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Abstract

Cancer is the second cause of mortality worldwide. Angiogenesis is an important process 
involved in the growth of primary tumors and metastasis. New approaches for controlling 
the cancer progression and invasiveness can be addressed by limiting the angiogenesis 
process. An increasingly large number of natural compounds are evaluated as angiogen-
esis inhibitors. The chorioallantoic membrane (CAM) assay represents an in vivo attrac-
tive experimental model for cancer and angiogenesis studies as prescreening to the murine 
models. Since the discovery of tumor angiogenesis, the CAM has been intensively used in 
cancer research. The advantages of this in vivo technique are in terms of low time-consum-
ing, costs, and a lower number of sacrificed animals. Currently, a great number of natural 
compounds are being investigated for their effectiveness in controlling tumor angiogen-
esis. Potential reducing of angiogenesis has been investigated by our group for pentacyclic 
triterpenes, in various formulations, and differences in their mechanism were registered. 
This chapter aims to give an overview on a number of phytocompounds investigated using 
in vitro, murine models and the chorioallantoic membrane assay as well as to emphasize the 
use of CAM assay in the study of natural compounds with potential effects in malignancies.

Keywords: phytocompounds, tumor angiogenesis, chorioallantoic membrane assay

1. Introduction

Angiogenesis represents the process by which new vessels are formed from preexisting vessels 

[1] and has important implications associated with tumor growth and metastasis [2]. Studies 
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have shown that neovascularization is essential for tumor survival and growth, whereas in 

angiogenic absent conditions, tumor may display necrosis or even apoptosis [3, 4]. The angio-

genic switch represents the process in which endothelial cells are led to a rapid growth state 

induced by stimuli secreted by the tumor microenvironment, comprising tumor and stromal 

cells, extracellular matrix components, immunologic cells, fibroblasts, adipocytes, muscle cells, 
and pericytes [5]. The switch may also involve downregulation of endogenous inhibitors of 

angiogenesis such as endostatin, angiostatin, or thrombospondin.

The undergoing of tumor angiogenesis represents a four-step process [6]: (i) tissue base-

ment membrane injury; (ii) migration of endothelial cells, activated by angiogenic factors; 

(iii) endothelial cell proliferation and stabilization; (iv) continuous angiogenesis induced by 

angiogenic factors. Therefore, key elements in the angiogenesis process are the endogenous 

angiogenic factors. The most relevant angiogenic activators, signal mediators, and signaling 

effects are represented in Figure 1.

A class of proteins that is widely responsible for tumor angiogenesis is represented by growth 

factors, such as the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), 
platelet-derived endothelial growth factor (PDGF), tumor necrosis factor-α (TNF-α), epider-

mal growth factor (EGF), placental growth factor (PGF), transforming growth factor (TGF), 

granulocyte colony stimulating factor (GCSF), hepatocyte growth factor (HGF), angiostatin, 

and angiogenin [7]. However, VEGF is thought to be the main proangiogenic growth fac-

tor, because it induces all four phases of angiogenesis by augmenting vascular permeability, 

endothelial cell proliferation, endothelial cell migration, and capillary like tube formation [8]. 

Angiogenic cytokines or other growth factors such as VEGF are expressed under hypoxia 

conditions or by various oncogenes (e.g., mutant ras, erbB-2/HER2) [9].

As shown in Figure 1, after binding the tyrosine kinase specific domain of the receptors, mul-
tiple ways of signaling are possible for the angiogenic factors. Important molecular mecha-

nisms involve activation of RAS/RAF1/kinase through the extracellular signal (ERK-1 și-2), 
inducing proliferation and differentiation; RAS/p38 mitogen-activated kinase (MAPK) and 
JUN/kinase 1-3 N-terminal, modulating inflammation, apoptosis, and differentiation; phos-

fatidyl-3-inositol kinase-1 (PI3K) and AKT dependent, regulating cell survival, mammalian 

receptor for rapamycin (mTOR), highly involved in proliferation and cell growth. Other 

inductor factors of the signaling pathways of angiogenesis are found in the cytoplasm (e.g., 

GAB1, SHC, SRC, PI3K, and phosfolipase γ C) [10].

