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Abstract

Immunoglobulin molecule is the key component of B cell receptor (BCR), which
governs the survival, differentiation and function of normal B lymphocytes, but accu-
mulating data suggest that, in the case of chronic lymphocytic leukaemia (CLL), it is
also involved in the pathogenesis and clinical course of the disease. CLL is a malig-
nancy of mature CD5* CD19* CD23* sIgM™ B lymphocytes and is characterized by
extremely heterogeneous clinical course, which varies from indolent to rapidly pro-
gressive. Somatic hypermutational status of immunoglobulin heavy chain variable
genes (IGHV) defines two CLL subtypes, mutated (M-CLL) and unmutated (U-CLL).
U-CLL patients suffer from more aggressive disease, characterized by shorter time
to treatment, progression-free survival and overall survival in comparison to M-CLL
patients. Since these correlations are not dependent on the clinical stage and since
there is no interconversion between subtypes, IGHV mutational status is currently the
most reliable prognostic marker in CLL. Several lines of evidence indicate that both
M-CLL and U-CLL arise from an antigen-experienced cell of origin. Immunogenetic
studies have revealed CLL-biased usage of immunoglobulin variable region genes,
as well as the existence of highly homologous, ‘stereotyped” BCRs in CLL clones,
strongly implying the role of antigenic drive in the development and evolution of the
disease.
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1. Introduction

The central role that B lymphocytes play in immunity relies upon their capacity to produce
a vast array of different immunoglobulin molecules which can recognize virtually limitless
number of foreign and autoantigens. Immunoglobulins (IG) are expressed on the surface of
B cells as antigen-binding component of B cell receptor (BCR), in complex with CD79A/79B
heterodimer responsible for signal transduction. During the immune response, IG molecules
are secreted as antibodies which exert different effector functions. BCR signalling is crucial
for survival, proliferation and differentiation of normal B lymphocytes, but has also been
implicated in the pathogenesis of several mature B cell malignancies, including chronic lym-
phocytic leukaemia.

Chronic lymphocytic leukaemia (CLL) manifests as clonal expansion of mature CD5" CD19*
CD23" sigM™" B lymphocytes which gradually accumulate in blood, bone marrow and sec-
ondary lymphoid organs [1]. It is the most frequent type of leukaemia in Western countries,
accounting for 30—40% of all adult leukaemia cases, while it is very rare in Asian and African
countries [2]. CLL affects predominantly elderly individuals, aged approximately 67-72 years
at diagnosis, men more frequently than women [1].

CLL is characterized by extremely heterogeneous clinical presentation, with diverse therapy
requirements and overall survival. In some patients, rapid progression and need of treatment
occur soon after diagnosis, while others may live for decades without developing any symp-
toms. The majority of cases, however, lie in between these extremes; the disease can follow an
indolent course for years, but eventually turn into aggressive form.

Aetiology of CLL is still elusive. Familial clustering of CLL has been documented, implying a
strong genetic basis of the disease. The relative risk of CLL has been estimated to be around
eight-fold higher in first-degree relatives [3]. Genome-wide association studies have identi-
fied multiple CLL susceptibility loci mapping to genes involved in apoptosis, BCR signalling,
immune response and maintenance of chromosome integrity [4, 5].

A growing body of evidence indicates that CLL development and evolution result from con-
certed action of intrinsic genetic abnormalities and extrinsic factors from the tissue microen-
vironment, including antigens [6]. The most common chromosomal aberrations in CLL are
deletion 13q14, trisomy 12q, deletion 11q22-q23 and deletion 17p13, observed in approxi-
mately 80% of patients [7]. The genes localized within minimally deleted/gained regions in
these aberrations include miR-15a and miR16-1 (del13q), CDK4, GLI and MDM2 (trisomy 12),
ATM (delllq) and TP53 (del17p), which are involved in regulation of apoptosis and DNA
repair [8-10]. The recent next-generation sequencing-based studies have identified a number
of recurrently mutated genes in CLL (e.g. NOTCH1, SF3B1, MYDS88, BIRC3, NFKBIE, TP53
and ATM), predominantly belonging to BCR, toll-like receptor, Notch1 and NF-«B signalling
pathways [6, 11]. In addition, genetic alterations and aberrant expression of many apoptotic
regulators involved in both mitochondrial and death receptor apoptotic pathways have been
described in CLL, most notably overexpression of BCL2, detected in the majority of patients
[12-14]. However, immunogenetic studies over the past few decades have pointed to the
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antigenic drive on the BCR of the cell of origin as the key player, and possibly an initiating
event, in CLL pathogenesis [15, 16].

The diversity of mechanisms involved in pathobiology of CLL cells is likely the basis of the
clinical heterogeneity, making the prognostication for individual patients very difficult.
Currently, the most important prognostic markers, widely used in routine clinical practice,
are clinical stage (Rai and Binet) and cytogenetic aberrations [17]. In an attempt to overcome
the clinical variability and improve the prognosis assessment, particularly in early-stage dis-
ease, a number of cellular and molecular prognostic markers have been identified and vali-
dated. Among the novel markers that have entered clinical practice (e.g. CD38 and ZAP-70
expression, TP53 mutations), the most powerful one, in terms of prognosis definition, turned
out to be the somatic hypermutational status of rearranged immunoglobulin heavy variable
genes [17].

In this chapter, we will discuss the current concepts of immunoglobulin gene expression in
chronic lymphocytic leukaemia, and its relevance for both the pathogenesis and clinical pro-
gression of the disease.

