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Abstract

Exosomes are excretory nano-vesicles that are formed by the cell’s endocytic system and 
shed from the surface of almost all types of cells. These tiny extracellular vesicles, once 
thought to be “garbage bags for cells,” carry a wide variety of molecules of cellular origin, 
including proteins, lipids, and RNAs, that are selectively incorporated during the forma-
tion of exosomes. Exosomes are now known to play a central role in several important 
biological processes such as cellular communication, intercellular transfer of bioactive 
molecules, and immune modulation. Recent advances in the field have shown that a num-
ber of animal viruses can exploit the exosomal pathway by incorporating specific cellular 
or viral factors within exosomes, in order to modulate the cellular microenvironment 
and influence downstream processes such as host immunity and virus spread. In this 
chapter, we provide an overview of our current understanding of exosome  biogenesis 
and how this normal physiological process is hijacked by some pathogenic viruses. Viral 
components that appear to be selectively incorporated into exosomes and the potential 
role of these exosomes in viral pathogenesis are discussed. Identifying viral signatures in 
exosomes and their mode of action is fundamental for any future diagnostic and thera-
peutic strategies for viral infections.
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1. Introduction

Exosomes are nano-secretory vesicles ranging in size from 30 to 100 nm and having a density 

between 1.13 and 1.19 g/ml [1]. Exosomes are derived from the cell’s endosomal pathway, and 

their membranes are rich in lipids such as sphingolipids, ceramide, and cholesterol [2]. These 

tiny vesicles are released by virtually all cell types, but at varying degree, upon fusion of mul-

tivesicular bodies (MVBs) with the plasma membrane [3–5]. It is now well established that 
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exosomes are not the cell’s trash bags, as initially thought, but rather they serve as important 

nano-vehicles for the transport of specific cargo in and out of the cells [6]. Depending on their 

cargo, exosomes can mediate certain intercellular communication processes [7, 8]. Although 

the mechanism of how this cargo is selected for packaging into these vesicles destined for 

excretion remains poorly understood, it is believed that the endosomal membranes play a 

central role in this process [9, 10].

A number of molecular mechanisms are involved in the formation of intraluminal vesicles 

(ILVs) and multivesicular bodies (MVBs) in a cell. One of the best studied and well-charac-

terized group of proteins involved in this process belong to the ESCRT (endosomal sorting 

complex required for transport) family of proteins [11–13]. These proteins are believed to 

play a role in the inward budding and scission of ILVs. One of the mechanism by which 
viruses hijack the exosome pathway is by directly interfering with the machinery involved in 

exosome biogenesis, such as the ESCRT proteins [14]. Others such as the oligomerization of 
the tetraspanin complexes [15], the sphingomyelinase pathways [16], phospholipase D2, and 

ADP ribosylation factor-6–mediated pathways have also been reported to be involved in the 

ILV budding process [17]. Another family of proteins that are essential for vesicular forma-

tion, trafficking, and fusion in eukaryotic cells belongs to a large family of highly conserved 
proteins known as Rab GTPases [18]. A number of Rab proteins such as Rab5 and Rab7 have 

been shown to be important in endosome maturation and sorting of material in the ILVs [19, 20].  

Rab27 a/b are involved in the fusion of the ILVs with the plasma membrane and release of 
exosomes [50]. A number of other Rab GTPases are also found to play an instrumental role in 

exosome release. Depending on the cell type, Rab5, Rab7, Rab11, Rab27, and Rab35 have all 

been implicated in the release of vesicles. Altering the levels of any of these Rabs may lead to 

interference with progression of exosomal cargo at specific endocytic locations [20]. The fact 

that the exosomal pathway has some similarities with certain phases of viral life cycle has led 

to the observations that a number of viruses can indeed hijack the exosome pathway during 

their replication and pathogenesis [21, 22].

