.0 0.5 1.5 2.5 3.5 4.5 5.5 6.0 7.0 

X(RAD) 0.0 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.0 0.0 

Table 1. The desired trajectory 

To implement AFC, the method described in previous section was followed exactly. 
The PID control is expressed as  

 ( )σ σ= + + ∫$ -1

0
( ) ( ) ( ) ( )

t

D Iu t K e t T e t T e d    (38) 

where K , DT , and IT  are gains. The gains are selected as K =1000, DT =0.05, and IT =0.2. AFC 

is implemented with the PID. Parameters of AFC are η α= =0.001, and 0.7.   

The TDCIVF, thanks to the impedance control formulation property, becomes a motion 

control formulation when the interaction torque sτ  is omitted in the target dynamics (9). 

The motion control formulation for 1 DOF is 

 τ τ θ θ θ θ θ θ θ θ− −= − + + − + − + Γ −$$ $$ $ $ $ $[ ( ) ( ) ( )]t L t L d V d P d idealM M K K    (39) 

where 

 θ θ θ θ θ θ= + − + −∫$ $$ $ $[ ( ) ( )] . ideal d P d V dK K dt    (40) 

The desired error dynamics of TDCIVF is  

 θ θ θ θ θ θ− + − + − =$$ $$ $ $( ) ( ) 0d V d P dK K  (41) 

or 

 θ θ ζω θ θ ω θ θ− + − + − =$$ $$ $ $ 22 ( ) ( ) 0d d d d d   (42) 

with 

 ζω ω= = 22 , .V d P dK K   (43) 

The gains of TDCIVF and the speed of the target error dynamics are selected as 

follows: M =0.1, Γ =50.0, and ωd =10; and ζ =1 for the fastest no overshoot performance. 

Shown in Fig. 12 (b), the tracking error of TDCIVF is the smallest, which confirms that the 
TDCIVF is superior to AFC.  

www.intechopen.com



Robot Manipulators 

 

236 

AFC attempts to adapt the polynomial coefficients of friction. The adaptation takes quite 
some sampling time to update the friction parameters due to its property of neural network 
(Visioli et al., 2001) that is normally slower than TDE as discussed in (Lee & Oh, 1997). In 
contrast, the TDCIVF directly cancels most of nonlinearities using TDE and immediately 
activates the IVF when TDE is not sufficient. AFC must tune three gains of the PID by trial 
and error (it takes a quite some time to tune gains heuristically), and two additional 

parameters of AFC (η  and α). In the TDCIVF, after specifying the convergence speed of the 

error dynamics by selecting ωd  and ζ , the tuning of the gains M  and Γ  is systematic and 

straightforward as discussed in section 2.6. Consequently, the TDCIVF is an easier, more 
systematic,  and more robust friction compensation method than AFC.  
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Figure 12. Experiment results on single arm with friction. (a) Desired trajectory.  
(b) Comparison of tracking performance. (dotted: PID, dashed: PID with AFC, and solid: 
TDCIVF.)  

5. Cartesian Space Formulation  

The Cartesian state space equation of an n-DOF robot manipulator is given by 

 = + + + −$ $$$
u x x x x sF M (θ)x V (θ,θ) G (θ) F (θ,θ) F    (44) 

where uF denotes a fore-torque vector acting on the end-effector of the robot, sF  the 

interaction force, and x , $x , $$x  is an appropriate Cartesian vector representing position and 

orientation of the end-effector; ∈ℜ$ $$ nθ,θ,θ denote the joint angle, the joint  velocity, and the 

joint acceleration, respectively; xM (θ)  is the Cartesian mass matrix; $
xV (θ,θ)  is a vector of 
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velocity terms in Cartesian space, and xG (θ) is a vector of gravity terms in Cartesian space.  