2. Immunoglobulin gene rearrangements and the development of
B lymphocytes

2.1. Generation of immunoglobulin diversity

Immunoglobulin (IG) molecules are heterodimers composed of two identical heavy (H)
chains and two identical light (L) chains (kx or A), linked by disulphide bonds. Both heavy
and light chains contain N-terminal variable (V) region and C-terminal constant (C) region
(Figure 1a). Juxtaposed variable regions of H and L chains (VH and VL) form antigen-binding
site, whose structure determines the specificity and the affinity of immunoglobulin molecules
for antigens. Constant regions are not involved in antigen recognition. Heavy chain constant
region (CH) defines IG isotypes (IgA, IgD, IgE, IgG and IgM) and mediates effector functions
of antibodies. In addition, CH region is responsible for anchoring of membrane-bound IG in
the plasma membrane of B cells. Variable region of each IG chain consists of four relatively
conserved framework regions (FR1, FR2, FR3 and FR4) and three hypervariable complemen-
tarity-determining regions (CDR1, CDR2 and CDR3). The CDR regions of H and L chains
form six loops which create a surface that directly interacts with antigens. Heavy chain CDR3
region (VH CDR3) exerts the highest variability and is the key determinant of antibody speci-
ficity [18].

IG molecules are encoded by a multitude of tandemly arranged gene segments that consti-
tute IGH (heavy chain) locus, IGK and IGL locus (k and A light chains). Human IGH locus,
located on chromosome 14q32.33, consists of four types of gene segments: V (variable), D
(diversity), ] (joining) and C (constant), in 5'-3' orientation. There are 38—46 functional IGHV
gene segments, which can be divided into 6-7 subgroups based on sequence homology, 23
functional IGHD gene segments, 6 functional IGH] gene segments and 9 functional IGHC
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Figure 1. Schematic representation of an immunoglobulin molecule. (a) IG molecules consist of two identical heavy (H)
chains and two identical light (L) chains. Both H and L chains contain variable region (VH and VL, respectively) and
constant region (CH and CL, respectively). VH region is encoded by rearranged V, D and ] gene segments, while VL
is encoded by rearranged V and ] gene segments. (b) VH region consists of four framework regions (VH FR1, VH FR2,
VH FR3 and VH FR4) and three hypervariable complementarity-determining regions (VH CDR1, VH CDR2 and VH
CDR3). VH FR1-3, VH CDR1 and VH CDR2 are encoded entirely by IGHV gene segment; VH FR4 is encoded by IGH]
gene segment. VH CDR3 is positioned at the IGHV-IGHD-IGH] junction, and comprises amino acids between conserved
cysteine (codon 104) in FR3 and conserved tryptophan (codon 118) in FR4 [19]. N1 and N2 regions are being created via
random addition and deletion of nucleotides during IGHV-IGHD and IGHD-IGH] joining.

gene segments (Figure 2). Light chain loci, on the other hand, lack D segments. Human IGK
locus (chromosome 2p11.2) contains a cluster of 34-38 functional IGKV gene segments which
belong to 5 subgroups, followed by 5 IGK] gene segments and a single C gene segment.
Human IGL locus (chromosome 22q11.2) is composed of 29-33 functional IGLV gene seg-
ments, divided into 10 subgroups, and 4-5 functional IGL]-IGLC tandems [20]. Allelic vari-
ants of many gene segments exist, particularly in the IGH locus. It should be noted that the
actual number of gene segments in all three loci is much higher, due to the presence of pseu-
dogenes and ORFs (open reading frames). In addition, the number of functional gene seg-
ments in a locus depends on the haplotype, since some genes can be inserted or deleted, or
can be functional or pseudogene, depending on the allele.
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Figure 2. Schematic representation of the human IGH locus (not to scale). Human IGH locus contains 38-46 functional
IGHV gene segments, 23 functional IGHD gene segments, 6 functional IGH] gene segments and 9 functional IGHC gene
segments. IGHV gene segments are designated by a number for the subgroup, followed by an hyphen and a number for
the localization in the locus, in the 3'-5" direction; IGHD and IGH]J gene segments are numbered in the opposite direction
(5"-3") [21]. Only functional genes are depicted.

Immunoglobulin variable region is being generated by somatic recombination between V,
D and ] gene segments (H chains) and V and J gene segments (L chains), which occur dur-
ing differentiation of B lymphocytes. At the IGH locus, which rearranges before IGL loci,
the first recombination event joins one of the IGHD gene segments to one of the IGH] gene
segments, and the sequence between the rearranged genes is being deleted. The obtained
IGHD-IGH]J rearrangement then recombines with one of the IGHV gene segments, leading to
the formation of complete IGHV-IGHD-IGH] rearrangement which will be fused to an IGHC
gene (Cu or Cd) during RNA splicing and, ultimately, expressed at the cell surface as IgM or
IgD. Productive rearrangement of one IGH locus inhibits the rearrangement of IGH locus on
the other chromosome (allelic exclusion), thus ensuring the monospecificity of B lymphocyte
[22]. However, if the rearrangement of one allele is unproductive, the other one will undergo
recombination and, if the second rearrangement fails, the cell will die by apoptosis. Similar
recombination process occurs between V and ] gene segments at the light chain loci. IGK locus
rearranges before IGL; successful recombination at one IGK allele inhibits the rearrangement
of the other one (allelic exclusion), as well as the rearrangement of IGL loci (isotypic exclu-
sion). Alternatively, unproductive rearrangement of one IGK locus leads to recombination
of the other allele and, if unsuccessful, the IGL locus will rearrange. Once again, if neither of
the attempts results in productive light chain rearrangement, the cell will undergo apoptosis.
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Given the number of germline gene segments that can recombine at IG loci, as well as random
pairing of heavy and light chains, it is clear that B lymphocytes can produce a vast number of
different antibodies (‘combinatorial diversity’). However, the actual number of combinations is
lower than the theoretical estimate of ~1.6 x 10°, since not all gene segment recombinations occur
with the same frequencies and not all IGH-IGL pairs are functional. In addition, it has been
shown that V(D)] recombinations are not a stochastic process, but are determined by genetic
factors and are regulated during ontogeny [23].

