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Abstract

This chapter addresses the stochastic modeling of functional response, which is a major
concern in engineering implementation. We first introduce a general framework and
several conventional models for functional data, including the functional linear model,
penalized regression splines, and the spatial temporal model. However, in engineering
practice, a naive mathematical modeling of functional response may fail due to the lack
of expressing the underlying physical mechanism. We propose a series of quasiphysical
models to handle the functional response. A motivating example of metamaterial design
is thoroughly discussed to demonstrate the idea of quasiphysical models. In real appli-
cations, various uncertainties have to be taken into account, such as that of the permit-
tivity or permeability of the substrate of themetamaterial. For the propagation of uncertainty,
simulation-based methods are discussed. A Bayesian framework is presented to deal with
the model calibration in the case of functional response. Experimental results illustrate the
efficiency of the proposed method.

Keywords: functional response, meta model, Bayesian uncertainty quantification,
model calibration, metamaterial design

1. Introduction

In recent years, computer experiments have become widely adopted in both engineering appli-

cations and scientific research to replace or support their physical counterparts. Functional

response is the mathematical representation of system behaviors, where the data are collected

over an interval of some input indices. With the advance of modern simulation and experiment

technology, accessing functional data becomes easier. Functional response can be in the form of

one-dimensional data such as a curve or higher dimensional data such as an image, which can

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



provide better physical insights. However, even with the advancement of computer technology,

full simulation based on a finite element method or a finite difference method still takes an

extensive amount of time. To reduce the amount of simulation time, historical simulated data

are usually used to build a cheaper metamodel [1], in which the functional response of

unobserved input can be predicted by either regression or interpolation. The simplest represen-

tation of functional data can be considered basis expansion, where polynomials are used to

formulate the input-output relation [2]. For frequency response analysis, Fourier series are

usually applied to replace the polynomials [3]. Both methods are categorized as linear regression,

which requires parameter estimations. Nonparametric approaches were also used to analyze

functional data in many scientific and engineering fields [4]. The purpose of building these

models is to provide the “best” estimate regarding the given data, while providing a statistical

scheme for prediction at unobserved inputs.

In this chapter, we provide a more sophisticated approach to naturally analyze functional

responses, which may suggest more insightful conclusions that may not be apparent otherwise.

We introduce one motivating example of functional response in computer experiments. In the

design of metamaterial, the goal is to establish a relationship between the physical dimensions of

a unit cell and its electromagnetic (EM) frequency response [5]. In practice, designers usually

evaluate the EM properties of a metamaterial microstructure via full-wave simulation data, such

that corresponding adjustments are constantly made to the design (dielectric architecture, micro-

structure topologies, etc.) until a desired performance is achieved. Figure 1 depicts an example of

unit cell design whose response phases differ on a frequency span along with the varying

geometric parameter. Naïve regression-based metamodels fail in dealing with such a problem

Figure 1. Example of functional response in metamaterial unit cell design-phase shift between different physical dimension

inputs.
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because they require building regressions for each output, which could be very expensive and

leaves the correlation between different frequencies unutilized. Moreover, when resonance is

involved, the functional data cannot be well described by polynomials or splines. However, this

can be overcome by some quasiphysical models, which explore the essential physical mechanism.

In addition, a more general two-stage modeling scheme can be applied, where in Stage I, we

approximate the response with rational functions. This allows us to decompose the continuous

response into a few discrete parameters. Stage II consists of a nonparametric metamodel to

capture the input dependence.

2. General models for functional response

Various statistical models, including the spatial temporal model, functional linear model, and

penalized regression splines, have been widely discussed in the past. Most models share a unified

expression that sums up a mean function μðf , xÞ and a random term εðf , xÞ, written as

yðf , xÞ ¼ μðf , xÞ þ εðf , xÞ ð1Þ

where y is the response, x ¼ {x1,…, xp} is the input variables with dimensionality p, and f

represents some index, which could be the frequency of an electromagnetic wave or the time

of a time series. Despite the shared form, these models differ in the way the mentioned terms

are estimated.