$
xF (θ,θ)  is a vector of friction terms in Cartesian space (Craig, 1989). Note that the fictitious 

forces acting on the end-effector, uF , could in fact be applied by the actuators at the joints 

using the relationship  

 = ( )T
uτ J θ F    (45) 

where ( )J θ  is the Jacobian. The derivation of xM (θ) , $
xV (θ,θ) , xG (θ) , $

xF (θ,θ) are given in 

(Craig, 1989), and expressed by  

 − −= 1T
xM (θ) J (θ)M(θ)J (θ)   (46) 

 ( )− −= −$ $ $$1T
xV (θ,θ) J (θ) V(θ,θ) M(θ)J (θ)J(θ)θ   (47) 

 −= T
xG (θ) J (θ)G(θ)   (48) 

 −=$ $T
xF (θ,θ) J (θ)F(θ,θ)   (49) 

 ( ) ( ) ( )= + +$
x v c stx x x

F (θ,θ) F F F   (50) 

where ( )v x
F , ( )c x

F , and ( )st x
F  denote viscous friction, Coulomb friction, and stiction terms 

in Cartesian space, respectively.  

Introducing a matrix xM (θ) , another expression of (44) is obtained as follows:  

 = + $ $$$$
u x xF M (θ)x N (θ,θ,θ)   (51) 

where $ $$
xN (θ,θ,θ)  and xM (θ)  are expressed by 

 = − + + + −$ $$ $ $$$[ ]x x x x x x sN (θ,θ,θ) M (θ) M (θ) x V (θ,θ) G (θ) F (θ,θ) F    (52) 

 − −5 1 T
xM (θ) J (θ)MJ (θ)   (53) 

where M  is constant diagonal matrix.  

The nonlinear term $ $$
xN (θ,θ,θ)  can be classified into two categories: soft nonlinearities and 

hard nonlinearities, as follows:  

 = +$ $$ $ $ $$
x x xN (θ,θ,θ) S (θ,θ) H (θ,θ,θ)     (54) 

 ( )= + + −$ $ $
x x x v sx

S (θ,θ) V (θ,θ) G (θ) F (θ,θ) F    (55) 

 ( ) ( )= + + −$ $$ $ $ $$[ ] .x c st x xx x
H (θ,θ,θ) F (θ,θ) F (θ,θ) M (θ) M (θ) x   (56) 
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The control objective in Cartesian space is to achieve following target impedance dynamics  

 − + − + − + =$$ $$ $ $( ) ( ) ( ) 0xd d xd d xd d sM x x B x x K x x F   (57) 

where sF  denotes the interaction force; xdM , xdB , and xdK  denote the desired mass, the 

desired damping, and the desired stiffness in Cartesian space, respectively; and $ $$, ,d d dx x x the 

desired position, the desired velocity, the desired acceleration in Cartesian space, 

respectively; $ $$, ,x x x  denote the position, the velocity, and the acceleration in Cartesian space, 

respectively.  
The Cartesian formulation of TDCIVF can be derived as follows:  

 = + +$ $ $$ˆ ˆ
u x x x xF M (θ)u S (θ,θ) H (θ,θ,θ)    (58) 

where 

 [ ]−= + − + − +$$ $ $1 ( ) ( ) .x d xd xd d xd d su x M K x x B x x F  (59) 

The estimation of +$ $ $$ˆ ˆ
x xS (θ,θ) H (θ,θ,θ)  is given by 

 − −+ = +$ $ $$ $ $ $$ˆ ˆ
x x x t L x t LS (θ,θ) H (θ,θ,θ) S (θ,θ) H (θ,θ,θ)    (60) 

and 

 ( )− − −−
+ = −$ $ $$

x t L x t L u x t Lt L
S (θ,θ) H (θ,θ,θ) F M (θ)x .   (61) 

Here, TDE error ε  is defined as 

 −
−−$ $$ $ $$5 1 [ ]. x x x t Lε M (θ) H (θ,θ,θ) H (θ,θ,θ)   (62) 

Then, with the combination of (44), (54), (58), (59), (60),  (62), impedance error dynamics is 

 − + − + − + =$$ $$ $ $( ) ( ) ( ) .xd d xd d xd d s xdM x x B x x K x x F M ε    (63) 

ε  causes the resulting dynamics to deviate from the target impedance dynamics. To 

suppress ε , ideal velocity feedback term is introduced, with $ idealx  defined here as  

 [ ]{ }−+ − + − +∫$ $$ $ $5 1 ( ) ( ) .ideal d xd xd d xd d s dtx x M K x x B x x F    (64) 

Combining previous formulations, the control law is  

 

( )

{ }
( )