The diversity of the primary antibody repertoire (the repertoire of naive B cells) is further
increased by ‘junctional diversity’. The process of somatic recombination is catalysed by several
enzymes jointly called V(D)J recombinase and, although very precise, their action introduces
variability at the junctions of V, (D) and ] gene segments. Recombination is enabled by the pres-
ence of conserved recombination signal (RS) sequences which flank 3" end of V genes, 5" end of
J genes and both ends of D genes. RS sequences, recognized by recombination activating gene
1 and 2 (RAG1 and RAG2) enzymes, ensure that light chain V genes can rearrange only with
J genes, while IGHV genes can rearrange only with IGHD, and IGHD only with IGH]J genes.
During this process, trimming of the ends of recombining gene segments by exonucleases
occurs, as well as the addition of short palindromic sequences and non-templated nucleotides
(the latter catalysed by terminal deoxynucleotidyl transferase, TdT) [24]. The random addition
and deletion of nucleotides during IGHV-IGHD and IGHD-IGH] ligation creates two N regions
(N1 and N2), and is the source of the extreme variability of VH CDR3, which is positioned at the
VDJ junction (Figure 1b). Diversity of VH CDR3 in both length and amino acid sequence results
in the production of much larger IG repertoire than it would be generated solely by combining
germline gene segments (up to 10" different IGs).

Diversification of immunoglobulins continues after antigen encounter (secondary antibody
repertoire) via somatic hypermutations and class-switch recombination, generating B lym-
phocytes with enormously wide range of specificities (see next section).

2.2. B cell differentiation

B cell differentiation is a multi-step process which can be divided into two phases: antigen-
independent phase, taking place in bone marrow (and fetal liver), followed by antigen-
dependent phase in secondary lymphoid organs.

The first stage of B cell development in bone marrow is early pro-B cell, defined by the begin-
ning of IGHD-IGH] recombinations. Joining of IGHV gene to IGHD-IGH] rearrangement
occurs in late pro-B cells and leads to transcription and synthesis of u heavy chain, which
contains IGHV-IGHD-IGH]J complex attached to Cu. The expression of 1 heavy chain defines
the large pre-B cell stage. The p chain is predominantly cytoplasmic, but it can associate with
surrogate light chains and, in complex with CD79A/CD79B, is transiently expressed at the
cell surface as the pre-BCR. Subsequently, the cell enters the small pre-B stage in which rear-
rangements of light chain loci occur, enabling pairing of previously synthesized u chain with
IGK or IGL and, thus, assembly of IgM. Expression of surface IgM, as a part of BCR, marks the
immature B cell. At this stage, self-reacting clones are being eliminated, or their specificities
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may be changed via receptor editing and IGHV replacement [25]. Immature B cells migrate
to the spleen where they become mature naive B cells. As a result of alternative splicing of
IGH transcripts, which joins IGHV-IGHD-IGH] gene to either Cp or C9, these cells coexpress
membrane-bound IgM and IgD with the same antigen specificity.

Naive B lymphocytes reside in secondary lymphoid organs (spleen, lymph nodes and
mucosal lymphoid tissues) where they encounter various antigens. Engagement of BCR
with a specific antigen gives rise to a cascade of signalling events that activate B cell,
leading to proliferation of antigen-specific clone and, ultimately, differentiation into anti-
body-secreting plasma cells and memory cells. Based on the requirement for T cell help in
activation of B lymphocytes, two types of response to antigen stimulation exist. Bacterial
polysaccharides and lipopolysaccharides can directly activate B cells (T cell-independent
response), resulting in rapid IgM production. In contrast, the response to protein antigens
is T cell-dependent and requires the interaction of B cells with CD4" T cells and antigen-
presenting cells. Upon T cell-mediated activation, proliferating B cells migrate deep into
lymphoid follicle, forming the structure called germinal centre. In a highly specialized
microenvironment of germinal centres, B cells start to proliferate at high rate and undergo
somatic hypermutations and class-switch recombination [26].

The process of somatic hypermutation (SHM), mediated by activation-induced cytidine
deaminase (AID), introduces point mutations into the rearranged immunoglobulin loci at
a rate 10° times higher than the spontaneous mutation rate of other genes. The single base
substitutions are localized in the variable region of heavy and light chains, while the constant
region remains unaffected. They are preferentially targeted to specific hotspot motifs (RGYW
and its inverse repeat WRCY), with transitions predominating over transversions, and accu-
mulate in both FRs and CDRs [27]. Replacement mutations tend to be clustered in CDRs, since
they alter the affinity of IGs to antigens. In FRs, on the other hand, replacement mutations,
which could disrupt the basic IG architecture, are counter-selected, and silent mutations are
more frequent. The somatic hypermutation process can also introduce small insertions or
deletions, although this is a rare event created by a mechanism different than AID-mediated
SHM.

Accumulation of somatic hypermutations generates clonal progeny of activated B cell with
diversified IG rearrangements and, hence, different affinity for antigen. These cells are subse-
quently subjected to selection by antigen: B cells that efficiently recognize antigen presented
by follicular dendritic cells receive survival signals, provided by BCR engagement and T cell
co-stimulation, and continue to proliferate, while B cells that do not bind antigen or bind it
with low affinity die by apoptosis. Multiple rounds of proliferation, somatic hypermutation
and selection result in affinity maturation, i.e. production of B lymphocytes with increasing
specificity and affinity for antigen. Along with affinity maturation, the cells undergo class-
switch recombination (also mediated by AID), which leads to fusion of IGHV-IGHD-IGH]
rearrangement to a downstream constant gene segment. This enables production of isotypes
other than IgM and IgD, but with the same antigen specificity [28]. Antigen-selected B cells
ultimately exit the germinal centre and finalize their differentiation into high-affinity antigen-
specific plasma cells and memory cells, with specific effector functions.
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Somatic hypermutations and class-switch recombination further enhance immunoglobulin
variability and, in combination with other sources of diversity (combinatorial and junctional
diversity), enable formation of up to 10" possible antibody specificities [20]. The potential
of B cells to create such a huge IG repertoire, however, comes at a high cost since it causes
a considerable wastage of cells along the pathway of their differentiation. The mechanisms
responsible for variability of immunoglobulin rearrangements can also render them unpro-
ductive due to recombination of non-functional pseudogenes, out-of-frame junctions, genera-
tion of stop codons at the junctions, as well as introduction of frameshifts and stop codons by
SHM. In addition, replacement mutations induced by SHM process can impair the structure
of immunoglobulin molecule or lower its affinity for antigen. As mentioned above, B cells that
fail to generate productive heavy- and light chain rearrangements and produce functional
antibodies undergo apoptotic cell death.