2.1. Functional linear model

To model the functional response, the primary task is to estimate the mean function μðf , xÞ, on

which a certain form is often imposed. As a generalization of linear regression models, the

functional linear model is in the form of

μðf , xÞ ¼ β0ðf Þ þ xTβðf Þ; ð2Þ

with basis functions β ¼ β0ðf Þ ;βðf Þ
� �

(βðf Þ ¼ ðβ1ðf Þ;…,βpðf ÞÞ
T

has the same dimensionality to

the input variable), which incorporate the index dependence, and can be seen as an extension

to the parameters of linear regression models. Therefore, by substituting the mean function

into Eq. (1), we obtain the resulting output

yðf , xÞ ¼ β0ðf Þ þ xTβðf Þ þ εðf , xÞ : ð3Þ

Given a certain index f , this model is a universal linear model. Furthermore, it contains an

underlying index-varying effect of x, whereas β is assumed to be a smooth function of f . Thus,

the model is referred to as a functional linear model. To estimate the coefficients β0ðf Þ and βðf Þ,

it is straightforward to apply the least squares method, which adopts the data collected at f.

However, smoothing over f componentwise, using penalized splines, can enhance the effi-

ciency of estimates [6].
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Penalized regression splines implement estimation of smoothing basis functions in functional

linear models by minimizing the penalized least squares. They are widely adopted in model-

ing functional responses due to their easy implementation and low computational cost [6].

Noted that the primary purpose of applying penalized regression splines is to estimate the

basis function β. Suppose we have n data f , yi
� �

, i ¼ 1,…, n
� �

, and the basis function is a

random sample from

βj ¼ mðf Þ þ δj, ð4Þ

with j ¼ 1,…, p. mðf Þ is an unspecified smooth mean function of β and δj is a zero mean

random error. In practice, mðf Þ can be estimated by a series of power-truncated spline basis

1, f , f 2, f p, ðf � κ1Þ
p
þ,…, ðf � κKÞ

p
þ, where {κ1,…,κK} is a given set of knots and aþ denotes the

positive part of a, i.e., aþ ¼ ðaþ jajÞ=2. Therefore, the model in Eq. (4) can be approximately

written as

βj ≈α0 þ
X

p

l¼1

αlf
l þ

X

K

k¼1

αkþpðf -κkÞ
p
þ þ δj, ð5Þ

where αj represents coefficients whose values can be obtained via least squares estimates.

Generally, overfitting in the approximation of mðf Þ may occur, which leads to high variance

and poor prediction. To avoid large modeling bias, the trade-off between model bias and

overfitting requires careful consideration. In order to resolve such a problem, variable selection

procedures should be applied to the linear regression model. However, when the number of

involved basis functions is very large, variable selection would encounter great computational

difficulty [7]. Alternatively, αj is estimated by minimizing the penalized least squares function

in the form of

X

n

i¼1

yi � xij α0 þ
X

l

l¼1

αlf
l þ

X

K

k¼1

αkþpðf -κkÞ
p
þ

( )" #2

þ g
X

K

k¼1

α2
kþp
, ð6Þ

where g is a tuning parameter determined by cross-validation or generalized cross-validation [8].

The smoothing method with penalized splines estimates also requires selection of the number

of knots and the order p, which may vary from case to case. Fortunately, the estimates are not

sensitive to these choices; and cubic splines are suggested in most cases [6], which ensure

continuous second-order and piecewise continuous third-order derivatives at the knots. Mean-

while, knots are usually selected from the interval over which f is evenly distributed, or κk is

taken to be the 100k=ðK þ 1Þth percentile from the unevenly distributed f.

2.2. Spatial temporal model

The spatial temporal model is defined by the sum of a mean function, μðf , xÞ, and εðf , xÞ of a

zero-mean Gaussian random field. It is a generalization of the Gaussian processes (GP) model,

which has been widely adopted for spatial statistic problems [4, 9].
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Both of the preceding models aim to represent the functional data in terms of their mean

functions. In contrast, the spatial temporal model utilizes the property of the normal distribu-

tion of the residuals; thus, the output can be seen as a realization of a Gaussian random field.