2. Viruses and the exosomal pathway

The endocytic pathway and the budding of viruses, especially enveloped viruses, share 

many common features. Both processes require generation of membrane curving, packag-

ing of specific cargo, and membrane budding for release from the cell [22]. What is most 

surprising is that different viruses with very different evolutionary paths appear to converge 
in their use of the host endocytic pathway in the entry and exit from their host cells [23]. The 

receptor or clathrin-mediated endocytosis to enter the cell is found to be utilized by a number 

of viruses of the Flaviviridae family, which includes medically important pathogens such 

as hepatitis C (HCV), West Nile (WNV), Dengue, and Zika viruses [24–27]. These viruses 

can enter the late endosomes and then fuse with the ILVs within the endosome compart-
ments [28]. Recently, it was shown that HCV can incorporate its full-length RNA genome 

into the ILVs and be excreted out via exosomes, and retain infectivity [29, 30]. Since HCV 

is fairly small, it is possible that HCV infectious particles could be released directly within 

exosomes and account for infection. However, the observation that exosomes isolated from 

Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases76



HCV sub-genomic replicon cell lines lacking HCV structural proteins remained infectious 

argues against the notion that mature viral particles are released in exosomes [30]. Currently, 

HCV and hepatitis A virus (HAV) are the only viruses that have been shown to incorpo-

rate their full-length genomic RNA within exosomes [31]. Another virus that can utilize the 

endosomal/exosomal system to deliver viral cargo to uninfected cells is the human immuno-

deficiency virus (HIV-1). Based on the similarities between HIV-1 assembly and egress, and 
exosome biogenesis, Gould et al. proposed the “Trojan exosome hypothesis,” in which they 

suggested that HIV has evolved to exploit the exosome system to infect cells in the absence 
of the receptor-mediated interaction [32, 33]. This hypothesis is supported by the observation 

that HIV virions are released together with exosomes, but the infectivity is reduced in the 
absence of exosomes, implying that the process of exosome release from HIV-infected cells 
probably also contributes to the release of HIV virions. This mechanism was demonstrated 
using HIV-infected dendritic cells, which were able to transfer the virus to closely associated 
uninfected T cells via exosomes [34, 35]. Unlike HCV, direct packaging of HIV genomic RNA 
into exosomes has not been observed, probably reflecting the findings that HIV predomi-
nately buds from the plasma membrane and not from the endosomal pathway [36–38].

2.1. Viruses hijack the ESCRT and Rab GTPases involved in exosome biogenesis

Viruses are obligate intracellular parasites that hijack cellular pathways to complete their 

life cycle. In recent years, an accumulating body of data has emerged suggesting that some 
viruses can also manipulate with the vesicular trafficking machinery for their assembly, 
egress, and transmission [39, 40]. For example, HIV has been shown to exploit the ESCRT, 
lipid raft domains, and Rab GTPases components, all of which are involved in exosome 

biogenesis [23, 41, 42]. Specifically, HIV Gag has been shown to interact with exosomal tet-
raspanins, especially CD63 and CD81, to aid in virion egress [42]. Using electron micros-

copy, human herpesvirus 6 (HHV-6) virions have been shown to be present in MVBs and 

egress together with exosomes through the same pathway [43]. HHV-6 infection dramatically 

increases MVB formation, suggesting that the endosomal pathway is likely to be important 

for HHV-6 infection and assembly [43]. Furthermore, HHV-6 glycoprotein gB was found to 

co-localize with CD63 [43], but the importance of this association for virus egress remains to 

be demonstrated. Besides interfering with the ESCRT pathway, some viruses can also utilize 

the Rab GTPase complexes to assist in their replication and egress processes. Several nega-

tive strand RNA viruses, such as influenza A virus (IAV), hantavirus, and respiratory syncy-

tial virus (RSV), have all been reported to utilize the Rab pathway for their transport to the 

plasma membrane for exit [44–47]. It is known that interfering with Rab11 levels can inhibit or 
promote the release of exosome-containing contents such as transferrin, HSP-70, flotillin, and 
anthrax toxin [44, 48, 49]. In the case of hantavirus-infected cells, depletion of Rab11 results in 
a tenfold reduction in virion production [46]. Similarly, IAV and RSV also appear to hijack the 
Rab11 pathway to their benefit [45, 47]. Rab27a, another member of the Rab GTPase family, 

has also been shown to be essential for exosome biogenesis, particularly in the steps involv-

ing the fusion of MVBs with plasma membrane for the final release of exosomes [50, 51]. 

