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Abstract

Grasslands are important terrestrial ecosystems in China, which are mainly distributed
in arid and semiarid regions. Based on the multiyear field experiments in the semiarid
grassland, the effects of land use practices on grassland above- and belowground com-
munity characteristics were investigated. In addition, how the annual climate factors
regulate grassland productivity was also studied to detect critical periods for grass
growth. Results showed that grazing exclusion increased grassland root biomass, root
length density and root surface area with declining plant species richness. After grazing
exclusion, with perennial bunchgrasses being predominant in root community all the
time, proportion of perennial rhizome grasses increased and proportion of perennial
forbs declined. Clipping significantly decreased the annual mean soil respiration and its
components. The root respiration was more sensitive to clipping than microbial respira-
tion. Temperature increments during the early stage of the growing season (April–May)
were positively correlated with aboveground productivity. However, hot and dry sum-
mer (June–July) strongly inhibited aboveground productivity. Impacts of drought and
heat in August on productivity were negligible. Increased temperature and precipitation
during the senescence period (September–October) and a warmer dormancy phase
(November–March) were negatively correlated with productivity in the following year,
while precipitation during the dormancy period had no detectable effects.

Keywords: semiarid grassland, grazing exclusion, soil respiration, climate variation,
biodiversity, productivity

1. Introduction

Grasslands are among the largest biomes in the world, accounting for nearly 25% of the land

surface on earth [1, 2]. Grassland ecosystem plays a key role in balancing the concentrations of

global atmospheric greenhouse gases through carbon storage and sequestration [3]. Grasslands

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



also significantly contribute to food security by providing food for ruminants, which are sources

of meat and milk for human consumption. China has nearly 4 million km2 of grasslands,

accounting for 40% of China’s total land area and 13% of the world’s total grassland [4, 5].

Concurrent with population growth and socioeconomic development, however, China’s grass-

lands have experienced rapid degradation over the last few decades due to climate change and

unsound anthropogenic impacts [6, 7]. To combat the grassland degradation and restoration of

the environment, the Chinese government has launched batches of national-scale conservation

policies during the late 1990s and early 2000s. Two of them, the Grain for Green Program (GGP)

and the Grazing Withdrawal Program (GWP) cover most of the grassland regions [8–10].

Restoring degraded grassland ecosystems is critical to the ecological and economical sustainabil-

ity of these systems.

About 90% of grassland was degraded as a consequence of overgrazing by livestock in

China [11]. Overgrazing induced considerable destructive effects on plant community and soil

resources [12]. Grazing exclusion has been proven to be a successful practice to restore

degraded grasslands throughout the world [13, 14]. Many studies pointed out significant

enhancing effects of grazing exclusion on plant coverage, density and aboveground biomass

in the early stage, which were diluted or even reversed as grazing exclusion time

increased [11, 15]. Meanwhile, grazing exclusion not only significantly increased storage and

availability of soil water and nutrients through more litter inputs [14, 16], but also played an

important role in structuring community of soil eukaryotes [17]. Contrasted with numerous

researches on aboveground responses to grazing exclusion, researches about root responses

are largely limited by the studying difficulties and complexity of plant roots. Current studies

on fenced grassland root mainly focused on root biomass and its distribution pattern in

different types of grassland [12, 18]. Root morphology and/or physiology traits and plasticity

have received considerable attentions due to their capability of foraging soil nutrients [19, 20].

There is a considerable difference in root traits and plasticity among different plant species,

normally with greater ones in graminaceous species [21]. The hierarchy of root trait values and

plasticity among species and plant functional groups in the vegetation could drive early-stage

competition for water and nutrients, which ultimately made an effect on vegetative succes-

sion [22, 23]. However, major knowledge gaps still exist, concerning responses of plant root

morphological traits and root community composition to grazing exclusion in long-term

restored grassland.

Soil respiration plays an important role in regulating soil C pools and net C balance in

terrestrial ecosystems [24]. The rate of soil respiration can be influenced by climate change

(global warming, precipitation regimes, etc.), as well as anthropogenic activity (land use

change and management practice), with consequent impacts on terrestrial C cycling and

feedbacks to climate change [25, 26]. As one of the common land use practice, clipping or

mowing of hay is regarded as a critical component of global change [27]. The effect of clipping

on soil respiration had been investigated widely in different ecosystems; however, the results

were various and inconsistent with each other [28, 29]. One reason for the variability of

previous studies in clipping effect on soil respiration is that soil respiration is composed

of two different components. One of the components is root respiration, which refers to the

CO2 emission from plant roots, mycorrhizal fungi and other associated microorganisms
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(rhizosphere microorganisms) that depend on the contemporaneous [30]. Another component

is microbial respiration, which is defined as the CO2 emission from the decomposition of plant

litter and soil organic matter by soil microorganisms [31]. Substrate sources of the two soil

respiration components have different magnitudes, turnover rates and seasonal patterns,

which make the two soil respiration components respond differently to climate change and

land use practice [27, 32]. In addition, the contributions of root respiration to soil respiration

are various in different ecosystems, which may also be responsible for the inconsistent results

of the clipping effect on soil respiration [33]. Hence, quantifying the individual changes of root

and microbial respiration in response to clipping is imperative for a comprehensive under-

standing of ecosystem carbon cycling.

Climate-driven variability in grassland productivity impacts the global carbon balance, eco-

system service delivery, and profitability of pastoral livelihoods. Aboveground net primary

productivity (ANPP) of grasslands is highly temporally variable, as compared to other ecosys-

tems, such as forest and cropland [34]. Much of the previous work considering the impacts of

climate variability on ANPP has focused on annual precipitation and temperature [35, 36].

While the importance of these annual-scale metrics has often been confirmed in studies at

regional scales, numerous site-specific reports have indicated that inter-annual variability in

ANPP is poorly or even not at all correlated with annual climate conditions [37], with much of

the temporal variation in ANPP left unexplained [36]. Changes in precipitation or temperature

during certain parts of the year are more relevant drivers of ANPP than annual changes [38, 39],

since vegetation production responds differently to climatic variation during different sea-

sons [38, 40]. Future climates are likely to include more frequent extreme weather events and

more pronounced seasonal variation in temperature and precipitation.

To provide a new perspective of biodiversity restoration and the basis for management of

degraded grassland in semiarid areas, we firstly conducted with a space for time substitution

method at Yunwushan National Nature Reserve, a typical steppe grassland on the Loess

Plateau with different grazing exclusion timescales to determine effects of grazing exclusion

on grassland root biomass, morphological traits and root community compositions in plant

functional group level. Then, a clipping experiment was carried out to investigate the effect of

clipping on root and microbial respiration. Finally, long-term productivity and weather

records since 1982 were collected to examine the impacts of climate variability at different

times of the year on grassland productivity.