VEGF and its receptors, the VEGFR family, remain intensively researched for targeting angio-

genesis in different tumors. At the same time, other angiogenesis suppressing-related targets 
are being studied for the development of anticancer therapies for tumors resistant to anti-

VEGF therapy. A number of therapeutic agents are currently in use for several malignan-

cies: monoclonal antibodies against angiogenic growth factors (e.g., antibody against VEGF, 

Bevacizumab), inhibitors of angiogenic factors synthesis (e.g., mTOR inhibitor Rapamycin), 

and inhibitors of angiogenic factor receptors (tyrosine-kinase inhibitors, e.g., imatinib and 

sorafenib) [11]. Unfortunately, clinical response to the new molecular advances in cancer 

therapy by targeting angiogenesis is unsatisfactory. Resistance and low survival rates are sig-

naled. New therapeutic approaches with minimal side effects are desired to act by targeting 
the multiple factors that are activated during tumor progression.
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Based on the preventive effect that healthy diets have on the epidemiology of cancer, medici-
nal plants, spices, fruits, and vegetables represent an interesting source of phytochemicals. 

Natural compounds or even plant extracts are now considered important and accessible 

therapeutic or chemopreventive agents in cancer. In the search of the suitable phytocom-

pounds to test for specific effects, virtual screening methods can be successfully applied 
in the selection of selective compounds for specific targets [12]. To avoid lack of selectiv-

ity, computational filtering schemes can be used [13]. Extensive studies demonstrate the 

high potential of plant-derived chemicals in controlling tumor angiogenesis with minimal 

secondary effects and drug resistance, by targeting multiple key pathways in a synergistic 
manner.

2. Experimental models for tumor angiogenesis: focus on the CAM assay

An important issue in angiogenesis studies is the appropriate choice of the assays. To evaluate 

the efficacy of potential phytocompounds and to identify potential targets within the angio-

genic process, several methods both in vitro and in vivo can be applied. Each of them having 

one or more drawbacks, ideally more techniques are to be applied. In vitro techniques are 

used by co-culturing endothelial cell and other tumor microenvironment factors with tumor 

Figure 1. Angiogenic factors and signaling pathways involved in angiogenesis mediation. Abbreviations: Akt, RAC-

alpha serine/threonine-protein kinase, ERK1/2, mitogen-activated protein kinase 1/2, FAK, focal adhesion kinase; FGFR, 

fibroblast growth factor receptor; IGFR, insulin growth factor receptor; MAPK, mitogen-activated protein kinases; NOS, 
nitric oxide synthase; p38, mitogen-activated protein kinase 11; PDGFR, olated-delivered endothelial growth factor 

receptor; PI3K, phosphatidylinositol 4,5-bisphosphate 3-kinase; PLCγ, phospholipase C gamma; Smad, Smad protein; 
Src, proto-oncogene tyrosine-protein kinase; TGFα-R, transforming growth factor α receptor; Tie, angiopoietin receptor; 
VEGFR, vascular endothelial growth factor receptor.
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cells in 2D or even 3D models which facilitate the identification of the involved molecular 
mechanisms. Despite the advances made in the direction of designing in vitro assays, the in 

vivo environment can be difficultly reproduced with such protocols [14]. To better assess the 
key aspects of tumor angiogenesis and therapeutic approaches, in vivo assays can be applied, 

such as the chick chorioallantoic membrane (CAM), the zebrafish, the sponge implantation, 
the corneal, or dorsal air sac and tumor angiogenesis models in rodents or rabbits [15]. Several 

drawbacks can still be cited, especially for the murine models, including high costs, complex 

technical and surgical abilities, and important quantities of test compounds.