For example, in cytomegalovirus (CMV)-infected cells, the levels of Rab27a are increased 

and co-localized with the viral envelope components at assembly sites in the cytoplasm [52], 

but the molecular mechanisms and ultimate changes to exosome production remain to be 
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 elucidated. HIV proteins are also found to interact with Rab27a resulting in increased levels 
of exosome formation [41, 53]. Herpes simplex virus 1 (HSV-1) is another virus that appears 

to use Rab27a for its intracellular transport and exocytosis [54, 55]. Depletion or down-regu-

lation of Rab27a leads to decrease in HSV-1 viral production [54, 55].

The regulatory functions of the Rab GTPase mentioned above are still not fully understood. 

However, it is widely accepted that cells react to stimuli to adjust the distribution and levels of 

intracellular proteins as well as their degradation, secretion, and recycling [56]. Manipulation 

of specific steps in the endocytic pathway by viruses highlights the need for further research 
to unravel the complex interplay between regulators of the endocytic process and exosome 

release. Such studies may shed light to potential targets for anti-virals.

2.2. Viral signatures in exosomes

The discovery that certain features in the life cycle of viruses and the cellular endosomal/exo-

somal pathway are common, and that some viruses can exploit the exosomal pathway to their 

benefit, triggered a search to identify viral signatures in exosomes. This line of research has 
obvious downstream benefits, not only in terms of viral diagnosis, but also for understanding 
the mechanisms of viral-mediated pathogenesis. We now have a growing list of viral-specific 
components that have been identified in exosomes (Table 1). Moreover, functional analysis of 

excreted exosomes carrying viral components is beginning to shed light on how some viruses 

can modulate cellular processes as diverse as immune evasion, apoptosis, proliferation, and even 

viral infectivity (Table 1). In this context, one family of viruses that has been widely studied is the 
human herpesviruses. This family of viruses contains two members, namely Epstein-Barr virus 

(EBV) and Kaposi’s sarcoma virus (KSV), that are oncogenic and implicated in the pathogenesis 

of a number of human malignancies [57]. Both of these viruses have now been shown to exploit 

the exosome pathway to secrete various components ranging from proteins to various species 

of RNAs, including messenger RNAs (mRNA), microRNAs (miRNA), and small non-protein 

coding RNAs [58–61]. In fact, viral miRNAs (vmiRNA) were first identified in EBV-infected cells 
[62] and subsequently shown to be excreted out of cells via exosomes [63]. It is now known 
that exosomes shed from EBV-infected cells contain a large number of viral miRNAs, most of 

which appear to be smaller products of larger BamH1 EBV transcripts [64, 65]. It is believed 
that these viral miRNAs, together with cellular miRNAs, play a role in modulating the expres-

sion of target genes in recipient cells (Figure 1) [59, 65–67]. Recently, it was shown that the two 

non-protein coding EBV small RNAs, EBER-1 and EBER-2, are also consistently excreted from 

infected cells within exosomes [68]. EBERs are highly abundant EBV RNA polymerase II/III 
transcripts expressed in all EBV latently infected cells. The significance of their high abundance 
within infected cells, or the reasons for their release in exosomes, remains intriguing. One study 
showed that EBERs released from infected cells could induce innate immune responses via acti-

vation of Toll-like receptor 3-mediated signaling [69]. In addition to RNAs, a number of studies 
have shown that EBV-infected cells can also excrete viral-specific proteins, including the latent 
membrane protein 1 and 2A (LMP-1, LMP-2A) and the viral envelop glycoprotein 350 (gp350) 
[70–73]. Export of these proteins via exosomes indicates another dimension to how EBV can 

modulate cellular processes, not only within the cells it infects, but also in the surrounding cells.
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Another virus which has attracted considerable attention is HIV. There are over 38 million 
people living with HIV, and there is still no cure [74]. Analysis of exosomes released from  