We assume a mean function μðf , xÞ in the form of

μðf , xÞ ¼
Xn

i¼0

hiðxÞβiðf Þ ¼
def

hðxÞTβðf Þ; ð7Þ

where hðxÞ and βðf Þ are two series of basis functions of the input variable and index variable,

respectively. Such an assumption leads to a spatial temporal model

yðf , xÞ ¼ hðxÞTβðf Þ þ εðf , xÞ; ð8Þ

where εðf , xÞ is a zero-mean Gaussian random field, and the covariance function follows the

form

cov{εðf , xÞ, εðf , x0Þ} ¼ Kðκf ; jx-x
0jÞ; ð9Þ

where Kðκf Þ denotes the covariance matrix, whose (i,j) element Kðκf ; jxi � xjjÞ measures the

covariance between xi and xj. κf is an f-dependent hyperparameter that controls the properties

of the covariance.

Suppose we have obtained observation yðf j, xiÞ at input sites ðf j, xiÞ with j ¼ 1,…, J and

i ¼ 1;…, n, where J and n are the length of indices and input settings. βðf Þ and κf can be

calculated following the hyperparameter estimation procedure within a standard Gaussian

processes model [4]. The spatial temporal model also allows predictions at unobserved sites f �
and x�. The procedures for prediction are summarized in the following algorithm.

Step 1: For j ¼ 1,…, J, calculate the best estimates of β̂ðf Þ and κf for f ¼ f j by maximizing the

(log) likelihood, given by

log pðyjXÞ ¼ �
1

2
½ðy� hðxÞβÞTK�1ðκf Þðy� hðxÞβÞ� �

1

2
logjKj �

N

2
log 2π

Step 2: According to the data {xi, yðf j, xiÞ}, obtain estimates μðf , xÞ, and κ̂ f . Calculate prediction

yðf j, x�Þ, at f ¼ f j, with the best linear unbiased prediction [2]

yðf j, x�Þ ¼ hðx�Þ
T β̂ þ KTðκ̂ f ; jx�-xjÞ K

-1ðκ̂ f ; jx� x0jÞðy� hðxÞT β̂Þ

Step 3: For new index f � ∈ ½f 1, f J� and given outputs at two existing indices yðf 0Þ and yðf 1Þ, use

linear interpolation to make predictions for yðf �, x�Þ, as

yðf �, x�Þ ¼ yðf 0, x�Þ þ ðf � � f 0Þ
yðf 1, x�Þ � yðf 0, x�Þ

f 1 � f �
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2.3. Quasiphysical model

Metamaterial frequency response, for example, modeling the resonance response is often quite

challenging and cannot be achieved with the models introduced above. This is due to that the

above models are based upon linear regression and simply encode the index dependence

within the linear index-dependent smooth basis functions. However, when distinct resonance

peaks exist, a common scenario in radio frequency engineering, fitting to these smooth basis

functions often, leads to poor accuracy [10]. To deal with these problems, we tend to utilize

some underling physical mechanism and establish a quasiphysical modeling method. For

example, the mean function μðf ; xÞ is represented by the combination of some link function

Lðf ,•Þ, which follows certain physical mechanisms, and a set of low-dimensional scaling vari-

ables ϕðxÞ, i.e.,

μ f , xð Þ ¼ L f ,ϕðxÞð Þ: ð10Þ

Then, we have yðf , xÞ ¼ L f ,ϕðxÞð Þ þ εðf , xÞ. Instead of finding a single function with respect to

both frequency index and input variables, the functional response is separated into two parts: a

physical meaningful link function Lðf ,•Þ contains the functional features, whereas the other

captures the relationship between input variables x and scaling variables ϕðxÞ. This separation

often leads to dimension reduction in statistical models. In the example of metamaterial

design, the functional response is represented by the effective permittivity of a unit cell, which

can be well fitted by a Drude-Lorentz form [11],

Lðf ,ϕðxÞÞ ¼ εa 1�
Fef

2

f 2 � f 20 þ iγef

 !