2.1. Chorioallantoic membrane assay

The chorioallantoic membrane (CAM) assay represents an attractive in vivo experimental 

model for angiogenesis and cancer studies. The advantages of this in vivo technique in terms 

of costs, time, simplicity, reproducibility, and ease of the approval by the ethic committee 
make it a good prescreening assay to murine models in the research of biological systems and 

new therapeutic targets. Especially tumor angiogenesis and metastasis protocols benefit for 
a much shorter time for the tumor to grow and metastasize than the classical animal models.

The limitations of the model include a restricted number of reagents to work with due to low 

compatibility, nonspecific inflammatory reactions, keratinization of the membrane, and a vas-

cular reaction that interferes with the visualization of vascular modifications. Technical skills 
may be significant to counteract these limitations [16, 17].

The chorioallantoic membrane is the vascularized respiratory extraembryonic tissue of avian 

species. First, this biologic system has been used for embryologic, immunological, and tumor 

grafting studies [18], and more recently, since the discovery of tumor angiogenesis [19], it is 

intensively applied in cancer research [20]. During the stages of embryo development, the 

immunologic, nervous, and nociceptive systems are not fully developed [21]. Several types of 

CAM assay protocols have been developed.

2.2. Uses in biological studies

The method can be applied for bioengineering development, morphology, biochemistry, trans-

plant biology, cancer research, and drug development, but also in immunology, wound healing, 

tissue repair, or drug toxicity [22, 23]. The possibilities of imaging and evaluation have attracted 
many research studies. Nutritional therapeutics is an example of products approved by the U.S. 

Food and Drug Administration (FDA) that were preclinically evaluated in the CAM model [16].

Phytocompounds can be tested in order to evaluate their potential bioavailability, tolerability, 

and lack of irritation effects. For this purpose, the variations of the HET-CAM protocol can be 
applied, according the Interagency Coordinating Committee on the Validation of Alternative 
Methods (ICCVAM) recommendations published in November 2006 in Appendix G of refer-

ence [24]. Our previous evaluations proved its applicability in testing different sets of com-

pounds, i.e., surfactants and aflatoxins [25].

In the attempt of finding new means for cancer chemoprevention, the chorioallantoic membrane 
assay can be used to test natural compounds that could reduce or inhibit several pathways 
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involved in malignancies, especially pro-inflammatory cytokine activation and excessive angio-

genesis. Tumor microenvironment, including inflammation and angiogenesis next to the devel-
opment of new therapeutic targets for these pathological conditions, is intensively researched 

on murine models [26]. Previously, we have evaluated mast cell involvement in the angiogen-

esis process implementing a mastocytoma model on the CAM assay [27], which can be further 

developed for the evaluation of natural compounds on mast cells as key participants in the 

tumor microenvironment.

2.3. General in ovo method

Ex ovo or in ovo techniques are applicable. The ex ovo protocol involves the transfer of the egg 

content on day 3 of incubation into a Petri dish. It facilitates the visualization of the experi-

ment, but the unnatural milieu of development of the embryo is detrimental to the survival 

rate of the specimens. Therefore, we prefer the in ovo protocol and is the type of method 

described here.

Fertilized eggs are horizontally incubated 7 days prior to use, at 37°C, in a controlled wet 

atmosphere. On the third day of incubation, in order to detach the chorioallantoic membrane, 

a volume of 2–3 ml of albumen is aspired through a perforation at the more pointed end of the 

eggs. The hole is resealed and returned to the incubator. The next day, a window is cut and 

resealed on the superior side of the shell. The eggs are returned to incubation until the day of 

the experiment [28]. Generally, 5–10 eggs are used for each test sample. Samples are applied 

inside a sterile plastic ring on the surface of the membrane. Samples are applied in triplicate. 

In ovo investigation by means of a stereomicroscope is performed throughout the experiment. 

Photographs are recorded for further analysis (Figure 2).