3. Immunoglobulin gene rearrangements in CLL

3.1. IGHV mutational status

The extreme clinical heterogeneity of chronic lymphocytic leukaemia has inspired an exten-
sive search for molecular and cellular markers with the prognostic and predictive value.
Immunoglobulin rearrangements of CLL clones were brought into the spotlight upon the
findings that, in around 50% of CLL patients, heavy chain rearrangements carry somatic
hypermutations, and that SHM status of rearranged IGHV genes significantly correlates with
the clinical course of the disease. Patients with unmutated IGHV-IGHD-IGH] rearrange-
ments are usually in advanced clinical stages, have progressive disease, atypical morphology
and require chemotherapy soon after diagnosis. In contrast, patients with mutated IGHV-
IGHD-IGH] rearrangements predominantly present with non-progressive disease, typical
morphology, require no or minimal chemotherapy and have significantly longer time to first
treatment, progression-free survival and overall survival [29-33]. These correlations have
been confirmed in multiple studies, and today, it is widely accepted that CLL can be divided
into two subtypes, mutated (M-CLL) and unmutated (U-CLL), with different clinical outcome.
The IGHV mutational status turned out to be the strongest independent prognostic marker
whose value, inter alia, lies in the fact that it does not change over time and that it can predict
the clinical behaviour of CLL at the time of diagnosis as well as at any stage of the disease
(i.e. regardless of the tumour burden).

The cut-off level that is being in use for distinguishing M-CLL from U-CLL is 98% of identity
between the rearranged IGHV gene and its germline counterpart (calculated from codon 1 to
codon 104); cases with >98% identity are considered unmutated, while those with <98% iden-
tity are considered mutated [34, 35]. This cut-off has originally been chosen in order to elimi-
nate the possibility of interpreting allelic polymorphisms as somatic mutations. Although in
some studies other cut-off values (97% and 95%) allowed better separation of the two prognos-
tic groups, 2% of somatic mutations are generally accepted as the best discriminator between
mutated and unmutated cases [36-38]. However, since this level of mutations is an arbitrary
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cut-off, the caution is recommended when interpreting the prognostic implications in cases
with the borderline mutational status [34]. Indeed, it has been demonstrated that the group
of patients with the borderline mutated rearrangements (97-97.9% identity) comprised cases
with both poor and good prognosis [38, 39]. In addition, sequencing of the unrearranged IGH
genes in patients with high percentage of identity (98-99.6%) revealed that the divergence
of rearranged IGHV gene from the closest germline gene, even in this group, is actually due
to somatic hypermutation, further underscoring the statistical, rather than biological ratio-
nale for the 98% cut-off [40]. However, the fact that median survival does not differ between
patients with 100% and those with 99% or 98%, but is significantly shorter in comparison to
survival of patients with <98% identity, justifies the application of 98% cut-off in clinical prac-
tice [39]. Finally, it should be noted that the absence of correlation between IGHV mutational
status and the prognosis in a proportion of patients can be attributed, at least in some cases,
to other factors that influence the clinical outcome (see below).

Besides the borderline cases, clinical prognostication can be challenging in cases carrying
double IGHV-IGHD-IGH]J rearrangements. In the majority of these cases only one rearrange-
ment is productive, but in rare instances (up to 5% of cases), double productive rearrange-
ments can be detected [41, 42]. Expression of double productive rearrangements may be the
result of the lack of allelic exclusion, which has been described in CLL B cells or, alterna-
tively, double (or multiple) productive rearrangements originate from different CLL clones
[41, 43]. If both rearrangements are of the same mutational status, prognostic interpretation is
straightforward regardless of whether both or just one rearrangement is productive. The cases
with productive mutated and unproductive unmutated IGHV-IGHD-IGH] rearrangements
are considered mutated, since the productive rearrangement is relevant for the biology of CLL
cells. However, if double productive rearrangements are of discordant mutational status or
if unmutated rearrangement is productive while the mutated rearrangement is unproductive
(implying that the cell has undergone the SHM process), the clinical implications currently
cannot be predicted [44].

The association of IGHV mutational status with other prognostic markers in CLL has been
extensively studied. Besides the contribution to better understanding of the disease biology,
the research also aimed at finding a potential surrogate marker that could substitute the
effortful IGHV mutational analysis in clinical practice. The four most frequent clonal chro-
mosomal aberrations (del13q, delllq, trisomy 12q and dell7p) represent strong independent
prognostic markers and are differentially distributed between M-CLL and U-CLL [7, 45, 46].
The aberrations with adverse prognostic impact (delllq, trisomy 12q and dell7p) are asso-
ciated predominantly with unmutated IGHV-IGHD-IGH] rearrangements, while favour-
able dell13q is more frequent in mutated cases [36, 37, 47—49]. Furthermore, unmutated CLL
subtype is characterized by high risk of acquiring adverse chromosomal aberrations during
the disease course [50]. In contrast to cytogenetic abnormalities, the association of CD38 and
ZAP-70 with IGHV mutational status is less consistent. The expression of CD38 on the sur-
face of >30% of leukemic cells is an independent negative prognostic factor associated with
the progressive disease, shorter time to first treatment and shorter overall survival, although
the level of expression may vary over time [29, 51-53]. In some studies, CD38 positivity was
strongly correlated to unmutated IGHV status, while others failed to detect any association,
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regardless of the cut-off level used for defining CD38 status [29, 36, 49, 54]. Similarly to CD38,
the expression of zeta-chain-associated protein kinase 70 (ZAP-70) is also independent nega-
tive prognostic marker associated with adverse clinical characteristics and poor prognosis
[55-59]. Initially, in many studies, ZAP-70 was found to be expressed predominantly in
unmutated CLL and was suggested as a surrogate marker for IGHV mutational status; how-
ever, subsequent research revealed a substantial discordance between these two markers [49,
55, 57, 60-63].