: ð11Þ

where ϕðxÞ � {εa, Fe, f 0,γe} is the intermediate variable which can be estimated via fitting the

functional response by Eq. (11), meanwhile ϕðxÞ is a function of input variables. Here, we

choose the Gaussian processes (GP) regression model for interpolate new ϕ� given previous

obtained pairs {x,ϕðxÞ }7D and new x�. Once the new ϕ� is obtained, it can then be used to

evaluate the new functional response by Eq. (11). Figure 2 displays a smooth surface of f 0 and

an example of predicted effective permittivity.

The aforementioned Drude-Lorentz model allows high accuracy only when the metamaterial

system works in a static or quasistatic regime, such that the metamaterial architecture can be

seen as a single piece of effective medium. However, for complex metamaterial systems, the

working regime is beyond static; thus, approximation accuracy by such a model is severely

deteriorated. We noted that EM waves propagate through each layer of metamaterial like a

current on transmission lines. Such a perspective transfers the EM field problems to circuit

problems. Hence, function response to a continuous spectrum is reduced to discrete LRC (short

form of inductor, resistor and capacitor) networks. We propose a two-stage modeling scheme,

where in the first stage, a vector fitting (VF) technique is adopted to provide accurate rational

approximation to frequency responses with distinct resonances. Its results are easily inter-

preted as an equivalent circuit. The approximation accuracy to a frequency response and its

corresponding equivalent circuits are shown in part (a) and (b) of Figure 3, respectively. And in
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Figure 3. Example of modeling frequency response via (a) vector fitting, (b) equivalent circuit, and (c) GP regression.

Figure 2. Example of modeling functional response assisted by the physical model: (a) Gaussian process surface of a

scaling variable; (b) predicted functional response.
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Stage II, the empirical circuit elements are then taken as the target response in statistical

models to establish the mapping input-output relation by performing regression, which also

allows predictions at unobserved input sites. Part (c) of Figure 3 presents the GP surface built

of circuit parameters over two input variables. A graphical display of this two-stage approach

is illustrated in Figure 4. To predict functional response at unobserved input, it is implemented

by first predict the presenting circuit elements and then recover the response.

3. Uncertainty quantification

In the engineering modeling and design, uncertainty is ubiquitous, due to the inability to

specify a “true” input or model parameter. Quantifying the uncertainty of the model, e.g., in

the form of predictive confidence intervals, is of great importance for decision making and

advanced design [1]. In general, uncertainty quantification can be divided into twomajor types

of problem: forward uncertainty propagation and inverse assessment of model and parameter

uncertainties [12].

The full relationship between experimental output zðf , xÞ and simulation output yðf , xÞ can be

expressed as

zðf , xÞ ¼ yðf , xÞ þ ε0ðf Þ ¼ L f ,ϕðx,θÞ þ ηðxÞð Þ þ εðf , xÞþε0ðf Þ; ð12Þ

where ϕðx,θÞ denotes the GP regression model, which depends on the input variable x and

several unobservable calibration parameters θ. η xð Þ is the additive discrepancy function (or

model bias function), which does not depend upon the calibration parameters. To reduce the

complexity of the analysis, we assume that εðf , xÞ is a zero-mean Gaussian random field and

being independent of x. And then we can merge εðf , xÞ and ε0ðf Þ together, which is denoted by

εðf Þ. Thus, the model becomes

zðf , xÞ ¼ L f ,ϕðx,θÞ þ ηðxÞð Þ þ εðf Þ ð13Þ

where εðf Þ is assumed to be a zero-mean Gaussian noise with known variance λ, εðf iÞ � Nð0,λÞ.

In forward problems, with an uncertain input x and given model parameters θ, the model

output y and other quantities of interest are to be calculated. On the other hand, the inverse

problem is to estimate the values of model parameters θ such that it makes the model’s output

fit the experimental data as accurate as possible (or satisfy some precision requirements).