2. Materials and methods

2.1. Study area

This research was conducted in Yunwushan National Natural Grassland Protection Zone in

Ningxia Hui Autonomous Region, China (36�100-36�170N, 106�210-106�270E, 1800–2100 m a.s.l.).

Since 1982, the grassland has had been protected as a long-term monitoring sites for restoration

of degraded grassland. The site is located at an elevation from 1800 to 2100 m and has a total

area of 6660 ha. Mean annual temperature during 1982–2011 was 7�C with mean monthly
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temperature extremes of �22�C in January and 25�C in July. Annual precipitation averaged

425 mm. Annual evaporation is 1017–1739 mm, and the frost-free season averages 137 days. Soil

type in the study area is montane gray-cinnamon soil. The vegetation community consists of 297

plant species and is dominated by Stipa plants (Stipa bungeana, Spectrunculus grandis, Salvia

przewalskii), and main forbs include Artemisia sacrorum and Thymus mongolicus.

2.2. Experimental design and sampling

2.2.1. Grazing exclusion

Five experimental sites along a chrono-sequence of grassland restoration were selected in

August 2012, when peak aboveground biomass occurred, with grazing exclusion for 30 years

(GE30), 22 years (GE22), 9 years (GE09), 5 years (GE05) and continuous grazing at a medium

density during the whole year (four sheep/ha) (GG), respectively. A transect of 300 � 100 m

with representative vegetation was selected as the study area within each site, in which three

pseudo-replicated plots (30 � 30 m) were established, and three subplots (2 � 2 m) were set up

with a minimum interval of 15 m in each plot for field sampling.

2.2.2. Soil sampling

With aboveground plant parts being attached, a soil block of 50 cm long� 50 cm wide� 30 cm

deep was excavated in each subplot and then was gently loosen by hand to get the intact root-

soil mixtures with minimal breakage. Plant root-soil mixtures were soaked in water for twenty

minutes and were gently shaken for several times to remove bulk soil.

2.2.3. Plant root sampling

Plant roots were carefully washed under flowing water to remove tightly attached organic

matter and mineral soils and carefully identified roots in plant functional group level

according to plant aboveground parts, root color, diameter, branches and texture. Five func-

tional groups (PFGs) were categorized as perennial rhizome grass (PR), perennial bunchgrass

(PB), PF perennial forbs (PF), shrubs and semishrubs (SS) and annuals and biennials (AB)

[26, 41]. Functional group richness and species richness were the number of functional groups

and plant root species appearing in one subplot, respectively.

After cutting down plant aboveground parts, roots in the same plant functional groups were

spread on a transparent, plastic tray and scanned at a resolution of 300 dpi (Epson Scanner

(10000XLPro, Canada). Root images were analyzed with WinRhizoPro software (V2012b, Regent

Instruments, Canada) to measure root length (m), root surface area (cm2). Thereafter, roots were

oven-dried at 65�C for 48 h and then weighed to gain root mass. Root biomass, root length

density, specific root length and specific root area are calculated in equations [42] as follows:

Root biomass ðRB, g m�2Þ ¼ Root mass=Sampling area ð1Þ

Root length density ðRLD, mm�3Þ ¼ Root length=Sampling volume ð2Þ
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Specif ic root length ðSRL, mg�1Þ ¼ Root length=Root mass ð3Þ

Specif ic root area ðSRA, cm2 g�1Þ ¼ Root surf ace area=Root mass ð4Þ

2.2.4. Clipping management

The experiment was designed as a randomized block with five replicate blocks. Clipping was

done once a year in the spring (June 20, 2014, and June 16, 2015). The trenching method was

used in this study to separate soil respiration into root and microbial respiration [43]. In each

plot, one root-free small plot (0.3� 0.3 m) lined with nylon mesh (0.038 mmmesh size) in 0.5 m

deep was randomly assigned. Soil respiration and its components were measured using an LI-

6400 portable photosynthesis system attached to a soil CO2 flux chamber (800 cm3 in total

volume; LI-COR 6400-09 TC, LI-COR Inc., Lincoln, NE, USA). The CO2 efflux measured in the

root-free plots reflects only microbial respiration, while CO2 efflux measured in the whole-soil

plots (roots are not removed) resulted from both microbial and root respiration. The difference

between the CO2 efflux values for root-free plots and whole-soil plots was used to indicate root

respiration. However, we observed that the soil temperature and moisture in root-free plots

were significantly higher than those in whole-soil plots. The actual root respiration would be

underestimated if it is directly calculated from the difference of measured CO2 flux between

the whole-soil plot and root-free plot. To eliminate this error, we corrected the measured

microbial respiration by using the linear Eq. (5), simulating the relationship between microbial

respiration, soil temperature and soil moisture in root-free plots:

MRmeasured ¼ a� T þ b�W þ c ð5Þ

whereMRmeasured, TandWare the microbial respiration (μmol CO2m
�2 s�1), soil temperature (�C)

and volumetric soil water content (%) measured in the root-free plot, respectively. a, b and c are

coefficients relevant to soil temperature and moisture.

Then, we determined the corrected microbial respiration (MRcorrected) using the soil tempera-

ture and moisture in the whole-soil plot. Root respiration (RR) calculated by the difference

between the SR and the MRcorrected is as follows:

RR ¼ SR�MRcorrected ð6Þ

Soil temperature at the depth of 5 cm was determined using a thermocouple probe connected

to the LI-6400 adjacent to each PVC collar, and volumetric soil content in the 0–10 cm soil

layers was measured using a TRIME TDR probe (IMKO, Ettlingen, Germany) adjacent to the

same sites after soil temperature measurements. The root length production was measured

using the minirhizotrons technique [44]. Peak aboveground biomass (AGB) was estimated

by harvesting plant tissues above the soil surface from one 0.5 � 0.5 m quadrats at each plot

in late September of both years. After aboveground plant residues cleaned, soil samples to

depths of 10 cm were collected. Roots were collected from soil samples to determine below-

ground biomass (BGB). WSOC was measured using an automated total organic C analyzer
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(TOC-Vcph, Shimadzu, Japan) [45]. SMBC was determined using the chloroform fumigation

extraction method [46].

