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Abstract

Signal-averaged ECG (SAECG) is a high-resolution, noninvasive electrocardiographic 
method enabling detection of late ventricular potentials (LVP), which are low-amplitude 
and high-frequency signals, predicting reentry ventricular arrhythmias, and sudden car-
diac death (SCD). Three criteria are used to detect late ventricular potentials as follows: 
signal-average ECG QRS duration (SAECG-QRS), the duration of the terminal part of the 
QRS complex with an amplitude below 40 μV (LAS40) and the root mean square (RSM) 
signal amplitude of the last 40 ms of the signal < 20 μV (RMS40). Late ventricular poten-
tials can be detected not only at the end of a QRS complex but also as intra-QRS (IQRS) 
potentials. Signal-averaged ECG was modified to enable the analysis of the P-wave and 
to detect atrial late potentials (ALPs), low-amplitude potentials at the terminal part of the 
filtered P-wave, and predictors of atrial fibrillation (AF). Late atrial and ventricular poten-
tials originate from areas of delayed, fragmented, and heterogenous conduction within 
atrial or ventricular myocardium. This chapter reviews the most important mechanisms 
explaining the occurrence of late ventricular, intra-QRS, and atrial potentials; their pre-
dictive value for arrhythmia, focusing on recent clinical data, long-term follow-up, and 
outcome; and analysis of SAECG variables in cardiac and noncardiac diseases.

Keywords: late ventricular potentials, atrial late potentials, ventricular arrhythmia risk, 
atrial fibrillation

1. Introduction

Cardiovascular disorders are leading mortality causes worldwide. Prophylactic methods and 

early detection deserve special attention. The standard 12-lead electrocardiogram (ECG) is 
a simple, reliable, and cost-effective method, used in clinical practice and trials for sudden 
cardiac death (SCD) risk stratification, considering QT and QRS duration, fragmented QRS 
complexes, and Tpeak-tend interval. Signal-averaged ECG (SAECG) can detect very small, 

subtle signals (microvolt level), which are not visible when using standard 12-lead ECG, by 
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averaging and filtering multiple ECG complexes [1–3]. The high-resolution or signal-averaged 

ECG has been recommended by the European Society of Cardiology, the American Heart 

Association, and the American College of Cardiology as a useful tool to improve the diagnosis 

and risk stratification of patients with ventricular arrhythmias or those at risk of developing 
life-threatening ventricular arrhythmias [4].

The substrate for SCD varies from advanced cardiomyopathic injuries, myocardial infarction 

scars to no obvious sign of structural damage [4]. The most common cause of SCD is coronary 

heart disease, but several cardiomyopathies, heart failure, and genetic influences, as well as 
myocarditis, pericardial diseases, pulmonary arterial hypertension, rheumatic disease, end-

stage renal failure, endocrine disorders, obesity, anorexia, hypertension, lipid abnormali-

ties, diabetes mellitus, several drugs, and physical and toxic agents can also be involved [4]. 

Several inherited abnormalities, including long and short QT interval, Brugada syndrome, 

and catecholaminergic ventricular tachycardia (VT), can precipitate SCD without any struc-

tural changes in the heart, triggered by external events [4].

Atrial fibrillation (AF) is the most frequent arrhythmia in the general population, with poorly 
understood underlying mechanisms of structural and electrical atrial remodeling [5]. It is 

associated with an increased risk of stroke, heart failure, and mortality [5].

The aim of this chapter is to review the most important mechanisms explaining the occur-

rence of late ventricular, intra-QRS (IQRS), and atrial potentials; their predictive value for 

arrhythmia, focusing on recent studies, long-term follow-up, and outcome; and analysis of 

SAECG variables in cardiac and noncardiac diseases.