Figure 4. Flowchart of the two-stage modeling approach.
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3.1. Metamodel-based uncertainty propagation

The main problem in analyzing uncertainty propagation is obtaining an analytical representa-

tion of the metamodel for any arbitrary (uncertain) input values. Given its probability density,

the Bayesian framework can provide a probability measure of random inputs on the output

field. The purpose of such an operation is to evaluate the influence of an uncertain input on the

model response.

Assume that the Gaussian process regression model is trained on a dataset with the input

X ¼ x1,…, xNf g and the corresponding intermediate variable Ψ ¼ ϕðx1Þ,…,ϕðxNÞð ÞT which is

obtained by fitting algorithm in Stage I. The GP hyperparameters learned from the data are

denoted by γ. The uncertainty of the input variable x� is captured by a probability density function,

x� � pðx�Þ ð14Þ

At a deterministic test input x�, the predictive distribution of the function, pðϕ�jx�,X,Ψ ,γÞ (for

simplicity, we use ϕ� to denote ϕðx�Þ, the output of the metamodel.), is Gaussian with mean

~ϕ� ¼ Eðϕ�jx�,X,Ψ ,γÞ ¼
XN
i¼1

ζiCðxi, x
�Þ; ð15Þ

and variance

covðφ�Þ ¼ Cðx�, x�Þ �
XN
i, j¼1

ðC� σ2IÞ�1Cðx�, xiÞCðx
�, xjÞ ð16Þ

where ζi is the ith element of column vector ζ ¼ ½Cþσ2I�Ψ . C denotes the covariance matrix of

the Gaussian process, whose ijth element is given by Cij ¼ Cðxi, xjÞ.

The final goal is to propagate uncertainty through the link function Lðf ,ϕ�Þ. The computation

of the statistics is implemented by integrating over the uncertainty with the mean

μL� ¼

ð
Lðf ,ϕ�Þpðϕ�jx�,X,Ψ ,γÞpðx�Þdϕ�dx�: ð17Þ

and the variance

σ2L� ¼

ð
½Lðf ,ϕ� � μL�Þ�

2pðϕ�jx�,X,Ψ ,γÞpðx�Þdϕ�dx�: ð18Þ

The uncertainty propagation is induced by the variability of the input variable. For example, in

metamaterial engineering, the dimension of a design parameter, say the thickness of the metallic

microstructure layer, could differ from what has been instructed during the manufacturing pro-

cesses. Frommeasurements, the value of such a variable would rather follow a distribution than be

pre-specified as an exact value. Therefore, the analysis of uncertainty propagation is needed to be

in the metamaterial design process.
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3.2. Bayesian calibration

Compared to uncertainty forward propagation, the inverse problem is more difficult yet of

great importance in enhancing the fidelity of metamodels. Two major aspects concerning the

inverse problem are measuring model discrepancy and model calibration. In this chapter, we

use the formulation to address both issues within an updating process, similar to that pro-

posed in Ref. [12].

3.2.1. The model

In this section, we introduce the details of performing Bayesian calibration with regard to

Eq. (13). The calibration parameters, denoted by θ, are defined as any physical parameters that

can be specified as an input to the statistical model given by Eq. (13). The fundamental

difference between x and θ is that the former refers to design inputs whose value can be

specified by the user during experiment and simulation, whereas the latter cannot be con-

trolled and its true value is not directly observable [12]. In the previous chapter, the calibration

parameter is not explicitly specified. However, we here include it in the framework to quantify

its uncertainty, which completes the full cycle of metamaterial design and modeling. Suppose

θ represent a constitutive parameter, say permittivity, of a dielectric used to fabricate the

metamaterial system, which cannot be accurately measured directly.

Before offering the detailed statistics for uncertainty quantification, we must note that the

purpose of parameter calibration is to provide an accurate prediction with the metamodel with

a small amount of data. An even smaller amount of experimental data is acquired to calibrate

and validate the main model. To select the “best” experiment samples, uniform experimental

design techniques are usually applied [6]. A Latin hypercube sampling, for example, is widely

used for such cases, mainly due to its good coverage property [13].