−−

−

= −

+ + − + − +

+ −

$$ $ $

$ $

1     [ ( ) ( ) ]

      

u u x t Lt L

x d xd xd d xd d s

x ideal

F F M (θ)x

M (θ) x M K x x B x x F

M (θ)Γ x x

   (65) 

where Γ  is a gain matrix.  
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6. Human-Robot Cooperation 

The experiment scenario for a human-robot cooperation task is as follows: The robot end-
effector draws a circle in 4s in free space and afterwards stands still before it is pushed by a 
human. A human pushes the robot end-effector forth and back in Y direction while the robot 
tries to keep in contact with it. This is to simulate the situation, for example, when a worker 
and a robot work together to move or install an object. In this cooperation task, it is often 
desired for the robot end-effector to behave like a low-stiffness spring, and the target 
dynamics is described as follow:  

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

20 0 2000 0
Kg and N/m.

0 20 0 500xd xdM K  

ζ =1.0 for free space motion and ζ =6.0 for constrained space. The Y direction stiffness of 

the target impedance is low (500N/m) for the compliant interaction with human.  
Experimental results are displayed in Fig. 8 and Fig. 9. The end-effector of the robot acts like 
a soft spring-mass-damper system to a human being. It neither destabilizes the robot nor 
exerts an excessive force to the human being. In free space task, shown in Fig. 10 (b), the 
TDCIVF is better than IFBIC at tracking the circle. In the robot-human cooperation task, 
shown in Fig. 10 (d), the TDCIVF shows the smallest impedance error.  
This experiment illustrates that human-robot cooperative tasks can be accomplished 
successfully under TDCIVF. The TDCIVF shows robust compliant motion control while 
possessing soft compliance.  
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Figure 8. Human-Robot Cooperation: Position and force responses of IFBIC 

 

 

0 10 20
0.15

0.2

0.25

0.3

0.35

0.4

time(sec)

P
o

s
iti

o
n

(m
)

(a) Position Response

X
des

Y
des

X

Y

0 10 20
-25

-20

-15

-10

-5

0

5
(b) Sensed Force

time(sec)

F
o

rc
e

(N
)

 

Figure 9. Human-Robot Cooperation: Position and force responses of TDCIVF 
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Figure 10. Human-Robot Cooperation. (a) IFBIC: only TDE is used. (b) TDCIVF: both TDE 
and IVF is used. (c) Experiment scienario. (d) Comparison of impedance error 

7. Conclusion 

The TDCIVF has following properties:  
1. Transparent control structure.  
2. Simplicity of gain tuning.  
3. Non-model based online friction compensation.  
4. Robustness against both soft nonlinearities and hard nonlinearities.  
The overall implementation procedure of TDCIVF is straightforward and practical. The 
cancellation effect of soft nonlinearities using TDE and the suppression effect of hard 
nonlinearities using ideal velocity feedback are confirmed through simulation studies. The 

TDCIVF  can reduce the effect of hard nonlinearities by raising the gain Γ .  
Compared with AFC, a recently developed non-model based method, the TDCIVF provides 
a more systematic, easier, and more robust friction compensation method. The human-robot 
cooperation experiment shows that the TDCIVF is practical for realizing compliant 
manipulation of robots.  
The following directions can be considered for future research:  
1. The term caused by hard nonlinearity, ε in (16) may be regarded as perturbation to the 

target impedance dynamics. It is noteworthy for further research that the TDE error 
ε can be suppressed by other compensation methods.  
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2. The terms in robot dynamics considered in this TDCIVF are: the gravity term, viscous 
friction term, the Coriolis and centrifugal term, the disturbance term, and the 
environmental force term (soft nonlinearities); and the Coulomb friction term, the 
stiction term, and the inertia uncertainty term (hard nonlinearities). From the TDE 
viewpoint, consideration and compensation of other terms such as saturation, backlash 
and hysteresis terms can be investigated in depth.  

3. Without modelling robot dynamics and nonlinear friction, the TDCIVF provides robust 
compensation and fast accurate trajectory tracking. Recently, the Lugre friction mode 
based control has attracted research activities because the Lugre model is known as 
accurate friction model in friction compensation literature. It will be interesting to 
experimentally compare the TDCIVF (which uses no friction model) with the Lugre 
friction model based control.  
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