2. Late ventricular potentials

LVPs are low-amplitude, high-frequency signals, occurring in the terminal part of the QRS 

complex, as markers of electrophysiological cardiac substrates for reentry ventricular 

arrhythmia, favored by structural heterogeneity due to myocardial necrosis, fibrosis, or dys-

trophy [6]. LVPs appear if conduction is slow enough to enable reentry and a unidirectional 

block is present [6]. They assess ventricular depolarization, and the signal is more stable and 

reproducible than the repolarization process [6]. Arrhythmia triggers are autonomic imbal-

ances (increased sympathetic activity), acute ischemia, or electrolyte disorders. Temporal and 

frequency domain analysis can be performed to detect arrhythmia risk.

Three criteria are used to detect LVPs as follows: SAECG-QRS duration , the duration of the 

terminal part of the QRS complex with an amplitude below 40 μV (LAS40), and the root mean 

square signal amplitude of the last 40 ms of the signal < 20 μV (RMS40) [7].

SAECG-QRS was considered prolonged if it exceeds 120 [7] or 114 ms according to other 
authors [8, 9]. LAS40 is pathological if exceeding 38 ms and RMS40 if less than 20 μV [7]. Late 

Interpreting Cardiac Electrograms - From Skin to Endocardium38



ventricular potentials are defined by the presence of one or two of the  mentioned positive 
criteria (Figures 1, 2) [7, 10].

Considering their low amplitude, LVPs can only be detected if amplified, filtered, and averaged 
using high-resolution SAECG or body surface mapping. Electronic filters can further reduce 
signal noise by eliminating high-frequency signals such as skeletal muscle potentials [3]. The 

filters used in SAECG provide different numerical and diagnostic results, with a higher sen-

sitivity for 40–250-Hz filters compared to 40-Hz filters [1]. The authors of the present chapter 

have experience only with 50–250 Hz filters. ECG signals are collected for 5–20 min, followed 
by averaging the QRS complexes through the temporal technique to reduce the signal-to-noise 

ratio [3].

The most important limitations in SAECG are related to electrical interference causing false 

results and the low positive predictive value for arrhythmic events [6, 11, 12]. However, they 

have a high negative predictive value for arrhythmic events [12]. Their presence predicts 

inducibility of ventricular tachycardia at invasive electrophysiology studies, and if they are 

combined with low ejection fraction, they enable detection of patients at high risk of sudden 

cardiac death [3].

Besides time-domain (TD) analysis of SAECG, frequency domain analysis may also provide 

valuable data. Abrupt changes in the frequency contents between adjacent overlapping seg-

ments of the QRS complex are the markers of the arrhythmogenic substrate in spectral turbulent 

analysis (STA) [13].

Figure 1. Late ventricular potentials with two positive criteria (LAS40 and RMS40).
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The sensitivity of SAECG is higher compared to standard 12-lead ECG for identifying patients 
with acute coronary syndrome [14]. LVPs were initially used in patients with myocardial 

infarction. They appear in the heterogenous tissue at the border of a myocardial infarction 

scar [6], very frequent in nonseptal myocardial segments, and were abolished in most patients 

with myocardial infarction after ventricular tachycardia ablation, associated with scar homog-

enization and a low recurrence rate [15]. The utility of SAECG was questioned in the post-

percutaneous coronary intervention era [3]. LVPs have been recorded in several other cardiac 

disorders, especially cardiomyopathies, myocarditis, infiltrative heart disease, arrhythmo-

genic right ventricular dysplasia, congenital heart defects, heart failure, left ventricular hyper-

trophy, Brugada syndrome, early repolarization, bundle branch block, and atrial fibrillation 
[6, 16–18]. Despite improved postinfarction survival due to lifestyle changes, thrombolytic, 

antiplatelet therapy, beta-blockers, and revascularization, LVPs can still be used in selecting 

patients for interventional studies [6]. Dinov et al. [19] found a positive correlation between 

endocardial scar area and filtered QRS in patients with ischemic VT, normalization of SAECG 
after catheter ablation (CA), and abnormal SAECG after CA as a predictor for VT recurrence 

(Table 1). Conduction delay contributed to ventricular dyssynchrony, regardless of LVPs in 

patients with heart failure, and LVPs did not play an important role in ventricular dyssyn-

chrony [16]. Several SAECG studies have been performed in patients who underwent heart 

transplant [20–22]. SAECG distinguished between heart transplant patients with or without 

rejection, especially LAS40 and RMS40 [22]. The association between LVPs and rejection of 

heart transplant is explained by occurrence of areas of myocardial fibrosis, due to cell changes 
caused by alloreactive T lymphocytes against graft antigens and ischemia-reperfusion injuries 

as soon as the blood flow is reestablished [22].