2.2.5. Biomass data collection

Field harvest was conducted in mid or late August each year from 1982 to 2011, when the

standing biomass reached its maximum. For each harvest in each year, 15 quadrats (1 � 1 m)

were selected along a transect (300 � 100 m). Aboveground biomass was clipped and dried at

65�C to constant weight. Between 1982 and 1992, the degraded grassland recovered rapidly

and biomass production increased almost linearly. It was mainly caused by the exclusion of

human disturbance, particularly overgrazing. After 1992, grasslands assumed a relatively

balanced state with lower variation in productivity and diversity. Further variation in produc-

tivity was likely caused primarily by climatic variation. We therefore used the peak above-

ground biomass during 1992–2011 to evaluate the impacts of climate variability on grassland

productivity. Mean daily temperature and precipitation during 1992–2011 were obtained from

a weather station established in 1982, located only 0.9 km from the surveyed transect.

2.3. Data analyses

2.3.1. One-way analysis of variance

A one-way analysis of variance (ANOVA) followed by Tukey’s HSD test was conducted to

determine the effect of grazing exclusion time on grassland root traits (RB, RLD, RSA, plant

functional group richness, plant species richness), the differences of root traits (SRL, SRS) and

proportion in root community between plant functional groups, and the effects of clipping

over time on soil respiration, microbial respiration, root respiration, soil temperature and soil

moisture. Differences were considered significant for all statistical tests at P < 0.05. All the

statistical analyses were conducted using IBM SPSS 18.0 (IBM, USA). Graphs were created

with Sigma plot 12.5 (Systat Software, USA).

2.3.2. Partial least squares

Partial least squares (PLS) regression was used to analyze the responses of grassland produc-

tivity to variation in daily temperature and precipitation during all 365 days of the year based

on data for 1992–2011. The two major outputs of PLS analysis are the variable importance in

the projection (VIP) and standardized model coefficients. The VIP values reflect the impor-

tance of all independent variables for explaining variation in dependent variables. The VIP

threshold for considering variables as important is often set to 0.8. The standardized model

coefficients indicate the strength and direction of the impacts of each variable in the PLS

model. The root-mean-square errors (RMSEs) of the regression analyses were calculated to

determine the accuracy of the PLS model. In the PLS analyses, periods with VIP greater than

0.8 and high absolute values of model coefficients represent the relevant phases influencing

grassland productivity. Positive model coefficients indicate that increasing temperature or

precipitation during the respective period should increase ANPP, while negative model coeffi-

cients imply negative impacts on productivity.
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3. Results and discussion

3.1. Effects of grazing exclusion on grassland root biomass and morphological traits

Results demonstrated that long-term grazing exclusion significantly increased grassland root

biomass, root length density and root surface area (P < 0.05) (Table 1). The improved root

biomass was mainly due to the increased aboveground productivity driven by the compensa-

tory growth of dominant plant species after grazing removal [11, 18]. In the absence of

herbivores, plants produced more roots to explore soil resource for aboveground growth,

inducing increases in grassland total root length and surface area [47, 48]. Besides, our results

indicated that the response of plant belowground richness to grazing exclusion followed a

hump-like pattern, similar with responses of plant aboveground richness and diversity to

grazing exclusion [11, 16], but with an earlier peak in the early-restoration stage (site GE05).

Possibly long-term grazing exclusion caused a drastic decrease in bud bank size of forbs,

followed with the decline or even disappearance of plant species relying on resprouting from

bud bank after disturbance [49].

3.2. Root traits and proportional changes of five plant functional groups after

grazing exclusion

Plant SRL and SRS showed significant differences between five plant functional groups (P < 0.05).

Grasses had a much higher specific root length and specific root surface area than forbs. In detail,

for SRL, PB had the highest value of 11.80 m g�1, tripling that of SS (3.46 m g�1), while PR and AB

had similar SRL value, higher than that of PF (Figure 1a). For SRS, there were no marked

variations among PR, PF and AB, and they were significantly higher and lower than those of SS

and PB, respectively (Figure 1b). Our results indicated that plant functional groups differed

significantly in their proportions (P < 0.05) (Figure 2a–d). As the predominant plant functional

groups, PB and PF accounted for more than 50% in total. Based on root biomass, proportions of

PR and PB significantly increased with a significant decrease in PF proportion after long-term

grazing exclusion (P < 0.05), and SS and AB showed little change (P > 0.05) (Figure 2a). Based on

root length density and root surface area, grazing exclusion significantly increased PR proportion

and decreased PF proportion (P < 0.05), while PB and SS show little responses to grazing

exclusion (P > 0.05) (Figure 2b, c). Interestingly, with the prolonged grazing exclusion years,

Site Root biomass (g m�2) RLD (103 m m�3) RSA (104 cm2 m�3) PFG Richness Plant species richness

GG 163.32 � 11.27 c 1.76 � 0.19 c 3.04 � 0.32 b 3.55 � 0.29 10.78 � 0.74ab

GE05 172.22 � 17.07 bc 2.10 � 0.22 bc 3.37 � 0.29 b 4.33 � 0.17 13.00 � 0.62 a

GE09 170.45 � 12.35 bc 2.10 � 0.32 bc 3.43 � 0.30 b 4.00 � 0.24 8.56 � 0.76 bc

GE22 236.61 � 21.52 ab 3.03 � 0.29 ab 4.02 � 0.24 b 3.44 � 0.24 6.78 � 0.74 c

GE30 244.41 � 21.25 a 3.85 � 0.25 a 5.21 � 0.30 a 3.56 � 0.24 7.44 � 0.90 c

Different lowercase letters indicate significant differences (P < 0.05) between five study sites.

Table 1. Root biomass, root length density (RLD), root surface areas (RSA), plant functional group (PFG) richness and

plant species richness in study sites.
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proportions of PR and PB in plant species richness significantly increased (P < 0.05), and those of

PF and AB significantly decreased (P < 0.05), while SS showed little fluctuation (P > 0.05)

(Figure 2d).

As the guerrilla plant species, PR had advantages in spatial propagation and exploration of

adjacent nutrient patches by increasing rhizome and root length after grazing exclusion [50].

Additionally, dispersal by rhizomes allowed temporal release of PR plants from their natural

enemies (i.e., root herbivores and pathogens), which stimulated plant growth in return [51].

