
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 1

Event-Related Potentials for the Study of Cognition

Manuel Vazquez-Marrufo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69308

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Manuel Vazquez-Marrufo

Additional information is available at the end of the chapter

Abstract

Despite the vast literature on event-related potentials (ERPs), many clinical professionals 
are still unaware of the huge variety of possible applications they offer. The aim of this 
chapter is not to show the classical use of ERPs, focused on analyzing the first steps of 
information processing (sensory pathways). On the contrary, this chapter will be focused 
on the use of these ERPs in the assessment of cognitive function. In particular, this chap-
ter is mainly focused on the use of ERPs to better understand the neural bases of cogni-
tive impairment from the electrical activity of the brain. Describing all the possible ERP 
components and their cognitive meaning is a huge endeavor, and this chapter will only 
be focused on three of them: contingent negative variation (CNV), mismatch negativity 
(MMN), and P300. To improve the reader’s knowledge about these ERPs in cognition, 
a specific description will be given about the stimulation required to obtain the specific 
component, the topography, and latency shown. Moreover, a description of the neuro-
physiological bases of the component, its relationship with psychological processes and 
neural sources will be also included. Pathological alterations suffered by the component 
will also be briefly described.

Keywords: cognition, ERPs, latency, neural sources, pathology, topography

1. Introduction

Since the 1960s, a prolific literature has been produced on the field of event-related potentials 
(ERPs), related to the study of cognitive activity in the brain. In the beginning, these studies 
were more directed to the study of sensory and motor pathways. However, from studies such 
as in Refs. [1–3], ERPs were related to cognitive processes such as relevance of the stimulus, 

uncertainty, or mismatch with a previous stimulus.

Up to the present day, many studies have been published by numerous groups worldwide 

using this technology. In spite of the crisis that the ERP technique suffered due to the arrival 
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of neuroimaging, ERPs have survived, and nowadays, still offer an interesting way to explore 
the cognitive activity with a direct measure of the electrical activity of neurons.

One of the main challenges that ERPs have to overcome is their application in the clinical field 
through studies that verify the reliability of the technique. Nevertheless, it is necessary to 
define the possible applications of these potentials to better understand the etiology of cogni-
tive pathology and develop possible therapeutic targeting in this field.

In this chapter, three important ERPs will be detailed: contingent negative variation (CNV), 
mismatch negativity (MMN), and P300. For each one, several topics will be tackled: (1) a 
generic description of the component; (2) a brief definition of a procedure that allows evok-

ing the component; (3) evidence of psychological variables that can modulate the component; 

(4) neurophysiological basis, typical topography, and latency of the component; (5) neural 

sources identified; (6) alterations that the component suffers in some diseases and its probable 
meaning.

These three components have been selected because of the order in which they appear in 
information processing. The first one, CNV, is related to the instants prior to the onset of a 
stimulus that is expected by the subject. MMN is related to the early phases of the cognitive 
processing for the stimulus that is evaluated. And finally, P300 represents late phases of the 
perceptual process and includes many psychological processes of high order.

2. Contingent negative variation (CNV)

2.1. Generic description

In 1964, Walter et al. [2] published a study in which an event-related potential was present 

prior to the appearance of the stimuli. The psychological meaning of this component was 
defined as the expectancy caused by a warning stimulus (also called sometimes “cue”) that 
allows the subject to prepare a response in order to react faster and more accurately to the 
incoming stimuli (known as “imperative stimuli”).

2.2. Procedure and characteristics of the component

Diverse paradigms have been used to elicit CNV in diverse sensory modalities: visual [4]; 

auditory [5]; or the interaction between visual and auditory stimulation [6], and even with 

proprioceptive information [7]. In the last few years, one of these paradigms has been called 
“Attentional Network Test (ANT),” which has been highly popular in the study of attentional 
mechanisms such as expectancy or orienting [8–10]. Depending on the stimulus onset asyn-

chrony (SOAs) used, CNV is present between warning and imperative stimuli in this task 
[4, 11]. In a basic conception of the ANT paradigm, cues are shown for 150 ms, and then a 
variable SOA can be defined in a range between 1000 and 2000 ms when the CNV is present. 
Finally, an imperative stimulus is displayed, and the subject has to respond according to the 
instructions of the task (see Ref. [4] for a complete description of the parameters of the task; 
see also Figure 1 for a schematic of this procedure).
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During its history, CNV has been studied extensively in terms of psychological variables 
that can modulate it. One of the earliest studies was about how uncertainty affects CNV 
[12]. In the case that the subject is not certainly sure when the imperative stimuli will be 
displayed, the amplitude grows fast; however, in the case that the subject knows approx-

imately when the imperative stimuli will be presented, the amplitude grows gradually. 
In the case that there is no need to respond to the stimuli following the warning cue, 
CNV is not usually elicited [12]. However, some studies have shown that a nonmotoric 
activity is evoked in the absence of direct overt motor activity [13].