Starting with day 11 of incubation, samples can be considered active on excessive angiogen-

esis. The rapid growth of the vessels occurs during days 7–11; therefore, applying substances 

during this interval can be evaluated in terms of antiangiogenic effects. Morphometric evalu-

ation of the angiogenic reaction can be conducted using a 0–5 arbitrary scale, the mean values 

expressing the vascular density around the site of application [20]. Finally, specimens are 

sacrificed and membranes are submitted to histological and immunohistological evaluation. 
On slides with immunohistochemical marked vessels, the mean microvascular density can be 

determined using the hotspot method, and counting the blood vessels, to calculate an antian-

giogenic index, with the aid of the formula: AAI = 1 – No
BVtest

/No
BVcontrol,

 AAI = antiangiogenic 

index, BV = blood vessels [29].

2.4. Tumor angiogenesis model on CAM

Tumor cells are used on the CAM in order to obtain tumors, to study their microenvironment 

and the effects that phytochemicals might have. Tumor grafts can be used as well. Usually, 
cultured cancer cells are inoculated on the surface of the CAM, on day 10 of incubation, after 

being trypsinized and resuspended in culture medium to final concentrations in the range of 
105–106 ml−1. Cells can be applied directly on the CAM using a plastic ring for localizing the 

cells or using Matrigel impregnated with cells. Further, test compound solutions diluted with 

minimal DMSO (dimethyl sulfoxide) concentration in phosphate buffer can be applied on the 
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same spot as the cancer cell samples. In ovo stereomicroscopic follow-up is performed daily to 

register the changes in the vascular response around the tumor developing area that will be 

used for the morphometric analysis. On the final day of the experiment, after sacrificing the 
embryos, tumor masses are measured; the chorioallantoic membrane, the formed tumors, and 

some organs suspected to have metastasis are harvested and histologically processed.

In order to observe morphologic changes in the chorioallantoic membrane, hematoxylin 

eosin staining is analyzed. Different panels of immunohistochemical markers can be further 
applied: tumor cell markers and specific antibodies for different key proteins involved in 
the tumor microenvironment (e.g., endothelial cell marker-factor VIII, smooth muscle actin 

(SMA) marker, vascular endothelial growth factors, and its receptors, mast cells marker—

Tryptase, the proliferation marker—Ki67). Results can reveal molecular modifications and 
serve to vascular density quantification.

Our experience is related to testing phytocompounds and plant extracts for the effect on angio-

genesis. Using the angiogenesis method in the rapid stage of CAM development, we found 

that pentacyclic triterpenes, betulinic (BA) acid, and betulin (Bet) in various formulations with 

cyclodextrin and in nanoemulsion are potential antiangiogenic compounds, acting differ-

ently, both through direct and indirect mechanisms [31, 32]. Immunohistochemical staining 

for smooth muscle actin (SMA) on the specimens treated with betulin in nanoemulsion, next 

Figure 2. Chorioallantoic membrane assay—in ovo practical approach: incubation of the eggs (a–c); albumen removal, 

shell opening, and resealing (d–f); visualization of the CAM, sample application, and sample application inside a plastic 

ring (g–i) [30].
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to blank and control samples, are shown in Figure 3. The low expression of the marker in 

the betulin-treated specimen indicates a minimal implication of pericytes in the angiogenesis 

process [32]. On the contrary, we found that betulinic acid determined rapid maturation of the 

vessels and high levels of SMA [31]. We also evaluated triterpenes and other types of natural 

compounds in melanoma models on CAM, which confirms the inhibitory effect on tumor 
angiogenesis (data not published).

Most studies that use the CAM assay are evaluated through stereomicroscopy that allows a 

series of quantitative measurements, and by histologic an immunohistological interpretation. 

Advances in the evaluation techniques include fluorescence microscopy, confocal micros-

copy, microCT scanning, and imaging, in situ hybridization (ISH), quantitative PCR (qPCR) 

determination of specific targets [16, 33].