The compositional changes of plant functional groups mainly resulted from their different

responses to improved soil resources after grazing exclusion [52]. Compared with forbs,

grasses had a stronger correlation with soil N [16], and grasses’ higher SRL and SRS consoli-

dated their superiority in acquiring soil resources [20]. Given that nitrogen deposition often

occurs with accompanying rainfall events, which forms water and nutrient pulses [53], plants

with larger root systems (i.e., grasses) gained more benefit than smaller plants at the start of

the nutrient pulse [54]. Therefore, our study indicated that the hierarchy of root system size

and root traits among five plant functional groups determined grassland root pattern in

semiarid grassland after long-term grazing exclusion.

3.3. Effect of clipping on soil respiration

Clipping significantly reduced the mean soil respiration by 14.7% (P < 0.001) and 11.4% (P < 0.05)

in 2014 and 2015, respectively (Table 2, Figure 3a). Previous research has reported that clipping

could decrease the soil respiration in grassland ecosystems, which was most likely due to the

restriction of translocation of photosynthate from aboveground plant tissues to roots and rhizo-

sphere microorganisms [31]. In addition, clipping increased soil temperature by 0.6�C (P > 0.05)

Figure 1. SRL traits (a) and SRS traits (b) of five plant functional groups. Different lowercase letters indicate significant

differences (P < 0.05) between plant functional groups.
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Source of variation SR MR RR ST SM

2014 2015 2014 2015 2014 2015 2014 2015 2014 2015

Treatment <0.001 0.034 0.005 0.008 <0.001 0.092 0.110 0.023 0.305 0.544

Time <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Treatment � time <0.001 0.011 0.746 0.134 <0.001 0.078 0.289 0.059 0.742 0.286

Table 2. P-values of repeated measures ANOVA of total soil respiration (SR), microbial respiration (MR), root respiration

(RR), soil temperature (ST) and soil moisture (SM) in a temperate grassland of Loess Plateau.

Figure 2. Distribution proportions of five plant functional groups in root biomass (a), root length density (b), root surface

area (c) and plant species richness (d) in grazing grassland (GG), grassland with grazing exclusion for 5 years (GE05), 9

years (GE09), 22 years (GE22) and 30 years (GE30), respectively. Different lowercase letters indicate significant differences

(P < 0.05) between five plant functional groups for each grassland type, and n.s. indicates no significant difference (P >

0.05) for each plant functional group between five grassland types; * and ** indicate significant differences for each plant

functional groups between five grasslands in P < 0.05 level and P < 0.01 level, respectively.
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in 2014 and 1.3�C (P < 0.05) in 2015 in our study (Figure 4). We speculated that there was a

potential increase in soil respiration driven by soil temperature, because higher soil temperature

has been reported to stimulate the activities of plant roots and soil microbes [29]. However, the

increase of soil respiration due to elevated soil temperature may not compensate for decrease in

soil respiration caused by reduced photosynthesis, leading to the decrease in soil respiration after

clipping.

3.4. Effect of clipping on root respiration

In the present study, clipping reduced the mean root respiration by 22.1% (P < 0.001) and 13.3%

(P > 0.05) in 2014 and 2015, respectively (Table 2, Figure 3b). We found a prompt response in

root respiration in the first measurements after two days of clipping treatment, following the

sharp reduction of 49.2 and 26.4% within two weeks after treatment in 2014 and 2015, respec-

tively (Figure 3b). We also found that the sharp decrease in root respiration was consistent

with the sudden reduction of root production in the same periods (Figures 3b and 5a).

Considering the significant correlation between the root production and root respiration

(Figure 5a), we attributed the decrease of root respiration after clipping to the limited supply

Figure 3. Seasonal variations of soil respiration and its components in the control and clipping treatments. Values are

means, standard deviations (n = 5). Asterisks denote significant difference (P < 0.05) between treatments. Arrows indicate

clipping dates.
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of substrate for root growth and production. However, in September–October in 2014 and

April–May in 2015, a higher root respiration was observed in the clipping plots (Figure 3b).

Previous studies by Wan et al. [55] and Zhou et al. [33] reported that clipping could stimulate

root respiration by promoting plant regrowth and root biomass. In our study, the higher root

production observed in clipping plots in September–October in 2014 and April–May in 2015

might be responsible for the higher root respiration in the same periods (Figures 3c and 5a).

3.5. Effect of clipping on microbial respiration

Microbial respiration exhibited relatively constant lower values in clipping plots almost through-

out the study period in our study. Clipping significantly reduced microbial respiration by 6.0%

(P < 0.05) and 9.9% (P < 0.05) in 2014 and 2015, respectively (Table 2, Figure 3c). The main

explanation of this result was the reduced supply of labile C for mineralization by soil microor-

ganism after clipping [56]. In the present study, clipping reduced the WSOC by 20.6% (P > 0.05)

and 27.1% (P < 0.05) in 2014 and 2015, respectively (Figure 5b). The decrease of WSOC might be

responsible for the reduction of SMBC in clipping plots in our study (Figure 5c), because WSOC

was one of the main labile C substrates for soil microorganism. In addition, SMBC was reported

to be significantly related to microbial respiration in previous research [57], which was similar to

our results (R2=0.88, P < 0.05). Hence, we attributed the decrease of microbial respiration after

clipping to the reduction of available C supply for microbial mineralization.

3.6. Response of grassland productivity to variation in daily temperature

Between 1992 and 2011, the average harvest date of peak aboveground biomass for grassland

at Yunwushan National Nature Reserve was 15th of August. The 365 daily temperature values

between the previous September and August of the year of harvest were used as independent

variables in the PLS regression. A low root-mean-square error (RMSE) of 8.13 g m�2 for the

resulting PLS model indicated that the model was a good fit for the data. Based on the VIP and

standardized model coefficients of the PLS analysis, we found that warming during different

periods had varied impacts on grassland productivity (Figure 6).

Figure 4. Seasonal variations of soil temperature in the control and clipping treatments. Values are means, standard

deviations (n = 5).
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Between 30 March and 30 May, model coefficients for temperature analysis (Figure 6) were

always positive and VIP values mostly exceeded 0.8 (the threshold for variable importance),

indicating that warming in April and May increases grassland productivity. During 31 May–1

August, model coefficients were consistently negative and VIP values were mostly important,

implying that temperature increase in summer (June–July) depressed productivity, forming a

striking contrast with the impacts of spring warming. It was of interest that the relevant

periods influencing productivity, as identified by PLS regression, were almost the same as the

phases of plant growth (i.e., the early and middle stages of the growing season) at our study

area. No obvious impacts of temperature variation in August on grassland productivity were

apparent. During September–October (the senescence period for vegetation), most model

coefficients were negative, indicating that high temperature at that time was unfavorable for

productivity of the following year. During 1 November–29 March, the dormancy period,

model coefficients were mostly negative, although this phase also included some short inter-

vals with positive coefficients. This variation might indicate that dormancy for grassland is a

complex physiological and ecological process. Moreover, it seems possible that the strength of

temperature impacts varies throughout the dormancy period. Taking a broader view at model

coefficients and aiming at consistency with established phonological phases, we interpreted

the entire period (November–March) as another relevant period during which temperature

increases appeared to reduce grassland productivity.