Another interesting fact is that even when the subject is not warned by a cue, there is a slow 
negative trend in the human brain that represents our general expectancy during an experi-
mental session [4] (see Figure 2).

In regard to its relationship with development, Segalowitz and Davies [14] published a study 

in which it is possible to see the evolution of this component along infancy and adolescence. 

Figure 1. Schematic representation of attention network test. Adapted from Galvao-Carmona [4].

Figure 2. CNV component modulation in the no-cue condition showing a general expectancy during the execution of 
a warning-target paradigm. Zero value in x-axis represents the onset of the imperative stimuli. Adapted from Galvao-
Carmona [4].
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An increase in the amplitude is correlated with age and represents the maturation of the fron-

tal lobe and, consequently, better behavioral capacities. In the elderly population, CNV has 
been used to detect different psychological processing of cue-relevant information between 
this population and younger subjects [15].

The latency of this component depends on the task employed. Sometimes, CNV reaches a 
peak (or valley) around 400 ms after the onset of the warning stimuli [12]. In other occasions, 
the component does not reach this maximum negative point and displays a continuous trend 
to negative values until the imperative stimuli show up [4]. Indeed, one of the critical vari-
ables for CNV is the SOA between warning and imperative stimuli [16]. In the case that a SOA 
of 3 or more seconds is used, two subcomponents can be observed. First, an O-wave, where 
O represents “Orienting” [17], is present at the beginning of the CNV trace, and then, an 

E-wave (expectancy and response preparation) [18] appears prior to the onset of the impera-

tive stimulus. If the SOA is reduced, both subcomponents are confounded [19].

With respect to topography, CNV usually shows a maximum value in the vertex, which is 
symmetrically distributed over the scalp [4]. However, if the subcomponents are clearly dis-

tinguished, the O-wave is mainly frontal, and the E-wave is more postcentrally located [19].

The identification of the neural sources for this component remains under debate, perhaps 
due to the complete set of different processes present in the CNV latencies. Using magnetoen-

cephalography, some authors [20] determined that the neural source for the magnetic coun-

terpart of the CNV was located in the premotor cortex (Brodmann Area 6). In another study, 
Zappoli described that patients with lobotomy of frontal lobes exhibited decreased amplitude 
of the CNV [21]. In a study performed in our lab, in which different time intervals of the CNV 
trace were analyzed, numerous cortical areas were active, and a complex dynamic was pres-

ent during the process [4]. These cortical areas belong to different lobes, including the frontal, 
parietal, occipital, and other regions, such as the cingulated lobe and insula, among others 

(see Figure 3).

2.3. Psychological meaning and pathology

Once the component was described, many studies have been performed to find alterations 
in the component and the possible meaning in diverse pathologies. In Huntington disease 
(HD), de Tommaso et al. [22] examined a sample of mild, demented, and nonmedicated HD 
patients. The main result was that CNV amplitude was reduced in these patients compared 
to healthy control subjects, and this reduction was significantly correlated to the bradykinesia 
score. A strong activation in the posterior part of the cingulated cortex in HD is likely respon-

sible for the amplitude reduction, and some authors suggested that it is probably caused by a 

basal ganglia dysfunction.

With regard to Alzheimer's disease, Zappoli et al. [23] found no significant CNV activ-

ity in these patients, who also showed slower reaction times and other EEG alterations. 
However, another group [24] observed that the CNV amplitude was not different between 
groups, also showing low test-retest reliability, which makes it difficult to be applied in the 
clinical field.
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In other pathologies, CNV has been used to determine if any anatomical structure could be 
related to a specific cognitive impairment. For instance, Kuoppamäki et al. [25] observed that 

Parkinson patients with bilateral lesions in the globus pallidus present a deficit in motor tasks 
and alterations in the early phases of CNV.