The expression of several other genes has been reported to exert a strong prognostic value,
qualifying them as potential biomarkers. Among those RNA-based markers, lipoprotein
lipase (LPL) emerged as the most powerful one, whose high expression level correlates with
advanced clinical stage, shorter time to first treatment and overall survival, as well as with
other adverse prognostic parameters (short lymphocyte doubling time, ZAP-70 and CD38
positivity, poor-risk cytogenetics) [64-70]. Moreover, LPL expression turned out to be a
potent predictor of IGHV mutational status, as high levels of LPL were found to be strongly
associated with unmutated IGHV-IGHD-IGH]J rearrangements [55, 60, 64-67, 71].

To conclude, despite certain limitations, IGHV mutational status analysis is currently the
golden standard for CLL prognostication, which has been introduced into clinical practice in
many centres. It is integrated into the most advanced prognostic scoring systems suggested
for risk stratification of CLL patients [72-75].

3.2. Immunoglobulin variable region gene repertoire in CLL

The analyses of immunoglobulin heavy chain rearrangements in CLL revealed that not only
IGHV, IGHD and IGH]J gene usage in CLL B lymphocytes is distinct from that of normal
peripheral blood B cells, but also the gene repertoires of U-CLL and M-CLL clones signifi-
cantly differ.

The most commonly used IGHV subgroup in CLL rearrangements is IGHV3 (as is the case
with normal B cells), followed by IGHV1 and IGHV4. However, the comparison of IGHV
subgroup usage between CLL and normal B cells showed that there is a significant over-rep-
resentation of IGHV1 subgroup, as well as underrepresentation of IGHV3 subgroup in CLL
[33, 76-80]. In addition, the frequencies of IGHV subgroups are different in the two CLL
subtypes: IGHV1 genes are present predominantly in the rearrangements of U-CLL clones,
in contrast to IGHV3 and IGHV4 genes that predominate in M-CLL clones. Moreover, a hier-
archy in the SHM level among IGHV subgroups has been documented: IGHV3 and IGHV4
genes show a high mutational load while IGHV1 genes carry very few mutations IGHV3 >
IGHV4 >1GHV1) [30, 33, 80].

A strong bias in usage of individual IGHV genes has also been detected. In most studies, only
6-7 IGHV genes were utilized in more than 50% of CLL IGHV-IGHD-IGH] rearrangements.
The most frequently used IGHV genes were IGHV1-69, IGHV3-23, IGHV3-7 and IGHV4-34,
followed by several others (IGHV3-30, IGHV3-30.3, IGHV3-48, IGHV1-2, IGHV1-3,
IGHV1-18, IGHV4-39 and IGHV4-59), depending on the cohort [30, 33, 79-82]. It should be
noted, though, that normal B cell repertoire is not random, and that certain genes (such as
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IGHV3-23, IGHV3-7 and IGHV3-30.3) are overused [76]. Hence, some of the most common
IGHV genes in CLL are represented with frequencies similar to those of normal B cells [33, 76,
79]. However, CLL-related over-representation of IGHV1-69 has been consistently reported,
as well as its predominance in unmutated rearrangements. On the other hand, IGHV3-23,
IGHV3-7, IGHV4-34 and IGHV3-48 are the most frequently used genes in mutated rearrange-
ments. The differences in the mutational load, observed for IGHV subgroups, are even more
evident when individual genes are considered. For example, IGHV1-69 gene usually har-
bours no or just a few somatic mutations, whereas IGHV3-7, IGHV3-23 and IGHV4-34 genes
are highly mutated [30, 33, 78-80, 82].

The majority of CLL IGHV-IGHD-IGH] rearrangements contain IGHJ4 and IGHJ6 genes;
IGHJ6 gene is predominantly used in unmutated rearrangements, in contrast to IGHJ4, which
is over-represented in mutated rearrangements. Since IGHJ6 is the longest IGH] gene, this
results in significantly longer median VH CDR3 lengths of unmutated vs. mutated rearrange-
ments [30, 33, 80].

Besides the biased usage of IGH subgroups and individual genes in CLL, early studies of
CLL immunoglobulin repertoire have also revealed the over-representation of certain IGHV-
IGHD-IGH] combinations. For example, IGHV1-69 was frequently found in combination with
IGHJ6 and IGHD3-3 or IGHD2-2, creating VH CDR3 longer than the average, which is not
common in rearrangements of normal B cells [33, 83, 84]. In contrast, the majority of IGHV3-7
genes were found to be combined with IGH]J4 and IGHD3 yielding shorter VH CDR3, while
IGHV4-34 was associated with both IGHJ4 and IGHJ6 genes [33]. These findings pointed to
the CLL-biased VH CDR3 features and laid the foundations of the stereotyped B cell receptor
concept (see below).

Geographical and ethnical differences in IGHV gene usage in CLL rearrangements have also
been reported [79, 82, 85-89]. For example, IGHV3-21 gene has been detected in IGHV-IGHD-
IGH] rearrangements of more than 11% of Scandinavian patients, while it was less frequent
in the UK (7.9%) and very rare in Mediterranean cohorts (less than 3% of cases) [79, 90-93]. In
addition, IGHV1 genes have been shown to be represented with lower and IGHV4 genes with
higher frequencies in CLL clones of patients from Asian countries in comparison to patients
from Western populations [94-96].