3.7. Response of grassland productivity to variation in daily precipitation

The 365 daily precipitation values between the previous September and August were also used

as independent variables in the PLS analysis. The resulting model still proved to be a good fit

for the data, with an RMSE of 6.53 g m�2. In contrast to the positive effects of higher precipi-

tation in June and July, increasing rainfall during the senescence period (September–October)

and the early growing season (April–May) was correlated with low productivity (Figure 6).

Similar to temperature effects in August, no significant relationship was found between grass-

land ANPP and precipitation in August. During the dormancy period, there was no consistent

correlation between precipitation and productivity. Positive impacts were almost offset by

negative ones.

Figure 5. Comparison of root length production (a), water-soluble organic carbon in trenched plots (b) and soil microbial

biomass C in trenched plots (c) among treatments. Asterisks and different letters denote significant difference (P < 0.05)

between treatments. Arrows indicate clipping dates.
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The increased temperature with reduced precipitation in spring (April–May) could improve

grassland productivity. Biomass produced in spring is often believed to be limited by cold

temperatures at mid or high latitude [58]. Temperature increases early in the growing season

may stimulate plant growth directly by raising leaf temperatures or indirectly by increasing water

absorption and N mineralization (Figure 7) [40]. Additionally, warmer springs also likely acceler-

ate snowmelt and advance spring greening [59], which might lengthen the growing season and

result in increased photosynthesis and carbon acquisition [60]. In contrast to some studies

reporting that more precipitation during April–May promoted grassland productivity [39], we

found a negative relationship between these variables. To some extent, this discrepancy can be

explained by the site hydrology. Frequent winter snow (lasting from November to March) in our

study area provides sufficient soil water for plant growth in early spring. The sporadic precipita-

tion during April–May (with an average of 59.5 mm during these two months between 1992 and

2011) may not have important direct impacts on productivity. In contrast, low air and soil

temperature, as well as limited solar radiation caused by frequent rain events in May, might

partially explain the negative correlations between spring rainfall and grassland productivity.

Warming in summer coinciding with drought can generate physiological stress for plant

growth (Figure 7) [61], which can explain the reduced productivity in our study area. More-

over, increases in summer temperature can also lower ANPP, perhaps by reducing soil mois-

ture through increased evapotranspiration. Decrease in precipitation amounts and lengthening

of intervals between precipitations events during the past 20 years further reduced soil water

Figure 6. Results of partial least squares (PLS) regression correlating grassland productivity at Yunwushan during 1992–

2011 with 15-day running means of (a) daily mean temperature and (b) daily precipitation from previous September to

August. Blue bars in the top row indicate that VIP values are greater than 0.8, the threshold for variable importance. In the

middle row, red color means model coefficients are negative and important, while green color indicates important

positive relationships between grassland productivity and climate variables. The black lines in the bottom panel stand

for daily mean temperature and precipitation, while gray, green and red areas represent the standard deviation of daily

climate variables.
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availability in our study region. This is in line with the hypothesis that impacts of climate

variation and change on plant productivity might occur via variability in soil moisture [36].

Continuous warming and drought in summer could also affect N mineralization negatively

and limit soil resource availability, thereby reducing productivity.

PLS regression did not detect a response of grassland productivity to climatic variation in

August. Compared to climate variation during June–July, August shows more variable tem-

perature and precipitation in our study region, although August is cooler on average than July.

For instance, the coefficient of variation (CV) of precipitation in August between 1992 and 2011

was 53.3%, while it was only 33.5% for June–July. It is also worth noting, however, that in our

study biomass was mostly harvested around the 15th of August, so that the vegetation was

only exposed to half a month of August conditions.

Increases in temperature and precipitation during September–October in the previous year

were negatively correlated with productivity in the current year, which can be partially

explained by the widely reported delays of senescence caused by warming and wetting later

in the year [62]. Delay in the senescence period may be related to some extent to increased soil

nutrient and water depletion. This would imply that fewer resources may have been available

for biomass production in the following year.

While some studies reported that weather during the dormancy period had limited impacts on

grassland productivity [38], such effects may become more important, as temperature in

winter further increases. Our results indicated that high temperatures during the dormancy

period were negatively correlated with productivity. This is consistent with warming experi-

ments in two limestone grasslands in the UK, which showed that winter heating combined

with drought reduced the biomass of both communities [63]. Warmer winter can lead to some

unanticipated consequences (Figure 7). The most direct impacts have been a shortening of the

Figure 7. Potential relationships between grassland productivity and climate variability during (a) April–May, (b) June–

July and (c) November–March at Yunwushan.
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snow season and a reduction in snow cover, which have been observed in our study area.

Declines in the area and depth of snow cover may expose the land surface to more frequent

freezing events, exerting negative effects on plant growth. This is supported by observations in

northern Scandinavia where extensive areas of vegetation died due to loss of snow cover after

extreme winter warming in December 2007 [64]. Increased demands of soil nutrients and

water due to accelerated root and microorganism metabolism caused by winter warming

might also contribute to the productivity reduction. Finally, variation in spring phenology can

also help explain this phenomenon. The timing of spring phenology in most temperate plants

results from the interplay of winter cold and spring heat. Plants that evolved in temperate

climates fall dormant in autumn to protect themselves from winter freezes and will only

resume growth in spring when they have been exposed sufficiently to cold conditions [65].

Temperature increases in spring can advance spring phenology (e.g., greening for grassland),

but warming in winter may delay the fulfillment of chilling requirements and thus lead to a

slowdown in the advance of spring events or even later onset of spring phenology [65, 66]. The

advancing trend in spring greening still dominates climate change responses of plants in our

study region so far, since chilling requirements for vegetation are easily satisfied in all winters

under the present cold climate with a mean temperature of �2.6�C for the dormancy period.

As global warming progresses, especially when rates and effects of warming in winter exceed

those in spring, advances in greening might be slowed or even turn into delays. We therefore

recommend increased scientific attention to impacts of winter warming on grassland produc-

tivity and the timing of spring phenology events.