HIV-1-infected and non-infected cells shows that they differ in their densities [75]. This implies 

that the contents of the exosomes from infected and non-infected cells are clearly different 
[60, 61]. Although retroviruses are much smaller than herpesviruses, they are  nevertheless 

Virus Main cellular target Viral cargo reported  

in exosomes

Potential effect of  
viral exosomes

References

EBV Lymphocytes LMP1, 2A, gp350, 
vmiRNA, EBERs,  

vRNA

Proliferation, apoptosis, 

immune evasion, viral 

reactivation

[63, 68, 70, 72, 73, 92]

HSV-1 Epithelial cells VP16, HSV gB, ICP 127, 
vmiRNA

Increase infectivity,  
viral spread, and latency

[116, 128]

CMV WBC, epithelial cells CMV gB Infection of myeloid 
dendritic cells, increased 

viral infectivity

[129]

HHV-8 WBC, endothelial 

cells

vmiRNA, vRNA Immune modulation,  
cell metabolism

[60, 61]

HIV-1 Lymphocytes vmiRTAR, vmiRNA,  

Nef

Inhibition of 
apoptosis, stimulate 

proinflammatory 
cytokines, down-

regulation of CD4 

and MHC I, increased 
susceptibility of naïve T 

cells, antiviral activity

[81, 82, 130, 131]

HTLV-1 Lymphocytes Tax vmRNA, TAX, 

vmiRNA

Proinflammatory 
cytokines, damage to 

neurons

[86, 132, 133]

HPV Epithelial cells vmiRNA Proliferation, apoptosis [134]

HAV Hepatocytes HAV gRNA, HAV 

particles

Immune evasion, 
increased viral infectivity

[31, 117, 135]

HBV Hepatocytes vDNA, vRNA, HBsAg Immune evasion [118, 136]

HCV Hepatocytes HCV gRNA, vmiRNA, 

vRNA

Immune evasion [29, 124, 137]

RVFV WBC v-protein, vmRNA Apoptosis, immune 

evasion

[138]

Viral-infected cells have been shown to shed exosomes containing cellular and viral-specific components. Table lists 
viral components that have been detected in exosomes. These include viral mRNAs, microRNAs (vmiRNA), non-

protein coding RNAs (vRNA), full-length genomic RNA (gRNA), as well as virus-specific proteins. Depending on the 
exosomal cargo and type of recipient cells, different biological changes may be induced. Abbreviations: EBV, Epstein-

Barr virus; HSV, herpes simplex virus; CMV, cytomegalovirus; HIV, human immunodeficiency virus; HTLV, human 
T-lymphotropic virus; HPV, human papillomavirus; HAV, hepatitis A virus; HBV, hepatitis B virus; HCV, hepatitis C 

virus; RVFV, Rift Valley fever virus.

Table 1. Exosomes, their viral cargo, and their potential role in virus-mediated pathogenesis.
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still slightly larger than exosomes and as such it is unlikely that mature infectious HIV-1 
particles could be packaged and excreted within exosomes. However, there is mounting 

evidence that HIV-1 egress is partly mediated by the endosomal pathway, and both exo-

somes and HIV-1 are released together in the same fraction [76]. HIV-1 Gag protein has 
been shown to interact with the exosomal membrane tetraspanins, CD63 and CD81, aiding 

in the assembly and exit of HIV-1 from infected cells [77–80]. Moreover, several function-

ally active HIV-1 components have also been shown to be excreted out of infected cells 
using the exosomal “bus” (Figure 1). Once released, exosomes can bind to neighboring cells, 
travel passively through the blood stream to distant sites, and induce biological changes 

depending on the nature of the cargo they carry (Figure 1) [42]. Nef is one HIV-1 protein 
that has been shown to be released within exosomes [81]. Studies indicate that Nef plays an 

important role in activating resting bystander CD4+ T cells making them susceptible to HIV 