3. Phytocompounds targeting cancer angiogenesis: in vitro, on the 

chorioallantoic membrane assay, in animal model

Chemicals derived from plant sources as well as various types of extracts have been already 

investigated for their effects on angiogenesis and on cancer. Currently, based on the failure 
of the approved therapeutics and also by crediting the traditional medicine philosophy that 

pathologies are imbalances that have to be rebalanced, the idea of multiple targeting through 

synergetic phytocompounds mixtures is gaining more attention. Extensive research is being 
dedicated to the understanding of their mechanism and their efficacy using in vitro and in 

vivo methods. The most in depth evidence comes from the results on cell cultures. In vivo 

methods also offer other accurate data on their effects. The chorioallantoic membrane assay 
is being used by more and more researchers for the evaluation of plant-derived chemicals or 

extracts. Correlations can be made using the results obtained for in vitro, animal and CAM 

assays, which will improve the knowledge and the future analysis to perform for the active 

compounds. We reviewed here some of the most investigated phytocompounds concerning 

the results obtained on all the three experimental models (Table 1).

Figure 3. Light microscopic evaluation of CAM sections from ID 11 smooth muscle actin marker: (a) blank specimen, 

×40, (b) control specimen treated with nanoemulsion, ×40, (c) specimen treated with betulin in nanoemulsion, ×40 [32].
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Phytochemical 

class

Compound Chemical structure Plant source In vitro effects Effects on CAM In vivo effects

Polyphenols Curcumin Curcuma longa 

L.

MiaPaCa-2; BxPC-3; Panc-1; 

MPanc-96 prostate cancer 

cell lines

Reduced expression of 

NF-κB
[34]

Angiogenesis 

inhibitor on small 

capillaries [35]

Athymic nude mice xenograft 

with prostate cancer cells

Reduced expression of 

NFκB-p65, STAT3 and SRC;
Reduced expression of 

ANXA2 and VEGFR2

[36]

Epigallocatechin-

gallate

Camellia 

sinensis L.

Hepatocellular carcinoma

Inhibition of the VEGF-

VEGFR axis

[37]

Inhibition of 

fibroblast growth 
factor (FGF) and 

inhibition of mean 

branch formation 

and tumor weight 

of neuroblastoma-

induced 

angiogenesis

[38]

BGC-823 human gastric 

cancer xenograft mice model

Reduction of VEGF

[39]

Phloroglucinol 

derivative

Hyperforin Hypericum 

perforatum L.

BAE—bovine aortic 

endothelial cell

MDA-MB231 human breast 

cancer and NIH-3T3 mouse 

fibroblast cell
Inhibition of capillary tube 

formation; Inhibition of 

urokinase and MMP2

[40]

Multiple target 

angiogenesis 

inhibitor

[40]

Wistar rats inoculated with 

MT-450 at mammary tumor 

cells

Suppression

tumor-induced 

lymphangiogenesis

[41]

Stilbene 

phytoalexin 

derivative

Resveratrol Vitis vinifera L.,

Polygonum 

cuspidatum L.

YUZAZ6, M14, A375

melanoma cell lines

Downregulation of VEGF 

and upregulation of TSP1

[42]

Significant 
reduction in 

angiogenesis in 

higher doses

[43]

C57BL/6 Mice inoculated with 

Lewis lung carcinoma cells

Inhibition of 

neovascularization

[44]
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Phytochemical 

class

Compound Chemical structure Plant source In vitro effects Effects on CAM In vivo effects

Phenols Carnosic acid Rosmarinus 

officinalis L
HT-1080 Human 

fibrosarcoma cells,
HL60 Human promyelocytic

leukemia cells, HUVECs cells

Inhibition of capillary tube 

formation; Decrease in the 

endothelial cells MMP-2 

activity

[45]

Antiangiogenic 

effect; emphasized 
activity for carnosic 

acid

[45]

DMBA-induced hamster 

buccal Pouch carcinogenesis

Suppressed expression 

of Cyclin D1 and NFκB; 
modulation of VEGF

[46]