4. Conclusion

Based on the results of the long-term experiments highlighted in this chapter, grassland root

biomass and root morphological traits significantly increased after long-term grazing exclu-

sion, accompanying with significantly declined plant species richness. The higher SRL and SRS

may determine the increased proportion of grasses. The root respiration and microbial respi-

ration exhibited different response patterns to the spring clipping. Compared with the rela-

tively constant lower values in clipping plots almost throughout the study period for microbial

respiration, root respiration fluctuated greatly in response to clipping treatment. In addition,

soil water content could affect the response of soil respiration and its components to clipping

in aspect of magnitudes and resilience in the semiarid grassland ecosystem. PLS regression

between ANPP and daily climate variables during the past 20 years successfully delineated

how timing of temperature and precipitation variability affected grassland productivity on the

Loess Plateau in China. The analysis of productivity responses should account not only for the

magnitude of climate variation but also for its timing.

5. Future perspective

The land use practices have substantially improved the above- and belowground ecophysio-

logical processes in the degraded semiarid grasslands. At the site level, plant roots and soil
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organisms are two important parts in the plant-soil feedback system, which affect the growth

of plants and formation of interspecific competition relationship and vegetation pattern.

Therefore, future studies will focus on evaluating the rules of plant-soil feedback during the

plant growth process. At the macro level, has climate variation contributed to grassland

restoration, and how the LUCC and human activities have affected grasslands in the ecological

projects implemented regions? These are still open questions that need to be addressed. These

studies will provide insights in effective management measurements for the ecological resto-

ration projects and may serve as guidelines for government and policy makers in adjusting

future ecological policies and managing grassland production in the western China for

adapting to climate conditions.

Acknowledgements

This work was supported by National Key Research Program of China (2016YFC0500700),

National Natural Science Foundation of China (31602004, 41230852, 31601987, 41601586,

41601053), Deployment Program of the Chinese Academy of Sciences (KJZD-EW-TZ-G10)

and Technical System of Modern Forage Industry of the Ministry of Agriculture (CARS-35-

40). We thank Weijun Li, Xiuyun Ji and the management bureau of Yunwushan Grassland

Natural Reserve for their help with the field experiments.

Author details

Jimin Cheng1,2*, Chengcheng Gang1,2, Liang Guo1,2, Wei Li1,2, Jingwei Jin1,2, Jishuai Su3 and

Lin Wei1,2

*Address all correspondence to: gyzcjm@ms.iswc.ac.cn

1 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China

2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of

Water Resources, Yangling, China

3 College of Animal Science and Technology, Northwest A&F University, Yangling, China

References

[1] O’Mara FP. The role of grasslands in food security and climate change. Annals of Botany.

2012;110:1263–1270. DOI: 10.1093/aob/mcs209

[2] Scurlock JMO, Hall DO. The global carbon sink: A grassland perspective. Global Change

Biology. 1998;4:229–233. DOI: 10.1046/j.1365-2486.1998.00151.x

Plant Ecology - Traditional Approaches to Recent Trends58



[3] Gang CC, Zhou W, Wang ZQ, Chen YZ, Li JL, Chen JM, et al. Comparative assessment of

grassland NPP dynamics in response to climate change in China, North America, Europe

and Australia from 1981 to 2010. Journal of Agronomy and Crop Science. 2015;201:57–68.

DOI: 10.1111/jac.12088

[4] Zhou W, Gang C, Zhou L, Chen Y, Li J, Ju W, Odeh I. Dynamic of grassland vegetation

degradation and its quantitative assessment in the northwest China. Acta Oecologica.

2014;55:86–96. DOI: 10.1016/j.actao.2013.12.006

[5] Ni J. Carbon storage in grasslands of China. Journal of Arid Environments. 2002;50:205–218.

DOI: 10.1006/jare.2201.0902

[6] Mu SJ, Yang HF, Li JL, Chen YZ, Gang CC, Zhou W, et al. Spatio-temporal dynamics of

vegetation coverage and its relationship with climate factors in Inner Mongolia,

China. Journal of Geographical Sciences. 2013;23:231–246. DOI: 10.1007/s11442-013-

1006-x

[7] Kang L, Han X, Zhang Z, Sun OJ. Grassland ecosystems in China: Review of current

knowledge and research advancement. Philosophical Transactions of the Royal Society B:

Biological Sciences. 2007;362:997–1008. DOI: 10.1098/rstb.2007.2029

[8] Wei L, Liu J, Su J, Jing G, Zhao J, Cheng J, Jin J. Effect of clipping on soil respiration

components in temperate grassland of Loess Plateau. European Journal of Soil Biology.

2016;75:157–167. DOI: 10.1016/j.ejsobi.2016.06.003

[9] Akiyama T, Kawamura K. Grassland degradation in China: Methods of monitoring, man-

agement and restoration. Grassland Science. 2007;53:1–17. DOI: 10.1111/j.1744-697X.2007.

00073.x

[10] Jiang GM, Han XG, Wu JG. Restoration and management of the Inner Mongolia grass-

land require a sustainable strategy. AMBIO. 2006;35:269–270. DOI: 10.1579/06-S-158.1

[11] Wu GL, Du GZ, Liu ZH, Thirgood S. Effect of fencing and grazing on a Kobresia-

dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil. 2009;319:115–126.

DOI: 10.1007/s11104-008-9854-3

[12] Deng L, Zhang ZN, Shangguan ZP. Long-term fencing effects on plant diversity and soil

properties in China. Soil & Tillage Research. 2014;137:7–15. DOI: 10.1016/j.still.2013.11.002

[13] Shrestha G, Stahl PD. Carbon accumulation and storage in semi-arid sagebrush steppe:

Effects of long-term grazing exclusion. Agriculture Ecosystems & Environment.

2008;125:173–181. DOI: 10.1016/j.agee.2007.12.007

[14] Golodets C, Kigel J, Sternberg M. Recovery of plant species composition and ecosystem

function after cessation of grazing in a Mediterranean grassland. Plant and Soil.