The data corresponding to the metamodel ϕ are obtained at D1 ¼ ðx
0

1,θ1Þ;…; ðx
0

N ,θNÞ
n o

,

where {x
0

1,…, x
0

N} and {θ1,…,θN} are the set of design inputs and calibration parameters.

Although the notation is included, the true values of the calibration parameters are unknown

throughout the entire calibration process. The inverse problem of uncertainty quantification is

implemented in an updated formulation with a Bayesian approach [1]. In model (13), the

metamodel, ϕðx,θÞ, and discrepancy function, ηðxÞ, are both Gaussian processes:

ϕðx,θÞ � N m1ðx,θÞ;C1 ðx,θÞ, ðx0,θ0Þð Þð Þ , ð19Þ

ηðxÞ � N m2ðxÞ;C2ðx, x
0Þð Þ, ð20Þ

where m1ðx,θÞ ¼ h1ðx,θÞ
Tβ1 and m2ðxÞ ¼ h2ðxÞ

Tβ2 [12]. C1 �, �ð Þ, �, �ð Þð Þ and C2 �, �ð Þ are covari-

ance functions, which can be parameterized by some hyperparameters, denoted by Γ1 and Γ2,

respectively. Let us denote these hyperparameters with Γ ¼ ðΓ1, Γ2Þ, collectively. There are

many candidates of covariance functions from which one can chose. For example, as one of

the most applied covariance functions, squared exponential function, in form of
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C1 x,θð Þ, x
0,θ0ð Þð Þ ¼ σ21exp �ðx� x

0ÞTV1xðx� x
0Þ

n o

exp �ðθ� θ0ÞTVθðθ� θ0Þ
n o

,

C2 x, x0ð Þ ¼ σ22exp �ðx� x
0ÞTV2xðx� x

0Þ
n o

;

ð21Þ

can provide smooth samples to infer the latent function variable. In Eq. (21), the value of

hyperparameters can be inferred via Markov Chain Monte Carlo (MCMC) techniques.

3.2.2. Data and prior distribution

Let us denote the matrix of basis functions H1ðD1Þ with rows h1ðx
0

1,θ1Þ
T ,…,h1ðx

0

N ,θNÞ
T

n o

,

which leads to the expectation of ϕ as H1ðD1Þβ1. Similarly, from the experimental observations

we can obtain ϕ̂, the estimation of ϕ by Eq. (13). It can be further augmented by the calibration

parameter at each x, with D2ðθÞ ¼ ðx1,θÞ,…, ðxn,θÞf g. In contrast to the simulation output

{x
0

1,…, x
0

N}, the experimental data are usually acquired with much smaller size, i.e., n << N,

which is in accordance with the purpose of reducing the amount of physical experiments with

calibrated models. Meanwhile, we use xi and xi
0 to describe that the observation points could

be different between two datasets. The expectation ϕ̂ of can be represented by

H1 D2ðθÞf gβ1 þH2ðD2Þβ2. We write the full data vector ΩT ¼ {ϕT , ϕ̂T}, which is obtained via

Stage I given the simulation and observation of functional response. Meanwhile, they are

normally distributed given the full set of parameters {θ,β,φ} (β ¼ ðβT1 ,β
T
2 Þ

T , φ ¼ ðλ, ΓÞ).

The goal of calibration is to obtain pðθjΩÞ, the posterior distribution of conditional only on the

full data Ω. To derive the posterior distribution of parameters, we begin with the normal

distribution of the full set of data, during which the likelihood function will yield a Gauss-

ian [14], with mean

EðΩjθ,β,ϕÞ ¼ mdðθÞ ¼ HðθÞβ, ð22Þ

where

HðθÞ ¼
H1ðD1Þ 0

H1 D2ðθÞf g H2ðD2Þ

� �

: ð23Þ

To specify the variance matrix of Ω, we need the variance matrix of ϕ, denoted by V1ðD1Þ,

whose (i,i') element is C1 ðx
0

i ;θiÞ; ðx
0

i0 ,θi0Þ
� 	

. Similarly, we can define V1 D2ðθÞf g and V2ðD2Þ.