Carnosol Rosmarinus 

officinalis L
HT-1080 Human 

fibrosarcoma cells,
HL60 Human promyelocytic

leukemia cells, HUVECs cells

capillary tube formation; 

Decrease in the endothelial 

cells MMP-2 activity

[45]

Antiangiogenic 

effect; emphasized 
activity for carnosic 

acid

[45]

n/a

Capsaicin Capsicum sp. Hy-A549CoCl2-stimulated 

A549 lung cancer cells

Inhibition of VEGF by 

downmodulation of HIF-1α; 
Increased p53 level

[47]

Potent inhibitor 

of tumor-induced 

angiogenesis

[48]

C57BL/6 mice

Inhibition of VEGF and 

hemoglobin

[48]

Isoflavones Daidzein Trifolium 

pratense L., 

Glycine maxima 

L.

LNCaP, PC-3, and DU-145 

PCa cells -

Down-regulation of ECGF1, 

FGF1, IGF1, FGFR3, IL-1β, 
IL-6, IL-8, PECAM1[49]

Antiangiogenic 

effect, anti-
inflammatory effect 
with no membrane-

irritating and toxic 

side effects[50]

n/a

Genistein Trifolium 

pratense L., 

Glycine maxima 

L.

BME cloned bovine

microvascular

endothelial cells

Inhibition of bFGF

[51]

Antiangiogenic 

effect, anti-
inflammatory effect 
with no membrane-

irritating and toxic 

side effects[50]

BALB/C nu/nu mice 

inoculated with Bel 7402 

hepatocellular carcinoma

Significant decrease of 
positive unit (PU) of the 

microvessels[52]
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Phytochemical 

class

Compound Chemical structure Plant source In vitro effects Effects on CAM In vivo effects

Flavonoids Quercetin Camelia 

sinensis L., 

Angelica keiskei 

Momordica 

cochinchinensis,

PC-3 prostate cells

Inhibition of VEGF

[53]

Potent angiogenesis 

inhibitor [53]

DMBA-induced experimental 

mammary carcinoma in rats

Inhibition of H-ras protein; 

inhibition of VEGF and bFGF

[54]

Naringenin Citrus sp. Aspc-1 and panc-1 prostate 

cancer cells

Inhibition of TGF-β1-induced 
migration; Decreased 

expression of MMP2 and 

MMP9 proteins

[55]

Potent angiogenesis 

inhibitor

[56]

n/a

Apigenin Entada africana,

Matricaria 

chamomilla L

PC-3 and DU145 prostate 

cancer cells

Inhibition of HIF-1α and 
VEGF

LNCaP prostate cancer cells, 

HCT-8 colon cancer cells, and 

MCF-7breast cancer cells

Inhibition of hypoxia-induced 

HIF-1α and VEGF[57]

Promising 

antiangiogenic 

effect
[58]

BALB/cA-nu nude mice 

injected with PC-3 prostate 

cancer cells and OVCAR-3 

ovarian cancer cells

Inhibition of blood vessels 

formation; Inhibition of 

hemoglobin levels [57]

Isoliquiritigenin Glycyrrhiza 

glabra L

ACC-M, ACC-2 adenoid 

cystic carcinoma cells 

and EAhy926 endothelial 

hybridoma cell line

Prevention of tube formation; 

Downregulation of VEGF

[59]

Angiogenesis 

suppressor [60]

BALB/c nude mice injected 

with ACC-M cells

Reduction in S6 

phosphorylation; Decreased 

VEGF; Inhibition of the mTOR 

signaling pathway[59]

Silibinin Silybum 

marianum L

SW480, HT-29 and LoVo 

colorectal cancer cells

Inhibition of NF-κB; 
Reduction of MMP9, COX-2 

and VEGF[61]

dose-dependent 

suppressive on 

angiogenesis [62]

A/J mice with Urethane-

induced lung tumors

Inhibition of new microvessels 

formation; Decreased levels of 

IL-1α,-6, -9, -13, -16, IFN-γ and 
TNF-α[63]
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Phytochemical 

class

Compound Chemical structure Plant source In vitro effects Effects on CAM In vivo effects