Figure 2. Normal SAECG and no late ventricular potentials.
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Study population Results Follow up References

52 psychiatric patients

30 healthy controls

The prevalence of LVPs was 

significantly higher in psychiatric 
patients, not influenced by age, 
gender, and therapy

46 months, 3 SCD Antoniou  

et al. [28]

50 patients with ischemic VT 

undergoing CA

A significant correlation was 
found between the surface 

SAECG and endocardial scar 

size in patients with ischemic 

VTs. A successful CA can result 

in normalization of SAECG 

and more favorable long-term 

outcomes. SAECG can predict the 

procedural success of VT ablation

Dinov et al. 

[19]

28 heart transplant patients The presence of fibrosis with 
increased LAS40 and decreased 

RMS40 showed a good ability to 

distinguish between patients  

with and without rejection

Mendes et al. 

[22]

100 postmyocardial infarction 
patients undergoing 

electroanatomical mapping-based  

VT ablation

LVPs were abolished in 51% 
improving outcome

Tsiachris  

et al. [15]

41 patients with COPD and 63 
patients without any history of 

pulmonary disease, matched for  

age and hypertension history

SAECG parameters and 

LVPs have little value in risk 
stratification for ventricular 
arrhythmias in COPD patients

Buzea et al. 

[27]

26 patients with newly diagnosed 

epilepsy, and no clinical evidence 

of heart disease were examined 

with SAECG and standard 

ECG. 15 patients were treated 
with lamotrigine and 10 with 
carbamazepine

Lack of antiepileptic drug-

induced electrocardiographic 

abnormalities

3–9 months Svalheim  

et al. [31]

45 patients with epilepsy and 19 
healthy volunteers, younger than  

46 years

Epilepsy patients more frequently 

display abnormal SAECGs with 

LVPs compared to the control 

group, and their presence 

correlates with the disease 

duration, refractory epilepsy,  

and polytherapy

Rejdak et al. 

[23]

64 patients with interventricular  

and intraventricular dyssynchronies

Filtered QRS duration provides 
more information to estimate 

ventricular dyssynchrony in 

patients with reduced ejection 

fraction than simple QRS 

duration; LVPs did not correlate 

with ventricular dyssynchrony

Tahara et al. 

[16]

20 young heart transplant patients SAECG is not effective in 
detecting heart transplant 

rejection in young patients

Horenstein  

et al. [21]
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Extracardiac disorders were also associated with LVPs, especially hypertension, metabolic 

syndrome, obesity, eating disorders, diabetes mellitus, renal failure, chronic obstructive pul-

monary disease (COPD), acromegaly, thalassemia, connective tissue diseases, epilepsy, and 
schizophrenia [6, 23–27]. Antiarrhythmic therapy, thrombolytic drugs, statins, steroids, and 

coronary interventions may influence LVPs [6].

Sudden cardiac death is higher in psychiatric patients, especially those with depression and 

schizophrenia than in the general population [28]. Several factors influence the relationship with 
cardiovascular disorders in patients with depression: social factors (poverty, social inequality, 

reduced access to healthcare), biological factors (endothelial dysfunction, impaired heart rate vari-

ability and platelet function, inflammation, hyperactivity of hypothalamic-pituitary-adrenal axis), 
higher prevalence of cardiovascular risk factors, and therapy (side effects of tricyclic, lower adher-
ence) [29]. Both schizophrenia and depression impair the autonomic tone, ion channels, alter con-

nexin 43 expression, and may cause drug-induced cardiac fibrosis [28].