Let C1 D1, D2ðθÞf g be the matrix with (i,j) element C1 ðx
0

i ;θiÞ; ðx
0

j,θjÞ
n o

. Therefore,

VarðΩjθ,β,ϕÞ ¼ VdðθÞ ¼
V1ðD1Þ C1 D1,D2ðθÞf gT

C1 D1, D2ðθÞf g λIþV1 D2ðθÞf gþV2ðD2Þ

� �

, ð24Þ

where I is the n� n identity matrix.

To derive the posterior distribution under the Bayesian framework, the prior distributions of

parameters, {θ,β,φ}, must also be independently specified. Following the suggestion of [12],
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we chose conjugate prior for θ and φ, and a weak prior for β, specifically pðβ1, β2Þ∝ 1, then we

have pðθ,β,φÞ ¼ pðθÞpðφÞ, where pðφÞ ¼ pðλÞpðΓ1ÞpðΓ2Þ. Meanwhile, Bayesian inference with

MCMC requires specification of proper prior distributions to perform Bayesian statistics. For

such purpose, conjugate priors are specified, e.g.

σ21, σ
2
2 � IGða; bÞ;

V1x,V2x � Wðρ, νÞ;

θ � N ðμθ;VθÞ:

ð25Þ

where IG, W , and N are inverse gamma, Wishart, and normal distributions, respectively [15].

3.2.3. Posterior distribution

Conditional on full data, the independence of parameters leads to the full joint posterior

distribution

pðθ,β,φjΩÞ∝ pðθÞpðφÞpðβÞpðΩjmdðθÞ;VdðθÞÞ

∝ pðθÞpðφÞjV�1
d ðθÞj�1=2

�exp �
1

2
Ω�mdðθÞð ÞTV�1

d ðθÞ Ω�mdðθÞð Þ
n o


 �

:

ð26Þ

To obtain pðθjΩÞ, it is required to integrate out β and hyperparameters φ from Eq. (26).

Integrating β yields

pðθ,φjΩÞ∝ pðθÞpðφÞjV�1
d ðθÞj�1=2jWðθÞj1=2

� exp �
1

2
Ω�HðθÞβ̂ðθÞ
� �T

V
�1
d ðθÞ Ω�HðθÞβ̂ðθÞ

� �

n o


 �

,
ð27Þ

where

β̂ðθÞ ¼ WðθÞHðθÞTVdðθÞ
-1Ω, ð28Þ

WðθÞ ¼ HðθÞTVdðθÞ
-1
HðθÞ

� 	�1
: ð29Þ

3.2.4. Calibration and prediction

Since the posterior distribution specified in Eq. (27) is a highly intractable function of φ, we

need Monte Carlo method to integrate out φ and get the numerical estimation for the posterior

distribution of the calibration parameters θ. The formulation is given by

pðθjΩÞ ¼
1

M

X

M

i¼1

pðθ,φijΩÞ: ð30Þ
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However, the purpose of calibration of parameters is to predict the real process rather than

achieve their values. Therefore, in practice, we are rather more interested in expressing the

posterior distribution of φ, which is a Gaussian process as well, conditional on the calibration

parameters and estimated hyperparameters. The mean and covariance function of this GP is

given by

E ϕðxÞjθ,φ,Ωð Þ ¼ hðx,θÞT β̂ðθÞþtðx,θÞTV�1
d ðθÞ Ω�HðθÞβ̂ðθÞ

� 	

, ð31Þ

where hðx,θÞ ¼
h1ðx,θÞ
h2ðxÞ

� �

, tðx,θ
	

¼
V1 ðx,θÞ;D1ð Þ

V1 ðx,θÞ;D2ðθÞð Þ þV2 x, D2ð Þ

� �

,

and covariance

cov ϕðxÞ;ϕðx0Þjθ,φ,Ωð Þ ¼ c1 ðx,θÞ, ðx0,θÞð Þ þ c2ðx, x
0Þ � tðx,θÞTV�1

d ðθÞtðx0,θÞ

þ hðx,θÞ�HðθÞTV�1
d ðθÞtðx,θÞ

� 	T
WðθÞ hðx0,θÞ�HðθÞTV�1

d ðθÞtðx0,θÞ
� 	

:

ð32Þ

Inference about φðxÞ can be implemented again numerically with its posterior mean

E ϕðxÞjθ,φ,Ω½ � at estimated θ and φ, by integrating Eq. (31) with regard to Eq. (28). Given the

estimation of φðxÞ, the analysis of z becomes straightforward by applying the link function L �ð Þ

as described in model (13).