2010;329:365–378. DOI: 10.1007/s11104-009-0164-1

[15] Jing ZB, Cheng JM, Su JS, Bai Y, Jin JW. Changes in plant community composition and

soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engi-

neering. 2014;64:171–178. DOI: 10.1016/j.ecoleng.2013.12.023

Modification in Grassland Ecology under the Influence of Changing Climatic and Land Use Conditions
http://dx.doi.org/10.5772/intechopen.69478

59



[16] Qiu LP, Wei XR, Zhang XC, Cheng JM. Ecosystem carbon and nitrogen accumulation

after grazing exclusion in semiarid grassland. PloS One. 2013;8:e55433. DOI: 10.1371/

journal.pone.0055433

[17] Jing ZB, Cheng JM, Jin JW, Su JS, Bai Y. Revegetation as an efficient means of improving

the diversity and abundance of soil eukaryotes in the Loess Plateau of China. Ecological

Engineering. 2014;70:169–174. DOI: 10.1016/j.ecoleng.2014.05.011

[18] Liu M, Liu GH, Wu X, Wang H, Che L. Vegetation traits and soil properties in response to

utilization patterns of grassland in Hulun Buir City, Inner Mongolia, China. Chinese

Geographical Science. 2014;24:471–478. DOI: 10.1007/s11769-014-0706-1

[19] Jackson RB, Caldwell MM. Geostatistical patterns of soil heterogeneity around individual

perennial plants. Journal of Ecology. 1993;81:683–692. DOI: 10.2307/2261666

[20] Li HB, Ma QH, Li HG, Zhang FS, Rengel Z, Shen JB. Root morphological responses to

localized nutrient supply differ among crop species with contrasting root traits. Plant and

Soil. 2014;376:151–163. DOI: 10.1007/s11104-013-1965-9

[21] Pohl M, Stroude R, Buttler A, Rixen C. Functional traits and root morphology of alpine

plants. Annals of Botany. 2011;108:537–545. DOI: 10.1093/aob/mcr169

[22] Johnson HA, Biondini ME. Root morphological plasticity and nitrogen uptake of 59 plant

species from the Great Plains grasslands, USA. Basic and Applied Ecology. 2001;2:127–143.

DOI: 10.1078/1439-1791-00044

[23] Fort F, Cruz P, Jouany C. Hierarchy of root functional trait values and plasticity drive

early-stage competition for water and phosphorus among grasses. Functional Ecology.

2014;28:1030–1040. DOI: 10.1111/1365-2435.12217

[24] Luo YQ, Wan SQ, Hui DF, Wallace LL. Acclimatization of soil respiration to warming in a

tall grass prairie. Nature. 2001;413:622–625. DOI: 10.1038/35098065

[25] Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its

relationship to vegetation and climate. Tellus B. 1992;44:81–99. DOI: 10.1034/j.1600-0889.

1992.t01-1-00001.x

[26] Han Y, Zhang Z, Wang CH, Jiang FH, Xia JY. Effects of mowing and nitrogen addition on

soil respiration in three patches in an oldfield grassland in Inner Mongolia. Journal of

Plant Ecology. 2012;5:219–228. DOI: 10.1093/jpe/rtr015

[27] Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A. Root respiration in temperate

mountain grasslands differing in land use. Global Change Biology. 2006;12:995–1006.

DOI: 10.1111/j.1365-2486.2006.01144.x

[28] Cao GM, Tang YH, Mo WH, Wang YS, Li YN, et al. Grazing intensity alters soil respira-

tion in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry.

2004;36:237–243. DOI: 10.1016/j.soilbio.2003.09.010

Plant Ecology - Traditional Approaches to Recent Trends60



[29] Jia XX, Shao MA, Wei XR. Responses of soil respiration to N addition, burning and

clipping in temperate semiarid grassland in northern China. Agricultural and Forest

Meteorology. 2012;166:32–40. DOI: 10.1016/j.agrformet.2012.05.022

[30] Ryan MG, Law BE. Interpreting, measuring, and modeling soil respiration. Biogeochem-

istry. 2005;73:3–27. DOI: 10.1007/s10533-004-5167-7

[31] Wan SQ, Luo YQ. Substrate regulation of soil respiration in a tallgrass prairie: Results of a

clipping and shading experiment. Global Biogeochemical Cycles. 2003;17:1054. DOI:

10.1029/2002GB001971

[32] Schindlbacher A, Zechmeister-Boltenstern S, Jandl R. Carbon losses due to soil warming:

Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biol-

ogy. 2009;15:901–913. DOI: 10.1111/j.1365-2486.2008.01757.x

[33] Zhou XH, Wan SQ, Luo YQ. Source components and interannual variability of soil CO2

efflux under experimental warming and clipping in a grassland ecosystem. Global

Change Biology. 2007;13:761–775. DOI: 10.1111/j.1365-2486.2007.01333.x

[34] Knapp AK, Smith MD. Variation among biomes in temporal dynamics of aboveground

primary production. Science. 2001;291:481–484. DOI: 10.1126/science.291.5503.481

[35] Lauenroth WK, Sala OE. Long-term forage production of North American shortgrass

steppe. Ecological Application. 1992;2:397–403. DOI: 10.2307/1941874

[36] Oesterheld M, Loreti J, Semmartin M, Sala OE. Inter-annual variation in primary produc-

tion of a semi-arid grassland related to previous-year production. Journal of Vegetation

Science. 2001;12:137–142. DOI: 10.1111/j.1654-1103.2001.tb02624.x

[37] Hsu JS, Adler PB. Anticipating changes in variability of grassland production due to

increases in interannual precipitation variability. Ecosphere. 2014;5:1–15. DOI: 10.1890/

ES13-00210.1

[38] La Pierre KJ, Yuan SH, Chang CC, Avolio ML, Hallett LM, Schreck T, et al. Explain-

ing temporal variation in above-ground productivity in a mesic grassland: The role of

climate and flowering. Journal of Ecology. 2011;99:1250–1262. DOI: 10.1111/j.1365-

2745.2011.01844.x

[39] Robinson TMP, La Pierre KJ, Vadeboncoeur MA, Byrne KM, Thomey ML, Colby SE.

Seasonal, not annual precipitation drives community productivity across ecosystems.

Oikos. 2013;122:727–738. DOI: 10.1111/j.1600-0706.2012.20655.x

[40] Craine JM, Nippert JB, Elmore AJ, et al. Timing of climate variability and grassland

productivity. Proceedings of the National Academy of Sciences. 2012;109:3401–3405.