The light chain variable region gene repertoire in CLL has been substantially less studied
but, nevertheless, some similarities with the repertoire of heavy chains have been observed.
The ratio of expressed k and A light chains in CLL B lymphocytes mirrors that of normal B
cells (2:1) [97]. As is the case with IGH rearrangements, roughly 50% of IGK/IGL rearrange-
ments belong to the mutated subtype and, in most cases, IGH and IGK/IGL rearrangements
are of the same mutational status [98]. A skewed usage of IGKV/IGLV and IGKJ/IGL] sub-
groups and individual genes has been reported, but the interpretations of whether their rela-
tive frequencies differ from those of normal B cells are discrepant, probably due to different
normal control datasets used for comparison. Similar to IGHYV, the distribution of individual
IGKV and IGLV genes between mutated and unmutated rearrangements is asymmetrical
and, for some genes, CLL-biased. In addition, certain IGKV-IGK] and IGLV-IGL] combina-
tions are over-represented and CLL-related [97-99]. Importantly, non-stochastic pairing of
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heavy and light chains has been detected and shown to depend on VH CDR3 motifs [100].
Since preferential pairing of specific IGHV and IGKV or IGLV genes has not been observed
in normal B cell repertoire, biased usage of certain VH CDR3/VL CDR3 associations strongly
implies that the expression of BCRs with specific antigen-binding characteristics is favoured
in CLL [101, 102].

The usage of particular IGHV genes has been found to correlate with clinical course of CLL.
The most striking example is IGHV3-21 gene, which emerged as an adverse prognostic factor
regardless of the IGHV mutational status. IGHV3-21 is expressed in both CLL subtypes, but
predominantly in M-CLL. However, median overall survival of patients expressing mutated
IGHV3-21 rearrangements was found to be significantly shorter than median survival of
non-IGHV3-21 mutated patients, and comparable to the survival of unmutated cases [90, 91,
103, 104]. Other IGHV genes also exhibited association with certain clinical characteristics;
for example, IGHV3-23 has been indicated as a marker of worse prognosis within M-CLL
subtype, IGHV3-72 is over-represented in highly stable CLL, and IGHV3-30 has been linked
to spontaneous regression [105-107]. The associations of IG repertoire with clinicobiological
features of CLL will be further discussed in the next section, in the context of BCR stereotypy.

3.3. BCR stereotypy

The discovery that CLL includes patients with both mutated and unmutated IGHV-IGHD-
IGH]J rearrangements was the first evidence pointing towards the role of antigens in the patho-
genesis of the disease. The presence of somatic hypermutations and higher replacement/silent
mutations (R/S) ratio in VH CDRs than in FRs indicate that M-CLL cells have undergone
germinal centre reactions and been selected by T cell-dependent antigen [33]. Consequently,
due to the lack of SHM in IGH rearrangements, U-CLL cells have initially been thought to
originate from naive B lymphocytes. However, further studies revealed that both U-CLL and
M-CLL cells express highly restricted, non-random immunoglobulin repertoire. CLL-biased
representation of certain IGHV genes and IGHV-IGHD-IGHJ combinations, as well as VH
CDR3 characteristics, implies the recognition of limited set of antigens, suggesting that CLL
clones, both mutated and unmutated, derive from activated B cells. In the case of U-CLL, the
cell of origin could have been activated either by T cell-independent antigens and autoanti-
gens outside germinal centres or by antigens that select against SHM [108]. High R/S ratio in
VH CDRS3 of minimally mutated U-CLL rearrangements (<2% mutations) further argues in
favour of an antigen-driven process, since even a single mutation can significantly enhance
antigen-binding affinity of BCR and, hence, be selected for. In keeping with these observa-
tions, studies of gene expression profiles and surface phenotypes showed that both M-CLL
and U-CLL cells exhibit characteristics of antigen-experienced B lymphocytes [60, 109, 110].
Finally, the most compelling evidence for the involvement of antigen in the development of
CLL comes from the discovery of ‘stereotyped’ B cell receptors.

Following the initial findings on IG gene repertoire and VH CDR3 restrictions, it has been
observed in multiple studies that a proportion of unrelated CLL patients expresses highly
homologous, almost identical BCRs (stereotyped BCRs) [42, 79, 82, 85, 111-115]. Stereotyped
BCRs have been detected in both CLL subtypes, although with higher frequency in U-CLL.
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Closely related BCRs have been clustered into stereotyped subsets. With the increase in the
number of cases investigated in these studies, the number of identified stereotyped subsets
grew larger, reaching several hundreds. However, the proportion of cases which could be
assigned to stereotyped subsets did not exceed ~30%, regardless of the cohort size [116]. In
the largest study conducted by now, which included >7000 CLL patients, 19 subsets accounted
for 41% of the stereotyped cases (major subsets) and 12% of the total cohort; other stereotyped
subsets accounted for 18% of cases, while the remaining 70% of cases were heterogeneous,
i.e. did not belong to any of the stereotypes [115].