So far, we have accomplished calibrating a metamodel in the Bayesian framework using the

experimental data, which accounts for parameter uncertainty and corrects the model discrep-

ancy and experimental uncertainty.

4. Simulation study

This section demonstrate the results obtained using the Bayesian uncertainty quantification

framework for the metamaterial design problem with the models described in Sections 2 and 3,

with examples. Of both propagation and inverse assessment, the overall model is formulated

in Eq. (13), where geometric variablew and incident angle α are input variables specified in the

simulation, i.e., xT ¼ {w,α}T . Thus, the model is expressed as

zðxÞ ¼ yðx,θÞþηðxÞþε

¼ L f ,ϕ {w,α},θð Þ þ η w,αð Þð Þ þ ε0,
ð33Þ

To demonstrate parameter calibration within the metamaterial modeling and design, we con-

sider an example where the real part of the permittivity of a dielectric material, εd, is defined as

the calibration parameters θ ¼ εd, and its prior is given normal distribution as model (25), with

mean μθ¼ 3 and variance Vθ¼ 0:5. Figure 5 illustrates the probability density function of this

prior distribution. We demonstrate a measure of uncertain propagation in Figure 6, where
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Figure 5. Comparison of prior and posterior distributions of the calibration parameter. The mean of the Gaussian

distribution shifts from 3 to 3.17, and the variance is much smaller after Bayesian calibration.

Figure 6. The effect of uncertainty propagation and results of parameter calibration.
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predictions with 2.5% quantile (green or light gray) and 97.5% quantile (red or dark gray) of the

samples are depicted to show the discrepancy induced by the uncertain input. Following the

methodology introduced in Section 3, metamodels can be established for the simulation data

and discrepancy function, with Gaussian process regression models. In our example, we

obtained 92 simulation data to build GPs and 20 observations for calibration. The posterior

distribution of the calibration parameter is also displayed in Figure 5. After calibration, the

distribution of calibration parameter has a much smaller variance. The comparison between the

prediction at posterior mean (cyan curve) and “real data” (blue dash) is shown in Figure 6,

where the discrepancy reduction is remarkable.

5. Conclusion

In this chapter, we review several conventional model for functional response and present the

quasiphysical model for functional response. Compared with the conventional models, this

model can reveal the physical insight more clearly and make better use of historical experience.

The two-stage method was presented to model the frequency response of metamaterial and

facilitate the design process. Using this approach, we decomposed the complex modeling

problem into a vector fitting-based equivalent circuit modeling process and a GP regression

process, which can easily generate the mapping function from the structure’s geometric design.

The predictive property of this model enables the massive reduction of time-consuming simu-

lations.

Another important topic with this chapter was the development and application of a Bayesian

uncertainty quantification approach in dealing with functional response. Both forward uncer-

tainty propagation and inverse assessment of the model were discussed, and a Bayesian

framework was presented with simulation experimental results to deal with the model cali-

bration for functional response. We envision that our two-stage approach can be generalized to

model any functional responses of a rational form. With the Bayesian framework for the

functional data of computer experiments, we were able to incorporate our prior knowledge

into the model and obtain a probabilistic measure of the uncertainty associated with

metamaterial system design. This general methodology enables researchers and designers to

achieve high efficiency and accuracy in modeling functional response with a considerably

small amount of data. With a Bayesian calibration framework, we are able to constantly

increase the precision of predictions of the functional response at unobserved sites, thus

replacing expensive physical experiments.
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