From our laboratory, a study in a sample of multiple sclerosis patients, reduced amplitude of 
CNV was associated with impairment in the alerting and orienting attentional mechanisms. 
These results were also in accordance with neuropsychological scores from attentional tests 
[26] (see Figure 4).

In the psychopathological field, one of the main disorders studied with CNV has been schizo-

phrenia. Some authors have described a reduction of the amplitude related to the frontal lobe 
dysfunction, and it was manifested in the frontal-central derivations and at the early CNV 

phase [27]. At the same time, some studies have been focused on the relationship between 
CNV and some items of questionnaires used in the assessment of negative or positive symp-

toms [28]. Another interesting field is related to the study of the neural mechanisms under-

lying cephalea and migraine. In their study, Siniatchkin et al. [29] selected three groups: 

migraine, chronic daily headache, and healthy control subjects. CNV values were lower for 
the migraine group, especially at the beginning of the CNV. Chronic daily headache patients 
showed a reduced negativity of the late component of CNV. An interesting result was the 
absence of habituation to CNV in both types of patients and the potential application of CNV 

in diagnostic and therapeutic strategies for these pathologies.

Figure 3. Cortical activation maps presented in Z-scores according to the baseline and showing significant activity (FDR-
adjusted p < 0.01). Sources of the CNV effect were estimated in 2 CNV intervals of interest, −500 to −400 and −100 to 0 ms 
before the target stimulus. Adapted from Galvao-Carmona [4].
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3. Mismatch negativity (MMN)

3.1. Generic description

Described for the first time by Näätänen et al. [3], mismatch negativity appears when a 

change in a stream of stimulation is detected. This generic fact has been employed in different 
approaches for studying the bases of cognition in healthy and pathological subjects.

3.2. Procedure and characteristics of the component

A typical way to obtain this component consists of using an auditory oddball task, in which 
two types of stimuli are listened to binaurally through headphones: standard stimuli (1000 Hz 
tones and a probability of 0.80) and deviant stimuli (2000 Hz tones and a probability of 0.20). 

Figure 4. Contingent negative variation modulations at Cz electrode and topographic maps for healthy control subjects 
and patients in the attention network test. Adapted from Vazquez-Marrufo [26].

Event-Related Potentials and Evoked Potentials6



The interstimulus interval can be around 1 s, and the intensity of auditory stimuli can be set at 
70 dB. The duration of the stimuli is 50-ms plateau and a 10-ms rise-fall time. Two blocks with 
200 trials (including 80 deviant stimuli) are enough to obtain the MMN [30]. See Figure 5 for 

a schematic representation of the experimental procedure.

The component can be elicited during active tasks (counting deviant stimuli) [30] or during 

passive tasks [3]. Indeed, this last option can be extremely useful in some pathological condi-
tions, such as coma [31]. MMN shows up as the result of subtraction between the standard and 
deviant associated waves. This component is evoked not only by a change in the frequency 
but also in pitch duration, intensity of stimuli…, and so forth. [32]. Other properties such as 
short SOAs [33] or the saliency of the deviant stimuli [34] produce greater MMN amplitudes.

Although MMN is usually based on auditory procedures, it can also be obtained with visual 
stimulation [35, 36] or even other sensory modalities [37]. The component is present even in 
newborns [38], and, during childhood, MMN presents differences in latency and topography 
with respect to adults, which suggests a development of the component throughout youth 

[39]. In healthy aging, elderly subjects showed a reduction in the amplitude [40], as well as a 

delay in the latency [41].

With regard to the specific parameters of the component, the latency is between 150 and 250 
ms after the onset of the stimuli, and its distribution is fronto-central in the scalp (although 

the topography depends on the location of the reference) [42]. In auditory paradigms, neural 
generators are located in the primary and nonprimary auditory cortex, although they can also 
include frontal lobe areas, the thalamus, and the hippocampus, as evidenced by intracranial 

studies with animals [42].

3.3. Psychological meaning and pathology

The main application of MMN has probably been as an exponent of accuracy in the discrimi-
nation of small changes in stimuli in untrained [43] or trained subjects [44]. Since the presence 
of standard stimuli is necessary for obtaining MMN in deviant stimuli, this component has 

Figure 5. Schematic representation of the experimental procedure to evoke a MMN response.
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also been proposed as an index of the violation of the memory trace built during the experi-
ment by the standard stimuli [45].