DOI: 10.1073/pnas.1118438109

[41] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH. Ecosystem stability and compensatory effects in

the Inner Mongolia grassland. Nature. 2004;431:181–184. DOI: 10.1038/nature02850

Modification in Grassland Ecology under the Influence of Changing Climatic and Land Use Conditions
http://dx.doi.org/10.5772/intechopen.69478

61



[42] Fransen B, Blijjenberg J, de Kroon H. Root morphological and physiological plasticity of

perennial grass species and the exploitation of spatial and temporal heterogeneous nutri-

ent patches. Plant and Soil. 1999;211:179–189. DOI: 10.1007/s004420050527

[43] Moyano FE, Kutsch WL, Schulze ED. Response of mycorrhizal, rhizosphere and soil

basal respiration to temperature and photosynthesis in a barley field. Soil Biology and

Biochemistry. 2007;39:843–853. DOI: 10.1016/j.soilbio.2006.10.001

[44] Bai WM, Wan S, Niu S, Liu W, Chen Q, Wang Q, et al. Increased temperature and

precipitation interact to affect root production, mortality, and turnover in a temperate

steppe: Implications for ecosystem C cycling. Global Change Biology. 2010;16:1306–1316.

DOI: 10.1111/j.1365-2486.2009.02019.x

[45] Liang BC, Mackenzie AF, Schnitzer M. Management-induced change in labile soil organic

matter under continuous corn in eastern Canadian soils. Biology and Fertility of Soils.

1998;26:88–94. DOI: 10.1007/s003740050348

[46] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial

biomass C. Soil Biology and Biochemistry. 1987;19:703–707. DOI: 10.1016/0038-0717(87)90052-6

[47] Bezemer TM, Van der Putten WH. Ecology: Diversity and stability in plant communities.

Nature. 2007;446:E6–E7. DOI: 10.1038/nature05749

[48] Kuka K, Illerhaus B, Fox CA, Joschko M. X-ray computed microtomography for the study

of the soil–root relationship in grassland soils. Vadose Zone Journal. 2013;12:1–10. DOI:

10.2136/vzj2013.01.0014

[49] Fidelis A, Appezzato-da-Glória B, Pillar VD, Pfadenhauer J. Does disturbance affect bud

bank size and belowground structures diversity in Brazilian subtropical grasslands?

Flora. 2014;209:110–116. DOI: 10.1016/j.flora.2013.12.003

[50] Amiaud B, Touzard B, Bonis A, Bouzillé J-B. After grazing exclusion, is there any modi-

fication of strategy for two guerrilla species: Elymus repens (L.) Gould and Agrostis

stolonifera (L.)? Plant Ecology. 2008;197:107–117. DOI: 10.1007/s11258-007-9364-z

[51] Van der Putten WH. Plant defense belowground and spatiotemporal processes in natural

vegetation. Ecology. 2003;84:2269–2280. DOI: 10.1890/02-0284

[52] Su JS, Jing GH, Jin JW, Wei L, Liu J, Cheng JM. Identifying drivers of root community

compositional changes in semiarid grassland on the Loess plateau after long-term grazing

exclusion. Ecological Engineering. 2017;99:13–21. DOI: 10.1016/j.ecoleng.2016.11.050

[53] Smith NG, Schuster MJ, Dukes JS. Rainfall variability and nitrogen addition synergisti-

cally reduce plant diversity in a restored tall grass prairie. Journal of Applied Ecology.

2016;53:579–586. DOI: 10.1111/1365-2664.12593

[54] Lamb EG, Stewart AC, Cahill JF Jr. Root system size determines plant performance follow-

ing short-term soil nutrient pulses. Plant Ecology. 2012;213:1803–1812. DOI: 10.1007/s11258-

012-0135-0

Plant Ecology - Traditional Approaches to Recent Trends62



[55] Wan SQ, Hui DF, Wallace L, Luo YQ. Direct and indirect effects of experimental warming

on ecosystem carbon processes in a tall grass prairie. Global Biogeochemical Cycles.

2005;19. DOI: 10.1029/2004GB002315

[56] Shahzad T, Chenu C, Repinçay C, Mougin C, Ollier JL, Fontaine S. Plant clipping decel-

erates the mineralization of recalcitrant soil organic matter under multiple grassland

species. Soil Biology and Biochemistry. 2012;51:73–80. DOI: 10.1016/j.soilbio.2012.04.014

[57] Zhang W, Parker K, Luo Y, Wan S, Wallace L, Hu S. Soil microbial responses to experi-

mental warming and clipping in a tall grass prairie. Global Change Biology. 2005;11:266–

277. DOI: 10.1111/j.1365-2486.2005.00902.x

[58] Chen F, Weber KT. Assessing the impact of seasonal precipitation and temperature on

vegetation in a grass-dominated rangeland. The Rangeland Journal. 2014;36:185–190.

DOI: 10.1071/RJ13098

[59] Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB. Diverse responses of

phenology to global changes in a grassland ecosystem. Proceedings of the National

Academy of Sciences. 2006;103:13740–13744. DOI: 10.1073/pnas.0600815103

[60] Bradford J, Lauenroth W, Burke I, Paruelo JM. The influence of climate, soils, weather,

and land use on primary production and biomass seasonality in the US Great Plains.

Ecosystems. 2006;9:934–950. DOI: 10.1007/s10021-004-0164-1

[61] De Boeck HJ, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E. Simulated heat waves affected

alpine grassland only in combination with drought. New Phytologist. 2016;209:531–541.

DOI: 10.1111/nph.13601

[62] Reyes-Fox M, Steltzer H, Trlica MJ, McMaster GS, Andales AA, LeCain DR, et al. Ele-

vated CO2 further lengthens growing season under warming conditions. Nature.

2014;510:259–262. DOI: 10.1038/nature13207

[63] Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, et al. The response of

two contrasting limestone grasslands to simulated climate change. Science. 2000;289:762–

765. DOI: 10.1126/science.289.5480.762

[64] Bokhorst SF, Bjerke JW, Tømmervik H, Callaghan TV, Phoenix GK, et al. Winter warming

events damage sub-Arctic vegetation: Consistent evidence from an experimental manip-

ulation and a natural event. Journal of Ecology. 2009;97:1408–1415. DOI: 10.1111/j.1365-

2745.2009.01554.x

[65] Luedeling E, Guo L, Dai J, Leslie C, Blanke MM. Differential responses of trees to

temperature variation during the chilling and forcing phases. Agricultural and Forest

Meteorology. 2013;181:33–42. DOI: 10.1016/j.agrformet.2013.06.018

[66] Guo L, Dai J, Ranjitkar S, Xu J, Luedeling E. Response of chestnut phenology in China to

climate variation and change. Agricultural and Forest Meteorology. 2013;180:164–172.

DOI: 10.1016/j.agrformet.2013.06.004.

Modification in Grassland Ecology under the Influence of Changing Climatic and Land Use Conditions
http://dx.doi.org/10.5772/intechopen.69478

63