Several factors enable ventricular arrhythmias in patients with epilepsy, such as sympathova-

gal imbalance, impaired cardiac repolarization, mutations of ionic channels affecting both the 
brain and the heart, dysfunctional cortical networks, ictal hypoxemia and hypercapnia, stress 

hormones, therapy, cardiorespiratory interactions, and associated cardiovascular diseases 

[24, 30]. Epilepsy patients more frequently displayed abnormal SAECGs with LVPs compared 

to healthy controls, correlated with disease duration, uncontrolled seizures, and polytherapy 

[23]. Svalheim et al. [31] reported no electrocardiographic changes (in standard ECG and 

SAECG) after antiepileptic drugs (carbamazepine and lamotrigene) in 26 epileptic patients.

COPD was associated with cardiovascular morbidity and mortality, considering negative car-

diac effects of hyperinflation, exercise limitation, smoking, and hypoxemia [6]. Carjea found a 

higher prevalence of LVPs in patients with COPD, especially in moderate and severe cases [32]. 

Yildiz et al. [33] reported a significantly increased total QRS duration in patients with COPD 
compared to control subjects and LVPs but no significant association with premature ven-

tricular contractions. Despite higher prevalence of LVPs, premature ventricular contractions, 

and complex ventricular arrhythmias in patients with COPD compared to healthy controls, 
SAECG had little value in stratification of ventricular arrhythmia risk in a study including 41 
patients with COPD and 63 patients without any history of pulmonary disease [27].

Study population Results Follow up References

70 acromegalic patients and 

70 control subjects, age- and 

sex-matched

A higher prevalence of LVPs in 

acromegaly which significantly 
correlated with Lown scale 

of premature ventricular 

contractions

Maffei et al. 
[34]

48 patients with acromegaly: 16 active 
disease, 32 cured or 'well controlled', 

under treatment with sandostatin 

analogs, and 38 healthy volunteers

LVPs are frequently seen in 

active acromegaly as an early and 

sensitive parameter of myocardial 

injury

Herrmann  

et al. [36]

Table 1. LVP studies.
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Persistent, life-threatening ventricular arrhythmias may occur in several endocrine disor-

ders, such as pheochromocytoma, acromegaly, primary aldosteronism, Addison disease, 

hypo- and hyperparathyroidism, and hypothyroidism [4]. Ventricular arrhythmias may 

occur due to excess or insufficient hormone activity on myocardial receptors, myocardial 
changes, electrolyte imbalances, or acceleration of progression of structural cardiac disor-

ders [4]. Sudden death and increased prevalence of ventricular arrhythmias and LVPs have 

been described in acromegaly [34]. Ventricular arrhythmia risk in acromegaly is related 

to the specific cardiomyopathy associated with left ventricular hypertrophy, myocardial 
fibrosis, comorbidities, especially hypertension and sleep apnea, and, possibly, to the 
direct effects of the growth hormone and insulin growth factor 1 on myocardial cells and 
cardiac ion channels [34, 35]. The prevalence of LVPs was significantly higher in patients 
with acromegaly compared to healthy controls, related to a longer duration of the disease, 

premature ventricular contractions, and left ventricular hypertrophy [34]. Herrmann et al. 

[36] also reported LVPs in patients with active and well-controlled acromegaly, as a sensi-

tive and early sign of myocardial injury, not related to muscle mass and body mass index, 

age, gender, and duration of the disease.

Thyroid hormone exerts several effects on the cardiovascular system [37]. Ventricular arrhyth-

mia and sudden cardiac death may occur especially in hypothyroidism, probably related to 

prolonged QT interval [4]. LVPs have been described in hypo- and hyperthyroidism, accord-

ing to a study including 278 patients with thyroid disorders even in subclinical dysfunctions 

[38]. A case of severe primary hypothyroidism was presented with an abnormal SAECG with 

LVPs, which disappeared with thyroxine therapy [37].

Future SAECG studies should also include patients with Cushingʼs syndrome, considering 

impaired cardiac function and structure due to the direct toxic effect of cortisol, increased 
blood pressure, central obesity, metabolic syndrome, hyperglycemia, and chronic hypokale-

mia [39]. Subclinical structural and functional cardiac alterations are very common but under-

diagnosed [39].