Alkaloids Vinblastine Vinca sp. Human neuroblastoma

cell lines

Downmodulation of VEGF 

and VEGF-R2

[64]

Angiostatic activity 

[64]

Athymic (Nude-nu) mice 

injected with GI-LI-N cells

Decrease of CD31-

positive blood vessels; 

Downmodulation of VEGF 

and VEGF-R2[64]

Vincristine Vinca sp. Glioblastoma cells—

decreased expression of 

VEGF mRNA and the level 

of HIF-1α protein
[65]

Antiangiogenic 

effects in 
neuroblastoma 

tumors in high 

doses

[66]

Swiss nu/nu mice injected 

with Caki-l and Caki-2 renal 

carcinoma cells

Inhibition of angiogenesis

[67]

Pentacyclic 

triterpenes

Betulin Betula pendula, 

Prunus dulcis

Apoptotic induction in MCF-

7, A431 [68]

Strong direct 

antiangiogenic 

effects
[32]

Balb/C mice DMBA/TPA skin 

carcinoma model

Decreased expression of 

VEGF

[32]

Betulinic acid Betula pendula, 

Prunus dulcis

SK-MEL2 melanoma and 

LNCaP prostate cancer cells -

Decreased expression of Sp1, 

Sp3, Sp4, and VEGF

[69]

Strong 

antiangiogenic 

effects
[31]

Athymic nude mice

with LNCaP cells as 

xenografts

Tumor tissue less vascular; 

Decreased expression of Sp1,

Sp3, Sp4, AR, and VEGF [69]

Tetracyclic 

Triterpenoid 

saponins

Ginsenoside Rg3 Panax ginseng Eca-109—human esophageal 

carcinoma cell line and 786-0 

renal cell carcinoma cell line

Downregulation of VEGF 

expression via COX-2 

pathway; Reduction of 

STAT3 phosphorylation; 

Decreased HIF-1α protein 
expression in Eca-109 

cells[70]

Strong, multi-

target inhibition of 

neovascularization, 

without affecting 
endothelial cell 

proliferation; lack 

of cytotoxicity

[71]

C57BL/6 mice injected with 

LLC Lewis lung carcinoma 

cells

Decreased tube formation 

of circulating progenitor 

cells; Suppression of VEGF 

dependent p38 and ERK 

signal pathways [72]
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Phytochemical 

class

Compound Chemical structure Plant source In vitro effects Effects on CAM In vivo effects

Flavones Baicalein Scutellaria 

baicalensis 

Georgi

H-460 cells assessed using 

BrdU assay Significant 
antiproliferative and pro 

apoptotic; inhibit bFGF-

induced HUVEC

tube formation in Matrigel 

stronger than baicalin [74, 

75]

Dose-dependent 

antiangiogenic 

activity

[74]

H-460 athymic nude mice, 

tumor growth and survival 

low expression of 12-LOX, 

VEGF and FGFR-2 gene [73]

Baicalin Scutellaria 

baicalensis 

Georgi

Growth and survival, 

MMP-2 expression, inhibit 

bFGF-induced HUVEC

tube formation in Matrigel 

[74]; increases VEGF 

expression by activating the 

ERRα/PGC-1α pathway [75]

Dose-dependent 

antiangiogenic 

activity

[74]

Inhibit growth of S180 solid 

tumor in mice [76]

Steroids Withaferin A Withania 

somnifera 

Dunal 

Antiangiogenic activity in 

primary endothelial cells 

HUVEC [77]

Significant 
antiangiogenic 

activity

[78]

Inhibits FGF-2 Induced 

angiogenesis in C57BL/6J 

mice [77]

Table 1. Common phytocompounds with in vitro and in vivo antiangiogenic activity.
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4. Clinical trials correlation

Implementation of clinical trials is vital for the validation and future use of the active phyto-

compounds as additional therapies to the oncologic protocols or as chemopreventive strate-

gies. These types of experiments are difficult to implement and therefore not many trials are 
finalized for the evaluation of antiangiogenic effect in cancer. Two of the above-listed phyto-

chemicals (Table 1) benefit from large investigations among which some are clinical trials, 
but the modulation of the angiogenic process does not appear as a distinct evaluation, cancer 

effects being the first ones to be described.