Figure 1. Viruses hijacking the exosomal pathway. Many different viruses have been shown to exploit the exosomal 
pathway to aid in their infection, spread, and pathogenesis. Three examples are illustrated here. EBV, a dsDNA virus 

of the herpes family, has been shown to export numerous viral microRNA (vmiRNA), viral mRNA, non-protein coding 

RNAs (EBERSs), latent membrane proteins (LMP-1 and 2A), and the envelop glycoprotein (gp350). Similarly, other 
viruses such as HIV, hepatitis A, B and C can also package their proteins and RNAs in exosomes. For HAV and HCV, 
full-length genomic RNA has been shown to be present in exosomes, which in the case of HCV has been demonstrated 

to be infectious and capable of producing virus particles.
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infection and viral replication [81–83]. Reports have indicated that HIV-1 may also facilitate 
its spread to other cells by secreting viral co-receptors, CCR5 and CXCR4, in exosomes 

[84, 85]. In addition to functional proteins, exosomes from HIV-1-infected cells have been 
shown to carry several viral miRNAs, including vmiRTAR transcripts, vmiR88 and vmiR99 

[23]. Similarly, another human retrovirus, the human T-lymphotropic virus 1 (HTLV-1), 
also appears to export viral components via the exosomal transport systems. Exosomes 

released from HTLV-1-infected cells contain not only viral mRNA transcripts, such as those 
for Tax, HBZ, and Env, but also the biologically active trans-activator protein, Tax [86, 87]. 

Moreover, HTLV-1 Tax protein has been demonstrated in exosomes isolated from cerebro-

spinal fluid of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, 
 suggesting that HTLV-1 may modulate its microenvironment by selective secretion of specific  
viral cargo [88].

The list of components of cellular and microbial origin detected in exosomes is constantly 

expanding. This has led to the establishment of several online databases to catalogue the con-

tents of exosomes. There is now substantial evidence indicating that many different types of 
pathogens, including bacteria, viruses, parasites, and even prions, can exploit the exosomal 

pathway [89, 90]. Of the viruses, members belonging to families as diverse as Bunyaviridae 
(enveloped RNA viruses) and Papillomaviridae (non-enveloped DNA viruses) have been 

shown to export their products in exosomes (Table 1). Moreover, studies are beginning to 

address the functional impact of exosomes carrying viral cargo in the pathogenesis of viral 

infections. One major challenge is to understand the mechanisms that regulate the selection 
of cargo to be packaged into exosomes and how we can use exosomes as biomarkers for viral 

infections and disease progression [89, 91].

3. Role of exosomes in viral pathogenesis

Exosomes released by viral-infected cells contain not only viral components, but also those of cel-

lular origin [23, 67, 89]. It appears that viruses are able not only to export their own products in 
exosomes, but also to somehow influence which cellular products are packaged within the excre-

tory vesicles. This is evident by the findings that exosomal cargo of cellular origin is clearly differ-

ent from non-infected cells of the same type [60, 61, 92]. Thus, any pathophysiological impact of 

viral exosomes on recipient cells is by no means due to viral components only. An accumulating 

body of data indicates that exosomes from viral-infected cells can induce processes as diverse 

as immune evasion, apoptosis, proliferation, transcellular spread, and cytokine modulation 

(Table 1). The molecular details of how these processes are triggered are poorly understood and 

most probably dependent on multiple factors, including the type of cells releasing/receiving exo-

somes, nature of the exosomal cargo, mode of delivery, and stage of infection [1, 90]. This proba-

bly explains why apparently contradicting results have been reported in different studies [93, 94]. 