The required criteria initially adopted for stereotyped subset definition included the usage
of the same IGHV, IGHD and IGH] gene and IGHD reading frame, as well as identity of
VH CDR3 amino acid sequence >60% [111, 113]. However, it soon became apparent that
different IGHV genes (although with substantial sequence similarity) could generate highly
homologous VH CDR3s if recombined with the same IGHD and IGH]J genes. In addition,
introduction of somatic hypermutations could lead to convergence of VH CDR3 sequences
encoded by different IGHV genes [115, 117]. Therefore, a revised set of criteria for cluster-
ing of IGH rearrangements into stereotyped subsets has been developed, which included
additional parameters: (1) the presence of IGHV genes of the same phylogenetic clan, (2)
identical VH CDR3 length and a unique amino acid motif at the exact position within VH
CDR3, (3) VH CDR3 amino acid identity >50% and similarity > 70% [115]. Conserved amino
acid motifs which define a subset can encompass almost the entire VH CDR3 sequence
(e.g. subset #6 and #10) or, alternatively, can involve just a few, or even just one, critical
amino acid residue (e.g. subset #2). Furthermore, in some subsets, the conserved motifs are
encoded solely by specific IGHD-IGH] combinations (e.g. subsets #3, #5 and #8), while in
others, conserved amino acids are located in junctional N1 and N2 regions (e.g. subsets #4,
#16, #77 and #201) [115]. The strong bias in usage of individual IGHV genes in stereotyped
BCRs has been detected, since only a few genes (IGHV1-69, IGHV1-2, IGHV1-3, IGHV3-21,
IGHV4-34 and IGHV4-39) are expressed in around 80% of clustered cases, while IGHV3-7,
IGHV3-23, IGHV3-30 and IGHV3-33, though frequent in CLL, are virtually absent from
stereotyped subsets [117]. In addition, the majority of subsets exhibit restricted light chain
usage with subset-biased k and A CDR3 motifs, thus evidencing the significant role of light
chains in antigen-binding specificities of stereotyped BCRs [118]. Most of the major subsets
are characterized by exclusively mutated or unmutated rearrangements, while several of
them (e.g. subset #1, #2 and #99) can be detected among both M-CLL and U-CLL clones [115,
117]. Characteristics of the most frequent among major stereotyped subsets are depicted in
Table 1.

Extensive research on BCR stereotypy revealed the consistent association of certain stereo-
typed subsets with clinicobiological features of patients. It is well known that proliferation
and survival of CLL cells rely on BCR signalling, along with signalling via other surface
receptors which transduce signals from the microenvironment, since they rapidly undergo
apoptosis when cultivated in vitro [16, 119]. The differences in aggressiveness of M-CLL and
U-CLL clones have been attributed, at least in part, to their different BCR signalling capacity;
CLL cells with unmutated BCRs have been shown to respond more avidly to sIgM cross-
linking and express higher levels of BCR target genes than M-CLL cells, which are more
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Subset = Mutational status IGHV IGHD IGHD RF  IGH] VH CDR3 length VH CDR3 pattern* IGKV/IGLV
#1 mostly U V1/5/7 D6-19 3 J4 13 AR.[NQJW[AVLI]....FD. KV1-39
KV1D-39
#2 mostly M V3-21 no D 16 9 [AVLI].[DE]...M[DE]. LV3-21
#3 U V1-69 D2-2 3 J6 22 A....[AVLI][AVLI]V..A....YYGMD. Variable
#4 M V4-34 D5-5 1 76 20 [AVLIJRG.......[KRHJRYYYYG.[DE]. KV2-30
D4-17
D3-10 3
#5 U V1-69 D3-10 3 J6 20 AR...... [AVLI]...YYYY.MD. Variable
#6 U V1-69 D6-13 2 J3 21 ARGG.YDY[AVLIJWGSYR..[DE][AVLI]FD. KV3-20
#8 U V4-39 D6-13 1 J5 19 A...YSSSW....NWFDP KV1-39
KV1D-39

Subset #2 is the most frequent stereotyped subset, followed by subset #1, #4, #6, #5, #3 and #8 [115].

*A dot represents any amino acid at a given position; a pair of square brackets represents one amino acid position and any of the enclosed amino acids can be found at that
P y g P P q P p y
position. Abbreviations: M = mutated; U = unmutated; and RF = reading frame.

Table 1. The most common major stereotyped subsets.
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anergic [120-123]. However, it has been observed that patients belonging to specific stereo-
typed subsets follow different clinical course from patients assigned to other subsets, even
if expressing the same IGHV gene and having the same IGHV mutational status [82, 93, 124,
125]. The culprit for these subset-related clinical distinctions could be the stereotyped BCR
itself, since differences in antigen reactivity and signalling capacity of BCRs belonging to
certain subsets have been detected. For example, it has been demonstrated that subset #1
and #2 primary B cells were significantly less responsive to antigenic stimulations in vitro in
comparison to subset #8 cells [126]. Additionally, subset-specific distribution of prognosti-
cally significant chromosomal aberrations (del13q, delllq, trisomy 12q and dell7p), as well
as recurrent mutations in frequently mutated genes in CLL (TP53, BIRC3, MYD88, NOTCH1
and SF3B1) has been reported, further underscoring the differences between stereotyped sub-
sets [127, 128].

As mentioned in the previous section, the usage of IGHV3-21 gene has been identified as a
factor of poor prognosis independent of IGHV mutational status in several studies. However,
subsequent research revealed that this was only true for a proportion of cases, which turned
out to belong to subset #2. Subset #2 (IGHV3-21/IGLV3-21) is the largest among stereotyped
subsets, detected in both U-CLL and M-CLL, and associated with delllq, del13g, CD38
expression and SF3B1 mutations [124, 127, 128]. It has been found that IGHV3-21-utilizing
cases assigned to subset #2, whether mutated or not, follow an aggressive clinical course,
while cases carrying IGHV3-21 in heterogeneous BCRs have variable clinical course which
correlates to IGHV mutational status [79, 85, 129].

Subset #1 (IGHV1/5/7/IGKV1(D)-39) is the second largest stereotyped subset, mostly unmu-
tated, and also associated with aggressive disease and adverse prognosis. Recent studies
revealed a significant enrichment for TP53 defects (dell7p and/or TP53 mutations), trisomy
12q and NOTCH1 mutations [128, 130]. In addition, subset #1 B cells exhibited higher pro-
liferation rate following in vitro BCR ligation with anti-IgM antibodies than non-subset #1
unmutated B cells [130]. Similarly to subset #2, cases assigned to subset #1 have worse prog-
nosis when compared to unclustered cases using the same IGHV genes [82, 85, 130].