Most of the controlled clinical trials of curcumin supplementation in cancer patients aimed to 

determine its feasibility, tolerability, safety, and to provide early evidence of efficacy [79]. For 

patients with advanced colorectal cancer, oral doses up to 3.6 g/day for 4 months were well 

tolerated, although the systemic bioavailability of oral curcumin was low [80]. For this dose, 

trace levels of curcumin metabolites were measured in liver tissue, but curcumin itself was 

not detected [81]. These findings suggested that oral curcumin is effective as a therapeutic 
agent in cancers of the gastrointestinal tract. Other trials found that combining curcumin with 

anticancer drugs like gemcitabine in pancreatic cancer [82], docetaxel in breast cancer [83], 

and imatinib in chronic myeloid leukemia may confer additional benefits to conventional 
drugs against different types of cancer.

Green tea made from Camellia sinensis L. leaves, originated in China, is one of the most 

extensively consumed beverages and achieved significant attention due to health benefits 
against cancer. Representative compounds are polyphenols and catechins with thera-

peutic potential against cancer [84]. Recent clinical trials proved that green tea extract 

and epigallocatechin gallate (EGCG) can be active in several forms of cancer. There is an 

increasing trend to employ green tea extract and EGCG as conservative management for 

patients diagnosed with less advanced prostate cancer. Combinations of chemopreventive 

agents should be carefully investigated because mechanisms of action may be additive or 

synergistic [85]. Several clinical examinations reported different molecular mechanisms 
regarding green tea beneficial effects against oral cancer chemoprevention [86–88]. Lung 

cancer induction may also be inhibited by tea polyphenols. Some studies suggest that 

individuals who never drank green tea have an elevated lung cancer risk compared to 

those who drank green tea at least one cup per day, and the effect is more pronounced in 
smokers [88]. Hepatocellular carcinoma (HCC) usually develops in a cirrhotic liver due 

to hepatitis virus infection. Green tea catechins (GTCs) may possess potent anticancer 

and chemopreventive properties for a number of different malignancies, including liver 
cancer. Antioxidant and anti-inflammatory activities are key mechanisms through which 
GTCs prevent the development of neoplasms, and they also exert cancer chemopreven-

tive effects by modulating several signaling transduction and metabolic pathways where 
angiogenesis is exacerbated. Several interventional trials in humans have shown that 

GTCs may ameliorate metabolic abnormalities and prevent the development of precancer-

ous lesions [89].

Phytocompounds Targeting Cancer Angiogenesis Using the Chorioallantoic Membrane Assay
http://dx.doi.org/10.5772/intechopen.68506

57



5. Conclusion

Currently, a great number of natural compounds are being investigated for their potential 

effectiveness in controlling tumor angiogenesis and therefore the reduction of tumor growth 
and metastasis. Observing the high number of molecular pathways that are deregulated in 

tumor angiogenesis and that many phytocompounds are active on several key factors, it is rec-

ommendable that more in vivo studies should investigate mixture of compounds for broader 

targeting, having eventually lower secondary effects and resistance. The optimal experimen-

tal technique is an important factor in order to get a useful output. More types of assays are 

always a good choice, including in vivo assays. The chorioallantoic membrane protocol is a 

good candidate for one type of “golden standardized method” in tumor angiogenesis, being a 

versatile, rapid, easy, and cheap method to apply in the research of phytocompounds. A great 

number of plant-derived chemicals, alone or in combination, are studied using this method, 

but standardization, next to applying new analysis techniques will outcome useful data that 

will be easier translated to clinical trials.
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