For EBV, it has been shown that uninfected epithelial cells exposed to exosomes derived from 

infected B cells are internalized via caveolar-dependent endocytosis and induce physiologi-

cal changes in these cells [95]. Studies reported that exosomes derived from nasopharyngeal 

carcinoma (NPC) and from EBV-immortalized lymphoblastoid cell lines (LCLs) either inhibit 
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 proliferation of EBV-reactive CD4+ cells or induce apoptosis [70, 93, 96]. Similar results were 

observed with exosomes isolated from EBV-associated NPC patients and mice xenografted with 

NPC [97]. These pathophysiological changes were suggested to be due to viral and cellular compo-

nents such as LMP-1, LMP-2A, viral miRNAs, and cellular galectin 9, excreted in exosomes from 
EBV-infected cells [72, 93, 97, 98]. The finding of EBV LMP-1 in exosomes is noteworthy [70, 93].  

This is a well-known oncoprotein that plays a key role in the immortalization of EBV-infected 

cells [99]. Not surprisingly, LMP-1 has been extensively studied and shown to function as a con-

stitutively activated receptor, signaling through the TRAF pathway leading to the activation of 

the master transcription factor, NFκB [100, 101]. LMP-2A is also an EBV latent protein expressed 
on the plasma membrane of latently infected cells [102]. Like LMP-1, LMP-2A also appears to be 
a constitutively activated receptor; while LMP-1 mimics CD40 receptor, LMP-2A mimics acti-
vated B-cell receptor (BCR), allowing infected cells to develop and survive, even in the absence 

of BCR signaling [103, 104]. Although it is not known how these membrane proteins are selected 

for export in exosomes, or what their functional impact is on recipient cells, it is tempting to pos-

tulate that the cell survival signals provided by LMP-2A and cell proliferation signals provided 
by LMP-1, if transferable to recipient cells, would be important in EBV pathogenesis.

Recently, we reported that exosomes from both EBV-infected and non-infected B cells are 

taken up by recipient cells, but only the exosomes from EBV-infected cells induced  apoptosis 

in recipient cells in a dose-dependent manner [92]. We further showed that apoptosis was 

induced via the activation of the extrinsic pathway involving Fas-ligand (Fas-L) present in 
EBV exosomes. Moreover, the process could be blocked by using anti-Fas-L antibodies [92]. 

Another study reported that LCL-derived exosomes contain Fas-L and MHCII molecules and 
induce apoptosis in autologous CD4+ T cells [96]. Taken together, these studies indicate that 

one mechanism by which EBV could evade the body’s immune system may be by shedding 

exosomes containing signals that inhibit proliferation and/or promote apoptosis of anti–

EBV-infiltrating lymphocytes. The fact that similar effects on bystander cells, albeit through 
different mechanisms, have also been reported for exosomes released from rotavirus and 
HIV-1–infected cells [105, 106] supports this hypothesis.

Another well-known mechanism by which some viruses can evade the immune responses is by 

down-regulating the expression of viral lytic genes and persisting in the infected cells in a latent 

state [107]. It’s a simple strategy; no viral antigens expressed in infected cells means no immune 
system can be triggered [108]. In this context, herpesviruses are among the most extensively 
studied [109, 110]. For example, herpes simplex type 1 (HSV-1) replicates in mucosal epithelial 

cells during primary infection and then enters sensory neurons where it establishes life-long 

latency [111]. During the latent state, although no viral proteins are expressed, numerous 

vmiRNAs have been detected, and some of these vmiRNAs appear to be central in suppressing 

viral gene expression and maintaining latency [112–114]. The complexity of this process has 

been further exposed by recent findings indicating that HSV-1 can excrete vmiRNAs in exo-

somes, which on transfer to recipient cells, can suppress viral gene expression and viral spread 