The aforementioned subset #8 (IGHV4-39/IGKV1(D)-39) is associated with the highest risk of
Richter’s transformation among all CLL [131]. In addition to broad polyreactivity and higher
capacity for BCR signalling compared to subsets #1 and #2, the observed association with
trisomy 12q and enrichment for NOTCH1 mutations likely contribute to the aggressiveness
of subset #8 clones [124, 128].

In contrast to clinically aggressive subsets #1, #2 and #8, subset #4 (IGHV4-34/IGKV2-30), the
largest within M-CLL subtype, is associated with younger age at diagnosis and remarkably
indolent clinical course in comparison to non-subset #4 IGHV4-34 cases, as well as to all other
M-CLL cases [42, 82]. Subset #4 is characterized by CD38 negativity, the lack of recurrent
gene mutations and the presence of favourable deletion 13q14 as the only recurrent chromo-
somal abnormality [127, 128]. Gene expression profiling and in vitro antigenic stimulation of
subset #4 leukemic cells revealed diminished response to BCR-mediated signalling and the
resemblance with anergic B cells, which probably underlie the indolent phenotype of subset
#4 patients [132, 133].
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Given that mathematical probability of two independent B cells creating identical IG rear-
rangements is virtually negligible, the existence of stereotyped BCRs is considered to be
the strongest evidence for recognition of common antigens leading to selection of the CLL
clones. This implies that BCR reactivity and intensity of response to antigenic stimulation, as
well as the frequency of exposure to antigens, could determine the behaviour of CLL clones
and, hence, the course of the disease. Similar clinical characteristics of cases belonging to the
same stereotyped subset corroborate this notion. Therefore, BCR stereotypy could potentially
become a reliable prognostic marker for at least a proportion of patients. However, most
of the clinical variability in CLL is confined to cases with heterogeneous BCRs, for whom
the prognosis definition remains dependent on IGHV mutational status and other molecular
markers.

4. Concluding remarks

Although the cellular origin of CLL is still a controversial issue, immunogenetic studies of
BCR gene repertoire have provided unequivocal evidence that CLL precursor, in both M-CLL
and U-CLL subtype, is an antigen-experienced B lymphocyte [134]. Studies of antigen reac-
tivity have revealed that U-CLL cells generally express low-affinity polyreactive BCRs that
recognize microbial antigens and autoantigens present on the surface of apoptotic cells (sin-
gle- and double-stranded DNA, cytoskeletal proteins, oxidized LDL and lipopolysaccharides)
[135-139]. B cell receptors of M-CLL cells, on the other hand, exhibit more restricted antigen
specificities and are mainly oligo and monoreactive. Auto-reactivity has been demonstrated
for several stereotyped subsets. For example, it has been observed that subset #6 (IGHV1-69/
IGHD3-16/IGHJ3) antibodies bind non-muscle myosin heavy chain IIA, exposed on apoptotic
cells, while subset #1(IGHV1/5/7/IGKV1(D)-39) recognizes oxidized LDL, as well as vimentin
and calreticulin on stromal cells [137, 140, 141]. Furthermore, analysis of IGHV-IGHD-IGH]
sequence of subset #4 (IGHV4-34/IGKV2-30) has indicated similarities with anti-DNA anti-
bodies, as well as the binding of N-acetyllactosamine, which is a common epitope present
on various autoantigens (I/i blood group antigen, B cell isoform of CD45) and microorgan-
isms [142]. The recognition of bacterial and viral antigens by CLL BCRs is further supported
by the association of persistent infections with Epstein-Barr virus and cytomegalovirus with
subset #4, and hepatitis C virus with subset #13 (IGHV4-59/IGKV3-20), the latter exhibiting
rheumatoid factor activity [143, 144]. The unmutated IGHV1-69-utilizing BCRs have been
shown to react with hepatitis C, HIV-1 and intestinal commensal bacteria antigens [145]. In
addition, reactivity against the capsular polysaccharides of Streptococcus pneumoniae has been
detected, which is in agreement with the observed association of respiratory tract infections
with elevated risk of CLL [137, 146]. Fungal antigens have also been implicated in CLL, after
the notion that mutated IGHV3-7/IGKV2-24 BCRs recognize 3-(1,6)-glucan, antigenic deter-
minant of yeast and filamentous fungi [147].

Whatever the antigens might be, they clearly play a key role in the natural history of CLL.
However, the major unanswered questions concern the moment in the disease development
at which BCR-antigen interaction occurs, and to what extent the nature of this interaction
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influences the disease progression. Stimulation by auto- and/or exo-antigen may be lim-
ited to phases prior to or during malignant transformation, leading to the selection and
clonal expansion of precursor cell with the distinctive BCR, during which it acquires the
oncogenic hit and becomes CLL cell [148]. Yet, it is still unclear whether antigenic stimula-
tion continues after transformation. Several studies have investigated if CLL cells accumu-
late somatic hypermutations post-transformation, and have detected extensive intraclonal
diversification in cases assigned to stereotyped subset #4 (but not in subsets #2, #8 and #16
and heterogeneous BCRs), implying an on-going antigenic triggering in this subset [149,
150]. In addition, gene expression profiling of CLL cells from lymph nodes has revealed
up-regulation of BCR target genes, thus indicating continual antigenic stimulation [122].
The fundamental role of BCRs in CLL is underscored by the success of newly developed
therapeutic strategies targeting BCR signalling pathways (BTK, PI3K and SYK inhibitors)
[151-154].

The configuration of BCR expressed on the surface of the CLL clone represents its specific
molecular signature which does not change during the disease course. Hence, it is reasonable
to believe that, in addition to IGHV mutational status, the informations about the clonotypic
BCR will in future become important for individual patient prognostication and, ultimately,
will contribute to tailoring of patient-specific treatment modalities.
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