With regard to its application in several pathologies, attenuated amplitudes in patients with 
schizophrenia have been reported in Ref. [46]. This reduction has been interpreted as a poor 
social/occupational and executive functioning in these patients [47].

With respect to bipolar disorder, several studies have shown contradictory results for this 
component (for a review, see Ref. [45]. The main conclusion is that there is no clear evidence 
of auditory discrimination ability in these patients after all.

In multiple sclerosis, some studies have reported alterations in this component, showing defi-

cits in the auditory discrimination system [48]. Moreover, some authors have shown that the 
amplitude reduction in MMN could be linked to disorganization of spectral modulations 
(beta and gamma bands) in patients with low EDSS. These results suggest a complex set of 
alterations even in the early phases of this disease [30] (see Figure 6).

In stroke patients, an amplitude reduction in MMN has been found for changes in tone dura-

tion and frequency after a left-hemisphere stroke [49]. Another approach in the stroke field 
has been the use of this component as an assessment of function recovery in patients [50].

With regard to development, some studies have been focused on the use of MMN to deter-

mine deficits in dyslexic children. In particular, a reduction in the amplitude of this compo-

nent found by Shafer et al. [51] could represent a poor auditory discrimination or language 

learning disability for phonetic cues in these patients. In autism spectrum disorder, some 
studies have shown an increase in the amplitude of this component with nonspeech stimuli 

and the opposite effect with speech stimuli [52, 53].

4. P300

4.1. Generic description

Chapman and Bragdon [1] described a positive wave around 300 ms after the onset of numeri-

cal and nonnumerical visual stimuli, and the subject was required to solve a problem with 

Figure 6. (A and B). Event-related brain potentials (ERPs) elicited at Cz in the deviant and standard conditions for MS 
patients and the control group, respectively. (C). Difference wave (MMN) (deviant—standard) for both groups. In all 
cases, arrows indicate the incoming of the tone. Adapted from Vazquez-Marrufo [30].
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those numbers. These authors suggest that this positive wave was originated because the 
numbers were relevant to the task. A vast number of studies have found multiple possible 
meanings for this component, and a general consensus accepts that P3 represents the summa-

tion of different areas in the brain with diverse psychological processes intertwined. Indeed, 
P3 has two clear distinguishable subcomponents with different psychological meanings. In a 
simplified conception, P3b is evoked by relevant stimuli (target) and not usually evoked by 
standard stimuli in several paradigms (i.e., oddball task). On the other hand, P3a is evoked by 
the presence of novel stimuli along a sequence of target and standard stimuli.

4.2. Procedure and characteristics of the component

In this section, a brief description of a visual oddball paradigm is presented in comparison to 
the auditory type described in the MMN section (see Ref. [54] for complete specifications). In 
this “visual oddball task,” the subject is asked to discriminate uncommon visual stimuli (tar-

get) from a sequence of frequent stimuli (standard). In this study, the target stimulus (prob-

ability: 25%) was a rectangle with a checkerboard pattern comprising red and white squares. 
The standard stimulus (probability: 75%) was equivalent in size and pattern but with black 
and white squares. Both stimuli were presented in the center of the screen and the size of both 
stimuli was 7.98 and 9.42 (visual angle) on the x and y axes, respectively. The duration of the 
stimuli was 500 ms, and the interstimulus interval was 1 s, which is the time when the subject 
could respond. The task for the participants was to press a button whenever a target stimulus 
appeared and ignore the standard stimuli. It is also possible to elicit P3 if the task is not a 
motor response, e.g., the subject just counts the targets silently [55]. Only one block with 200 
trials (50 target stimuli) is enough to evoke the P3 component (see Figure 7).

Multiple studies have defined variables that can modulate this component. An interesting 
finding is about P3 being evoked by the absence of a stimulus if it is relevant to the subject 
[56]. Another important issue about this component is that it has been observed with different 

Figure 7. Schematic representation of a visual oddball to elicit P3.
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sensory modalities (auditory, visual, somatosensory, olfactory, or taste stimulation) [57]. P3 
amplitude is mainly independent of sensory modality; however, it is possible to find some 
differences in shape and latency when auditory and visual stimulation are compared [58]. 
When using auditory stimulation, different features of the stimulation, such as the tone fre-

quency or the use of a mask of white noise, can affect P3 latency [59].