3. Intra-QRS potentials

IQRSPs are low-amplitude notches (the order of microvolts), usually invisible in the stan-

dard ECG, which may occur anywhere in the signal-averaged QRS [2] and may not pro-

long the normal QRS duration [40]. They were described as the signals with sudden slope 

changes [40]. Extracting IQRSPs is challenging, considering that they are very weak signals, 

with abrupt changes in slope, approximation errors, and the differences among patients with 
ventricular arrhythmias [41]. The root mean square values were highly correlated with the 

parameters of the abnormal intra-QRS potentials in healthy controls but not in patients with 

ventricular tachycardia [40].

A combination of IQRSPs and LVPs can improve predictive accuracy for patients of high risk 

of ventricular arrhythmias.
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4. P-wave potentials

P-wave signal-averaged electrocardiography, atrial late potentials (ALP), and abnormal intra-

P-wave potentials could detect patients at risk of supraventricular arrhythmias, especially 

atrial fibrillation [42, 43]. ALP originates from areas of delayed and heterogenous conduction 

within the atrial myocardium, responsible for the occurrence of AF [44].

Prolonged filtered P-wave duration (FPD) in P-wave signal-averaged electrocardiography has 
been used as a noninvasive, powerful predictor of AF, the first episode and recurrences, in lone, 
occult or silent atrial fibrillation, in stroke, heart failure, hypertension, hypertrophic cardiomy-

opathy, hypothyroidism and in patients undergoing coronary artery bypass surgery [44–46]. 

A prolonged SAECG P-wave duration was also mentioned in septal atrial defect, especially in 

patients who experienced AF, not corrected after atrial septal defect closure, and it was dem-

onstrated that atrial conduction disturbances occur early, requiring an early intervention to 

prevent the development of late AF (Table 2) [47].

There is no consensus about the cut-off point for FPD, which was 121 ms in hypertensive 
patients Auriti et al. [48], 124 ms in patients in sinus rhythm, 136 ms in hypertensive patients 
with a history of atrial fibrillation, 132 ms in patients with COPD, and 155 ms in several other 
studies [43, 45, 46, 49], differences related to different averaging and filtering methods [45]. 

Study population Results Follow up References

45 patients with exacerbation of 

COPD and 58 age-matched patients 
with no history of pulmonary 

disease in a control group

The patients with acute exacerbation 

of COPD have a higher incidence of 
supraventricular arrhythmias. P-wave 

SAECG analysis has little value in the 
arrhythmic risk evaluation of these  

patients

Isolated atrial 

premature 

beats (APB) and 

supraventricular 

tachycardia (SVT)

Buzea  

et al. [43]

37 hypertensive patients with a first 
AF episode
37 age- and sex-matched 

hypertensive controls without AF

P-wave temporal and energy 

characteristics can identify hypertensive 

patients at risk of AF recurrence

Dakos  

et al. [50]

68 stroke patients in sinus rhythm, 

without history of AF
ALP is a novel predictor of AF in  
stroke patients. P-SAECG should be  

considered in stroke

11±4 months Yodogawa 

et al. [44]

35 patients with atrial  

septal defect

Prolonged P-wave duration does not 

change after atrial septal defect closure

8±6 months after 
atrial septal defect 

closure

Thilen  

et al. [47]

4 generations kindred of 27 

individuals, 8 with AF on the ECG
Persons with AF and mutation carriers  
(on chromosome 5p15) can be identified  
by a prolonged P-SAECG duration

Darbar  

et al. [49]

41 patients with two or more 
symptomatic episodes of idiopathic 

and persistent atrial fibrillation after 
successful electrical cardioversion 

and 25 healthy controls

Fragmented electrical activity, use of 
amiodarone, and positive terminal portion 

of the Z-lead of the P-SAECG were 

independent predictors of recurrence of 

idiopathic and persistent atrial fibrillation

6 months, 12 
months, atrial 

fibrillation 
recurrences

Barbosa  

et al. [42]
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Besides FPD, Buzea et al. [43] also used the RMS voltages in the last 40, 30, and 20 ms of the 

filtered P-wave (RMS 40, RMS 30, and RMS 20), the root mean square voltage of the filtered 
P-wave potentials (RMS-p), and the integral of the potentials during the filtered P-wave 
(Integral-p), and defined ALP as FPD > 132 ms and RMS 20 < 2.3 μV.