to uninfected cells [115]. Furthermore, HSV-1 can also transfer antiviral factors, such as STING 
(stimulator of IFN genes), to suppress its cell-to-cell spread in circumstances that may be unfa-

vorable [116]. Thus, inhibiting viral replication and spread in the face of a competent immune 

threat could be an important strategy for viruses to escape immune elimination and persist.
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In some viral infections, such as with hepatitis B (HBV), non-infectious subviral particles are 
released into the serum, often at levels 1000s of fold higher compared to mature infectious par-

ticles [117, 118]. In evolutionary terms, it does not make sense why a virus would opt to shed 
enormous amounts of non-infectious subviral particles if it was not beneficial for the virus. 
One plausible hypothesis is that such subviral particles act as a decoy to divert the immune 
responses away from the bonafide infectious virions [118, 119]. HSV-1-infected cells can also 

release subviral particles, referred to as the L-particles. These particles have neither viral capsid  
nor viral DNA, and they are not infectious, but they do contain several HSV proteins [120, 121]. 

Recent studies suggest that the transfer of L particles to bystander cells can modulate the 
microenvironment to facilitate immune evasion and viral infection [122]. Similarly, there is 

evidence that some viruses can manipulate their microenvironment by secreting exosomes 

containing cargo that interferes with the host inflammatory and antiviral factors [119, 123].

In addition to immune modulation, exosomes released from some viral-infected cells can pro-

mote infection and enhance viral spread. A good example of this is HIV-1. Exosome-mediated 
transfer of HIV-1 co-receptors CCR5 and CXCR4 to recipient cells that do not normally express 
these receptors can facilitate HIV-1 infection in these cells [84, 85]. In the case of hepatitis 
C virus, it has been reported that infected cells release exosomes containing full-length viral 

genomic RNA as well as viral-specific proteins [29, 30, 124]. Importantly, HCV RNA carrying 
exosomes could transmit the infection to non-infected cells and establish a productive infec-

tion [29, 30, 124]. This receptor-independent mechanism of HCV transmission would prevent 

the virus from being exposed to antibodies that would normally be effective in neutralizing 
cell-free virus [125, 126]. Some viruses can also manipulate with the endocytic pathway, not 

for export of their cargo, but for virion assembly and egress from the infected cells during 

replication. For example, HSV-1 can interact with Rab27a via its tegument protein and its gly-

coproteins gH and gD [55]. Depletion of Rab27a results in significant reduction in both viral 
production and viral egress, highlighting the importance of the Rab27a in the egress of HSV-1 

[55]. A similar phenomenon has been reported for several other members of the herpesviridae 

family, including cytomegalovirus (CMV) and human herpesvirus 6 (HHV-6) [23].

Although we have focused on how viruses exploit the exosome system to aid their infection 

and pathogenesis, it should be borne in mind that the shedding of exosomes is a normal phys-

iological process and it also plays a role in defending against infections [90, 127]. For example, 

a recent study reported that exosomes isolated from semen, but not from blood of healthy 

individuals, were able to inhibit the replication of HIV-1 in in vitro culture [42]. Remarkably, 

this anti-viral activity of semen exosomes appeared to be restricted to retroviruses and had 

no effect on HSV-1 or HSV-2 replication [5]. Ironically, some viruses are able to not only over-

come these defense mechanisms but also exploit them to their benefit.

4. Conclusions

Our current understanding of microvesicle biology and function, especially in regard to virus 
infections, is still in its early stages. The study of viral exosomes has shown that the transfer of 

viral and cellular factors in exosomes enables the manipulation of the neighboring unaffected 
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cells. Microvesicle-mediated communication allows the virus to respond and control the cellular  

microenvironment. A number of reports suggest that viruses utilize the cellular vesiculation 

pathway for virus budding/assembly, immune evasion, and intercellular communication. 

Understanding the role of exosomes in the host-viral interactions can open new avenues of 

understanding the disease mechanisms and future diagnostic and therapeutic interventions.
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