An important consensus regarding the meaning of P3 is that it reflects the timing of cog-

nitive processes. However, on the other hand, it is not correlated with reaction time [60]. 
Considering the multiple psychological processes comprised in the component, there does 

not seem to exist a strong correlation between P3 and behavioral response.

With regard to age, children showed an increase in latency and a decrease in amplitude in 
the 1st years of life compared to adults (up to 3 years) [61]. Considering the entire lifespan, 
Goodin et al. [62] showed the natural evolution of latency decrease and amplitude increase 

in young subjects and that of latency increase and amplitude decrease in elderly subjects. A 
considerable number of publications have been focused on studying this component in other 

species. This component or similar waves have been described in rats [63], cats [64], monkeys 
[65], or mice [66], among other studies.

P3 latency peaks around 350 ms and, in particular, P3a and P3b are around 240 ms and 350 ms, 
respectively [67]. However, it is possible to find a P3 peak in a range that goes from 300 to 500 
ms depending on many variables (type of task, difficulty…, and so forth). [55]. With regard 
to topography, the maximum amplitude of the P3 wave is seen at the parieto-occipital area 
for P3b and as fronto-central derivations for P3a [57]. With aging, the topography can change 
with a more frontal distribution; however, the scalp distribution is defined similarly by task 
requirements when it is compared with young subjects [68]. Concerning neural sources for 
this component, multiple studies have described controversial results about them. In particu-

lar, diverse cortical lobes (frontal, parietal, and temporal) or the hippocampus are defined as 
relevant for the generation of the P3 component (see Ref. [69] for a review).

4.3. Psychological meaning and pathology

Nowadays, there are many suggestions about the psychological meaning of this component: 

(1) inhibition that ends the activation related to stimulus processing [70]; (2) expectation and 
relevancy of the stimulus [71]; (3) selective attention [72]; (4) updating of working memory 
[73]; (5) activation generated by the sequence of frequent stimuli [74]; (6) speed of cognitive 

processing and allocation of brain energy resources [75]; (7) difficulty of the task [76]; (8) 

emotion and motivation [77, 78]. As was pointed out previously, it can be asserted that P3 
comprises multiple processes and its modulation can be determined by different variables in 
different ways, sometimes increasing/decreasing either the latency or amplitude and some-

times opposing some variables to others.

In the clinical field, P3 has been used extensively in many diseases. Our group has referred in 
some studies to alterations of the amplitude (decrease) and latency (increase) of P3 in multiple 

sclerosis [79, 80] (see Figure 8). Comi et al. [81] has shown that a longer latency in P3 may be 

related to demyelination. An increased latency is also observed in diverse types of dementia 

Event-Related Potentials and Evoked Potentials10



(Alzheimer, multiinfarction dementia, and lacunar dementia); on the other hand, in pseu-

dodementia, the altered parameter is amplitude, which is flattened [82].

In Parkinson’s disease, an amplitude decrease has also been observed by O'Donnel et al. [83]. 
However, other authors suggest that this reduction is more related to the dementia associated 
with the disease, rather than Parkinson itself [84].

P3 has also been useful as an indicator of the presence of a traumatic lesion (e.g., prefrontal 
cortex). It has been related to P3a and behavioral responses indicating a reduced attentional 
shift toward novel stimuli [85]. It is also possible to assess the evolution in the subacute phase 
of a stroke from changes in the P3 component [86].

In the psychopathology field, schizophrenia has received a remarkable attention with P3 stud-

ies. One general finding is decreased amplitude, which seems to be correlated to the presence 
of negative symptoms [87, 88]. Another potential application of P3 consists of assessing the 
neurodegenerative process in this pathology. Martin-Loeches showed a negative correlation 
between P3 amplitude and prefrontal CSF volume in these patients [89].

Figure 8. P3 component modulations at Pz electrode and topographic maps for ANT test. Note the reduction in the 
amplitude for multiple sclerosis patients in both conditions (congruent and incongruent). Adapted from Vazquez-
Marrufo [80].
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5. Conclusion

As a general conclusion, the ERP literature presented in this chapter shows an amazing field to 
explore, which relates the electric activity of the brain to the cognitive processes. It seems that 
a vast number of applications could be developed in the next few years, in our understanding 
of how information is processed in the brain, identifying anatomical structures where these 

processes occur, and their hierarchical organization.

However, one of the main challenges for this field is to study reliability tests that guarantee 
the health professionals that the assessment is reproducible and valid to be applied in the 

clinical field.
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