Fragmentations are expected to occur throughout atrial depolarization and not only in its 
terminal part, and inter- and intra-atrial conduction may be impaired [42]. High-frequency 

fragmented electrical activity on the P-wave in patients with recurrent AF is the expression 
of atrial electrical heterogeneity, responsible for reentry circuits in the atria [42]. Barbosa et al. 

[42] used spectral turbulence analysis of the P-SAECG to detect abnormal intra-P-wave poten-

tials, demonstrating that fragmented electrical activity is an independent predictor of early AF 
recurrence.

5. Limitations

Most of the reviewed studies were observational, retrospective, with a low sample size and 

event rate, but careful statistical analysis may compensate the mentioned limitations. LVPs 

were detected using various equipment, commercially available or not, using different aver-

aging and filtering methods. On the other hand, filtered QRS duration was not measured 
sequentially, considering therapy in all studies, and there was a lack of uniformity of the 

normality criteria for the diagnosis of LVPs.

False positive LVPs were reported in patients with junctional rhythm with retrograde 
P-waves, atrial flutter, and incomplete bundle branch block [51–53]. Combined TD and spec-

tral turbulence analysis of the SAECG could improve its predictive value for fatal arrhyth-

mias [54]. The positive predictive accuracy nearly doubled compared to TD or STA, without 

loss in sensitivity and specificity [54]. A high number of false positive LVPs was reported 

in myocardial infarction, as well, and in the early postinfarction period; in inferior myocar-

dial infarction in time-domain analysis and anterior myocardial infarction according to STA 

[54, 55]. Delayed terminal conduction may increase the incidence of false positive results in 

SAECG, but the incidence of false positive LVPs was significantly lower if the combination of 
SAECG-QRS, LAS40, and RMS40 was used in patients with incomplete bundle branch block 

[53]. LVPs detected during sinus rhythm and lost after premature ventricular contractions 

Study population Results Follow up References

101 patients in sinus rhythm before 
coronary artery bypass grafting 

(CABG)

The risk of AF after CABG can be 
predicted preoperatively with P-wave 

SAECG

Budeus  

et al. [46]

55 hypertensive patients with a 

history of atrial fibrillation
40 hypertensive patients without a 

history of atrial fibrillation.

Hypertensive patients with paroxysmal 

atrial fibrillation can be detected while 
in sinus rhythm by signal-averaged ECG 

P-wave duration

Aytemir 

et al. [45]

Table 2. Atrial late potentials (ALP) and fragmented electrical activity on the P-wave.
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may be responsible for false positive LVPs, and those revealed by ventricular extrastimuli 

and concealed during sinus rhythm may cause false negative LVPs [56]. Sensitivity might 

be low in patients with ventricular tachycardia due to early activation of potential sites of 

ventricular tachycardia in sinus rhythm, falling within the normal QRS duration [56]. The 

number of false positive results may be reduced by signal-averaging during premature ven-

tricular stimulation [56].

Larger follow-up studies are needed to confirm the significance and usefulness of LVPs in 
different cardiac and noncardiac disorders.

6. Conclusions

This chapter brought back into focus SAECG, a noninvasive, low-cost, simple, and rapid 

method as a predictor of sudden cardiac death, using amplified ECG signals. Even though 

SAECG is not a routine screening test for sudden cardiac death risk and despite its low posi-

tive predictive value for arrhythmic events, LVPs and intra-QRS potentials provide valuable 

information not only in cardiac but also in extracardiac disorders, including psychiatric dis-

orders, epilepsy, chronic obstructive pulmonary disease, and endocrine disorders. P-wave 

signal-averaged electrocardiography predicts atrial fibrillation episodes in patients with sev-

eral disorders, such as hypertension, atrial septal defect, stroke, and chronic obstructive pul-

monary disease.
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