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Abstract

Mammalian D-amino acid oxidase (DAAO) plays an important role for D-serine meta-
bolism in the brain and regulation of glutamatergic neurotransmission. In the present
work, the structures in solution obtained by the methods of molecular dynamic simula-
tion (MDS) and analyses of photoinduced electron transfer (ET) from aromatic amino
acids to the excited isoalloxazine (Iso*) are described based upon our recent works,
comparing among DAAO dimer, monomer, DAAO-benzoate (DAOB) complex dimer
and monomer. The fluorescence lifetimes of DAAO and DAOB in the time domain of
picoseconds and femtoseconds are used for the ET analyses as experimental data. The
ET parameters (static dielectric constants near isoalloxazine (Iso), standard free energy
gap (SFEG) between the photoproducts and reactants), ET rates, and related physical
quantities (solvent reorganization energy, net electrostatic energy between the photo-
products and ionic groups in the proteins), in addition to MDS structures, are used to
compare the protein structures. The structure of the DAOB dimer in solution obtained
by MDS is substantially different from the crystal structure, and the structures of the
two subunits are not equivalent in solution. The ET rates and related physical quantities
also differ between the two subunits.

Keywords: D-amino acid oxidase from porcine kidney, benzoate complex, molecular
dynamics simulation, dimer and monomer structures in solution, analyses of photoin-
duced electron transfer, rate of photoinduced electron transfer, fluorescence lifetimes
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1. Introduction

D-Amino acid oxidase contains flavin adenine dinucleotide (FAD) as a cofactor and exists in a

wide range of species from yeasts to humans. The enzyme catalyzes the oxidative degradation

of D-amino acids to the corresponding amino acids, ammonium, and hydrogen peroxide. A

number of review articles on D-amino acid oxidase (DAAO) from porcine kidney [1–3] and

yeast to humans [4–6] have been reported. Mammalian D-amino acid oxidase plays an important

role on D-serinemetabolism in the brain and regulation of glutamatergic neurotransmission [7, 8].

Various new inhibitors of human D-amino acid oxidase have been found using in silico screen-

ing [9]. The crystal structures of DAAO are determined in the DAAO-benzoate (DAOB) complex

and DAAO-o-aminobenzoate complex [2, 10, 11].

Photochemistry of flavins and flavoproteins [12] and the fluorescence quenching of flavins by

various substances [13, 14] have been pioneered byWeber. The quenching mechanism of isoallox-

azine (Iso) fluorescence upon complex formation with adenine in FAD is initially resolved by

means of fluorescence lifetime measurements [15, 16], and the fluorescence quenching of Iso by

indole with Iso-(CH2)n-indole diads is reported by McCormick [17]. Time-resolved fluorescence

spectroscopy of flavins and flavoproteins has been reviewed by van den Berg and Visser [18]. The

mechanism of the fluorescence quenching is studied in the systems of riboflavin tetrabutylate and

indole, riboflavin tetrabutylate and N,N0-dimethylaniline in organic solvents [19], and flavodoxin

from Desulfovibrio vulgaris (Miyazaki, F.) [20], by means of a picosecond transient-absorption

spectroscopy. The remarkable fluorescence quenching of flavins is ascribed to fast photoinduced

electron transfer (ET) from these substances to the excited Iso (Iso*). The ET mechanism in the

riboflavin binding protein from egg white is also reported by means of a femtosecond transient-

absorption spectroscopy [21]. A number of flavoproteins display very weak fluorescence, which

decays with ultrashort lifetimes observed upon excitation with a sub-picosecond pulse laser [22–

30]. These experimental results suggest that the valuable and detailed information on the micro-

scopic structures of DAAO can be obtained through analyses of ET rates. We have developed a

new method to analyze ET rates from aromatic amino acids to Iso* in flavoproteins using an

electron transfer theory and MDS and the fluorescence lifetimes or decays of the flavoproteins as

the experimental data [31–36].

In the present chapter, the ET analyses based upon MDS structures have been used to deduce

submicroscopic features of various species of DAAO dimer, DAAO monomer, DAOB dimer,

and DAOB monomer and compared them among these species.

2. Methods

2.1. Fluorescence spectroscopy of DAAO and DAOB

2.1.1. Steady-state excitation

Since fluorescence of free flavins was discovered by Weber [12–14], many workers have been

working on its fluorescence characteristics. Kozioł first investigated solvent effects of the fluores-

cence in organic solvents [37]. However, free flavins are almost insoluble in most organic solvents,

so that a number of solvents for the study were limited. Riboflavin tetrabutylate, which is soluble
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in organic solvents, was synthesized by Yagi’s group. Systematic study on the solvent effects of the

absorption and fluorescence spectra has been working with riboflavin tetrabutylate [38]. Fluores-

cence of DAAOwas first studied by Massey et al. [39]. McCormic et al. precisely examined on the

fluorescence properties of apo- and holo-DAAO [40].

Fluorescence intensity of the bound FAD in DAAO is quite weak compared to that of free FAD,

and further fluorescence polarization is also quite different between free and the bound

FAD [41]. A relative fluorescence intensity of the bound FAD to free FAD is defined as R1 = I/I0,

where I and I0 are the fluorescence intensities of the enzyme solution at certain concentration and

free FAD at the same concentration with the enzyme sample. A parameter R2 is defined with

experimental polarization anisotropies as R2 = (A � Af) / (Ab � A), where A, Af, and Ab are

polarization anisotropies of an enzyme solution, free FAD, and bound FAD, respectively. Disso-

ciation constant of FAD from DAAO (Kd) [42, 43] and relative quantum yield of the bound FAD

to the free FAD (r) were obtained with Eqs. (1) and (2) [44–46]:

Kd ¼
R1

1þ R2 � R1
P½ �0 � F½ �0 þ

R1

1þ R2
F½ �0

� �

ð1Þ

r ¼
R1R2

1þ R2 � R1
ð2Þ

In Eq. (1), [P]0 and [F]0 are the total concentration of the protein (apoprotein plus holoprotein)

and the total concentration of FAD (free and bound FADs) in the enzyme solution.

2.1.2. Fluorescence dynamics

Time-resolved fluorescence of free flavins was first studied by means of a phase-shift method

by Weber’s group [15, 16]. Transient fluorescence spectroscopy of flavoproteins is most useful

experimental tool for the conformational changes of flavoproteins [18]. In 1980, the fluores-

cence lifetimes of DAAO was first reported by means of a picosecond-resolved fluorescence

spectroscopy with a mode-locked Nd:YAG laser (pulse width, 30 ps) and streak camera

combination by Nakashima et al. [44, 45]. Later, the fluorescence dynamics was measured with

a synchronously pumped, cavity-dumped dye laser and single-photon counting system (pulse

width 35 ps) to study a temperature-induced conformational change as described later [46, 47].

The fluorescence lifetimes of DAOB, however, could not be determined in the picosecond time

domain [45]. The ultrafast fluorescence dynamics of DAOB was measured in the time domain

of femtoseconds by means of a fluorescence up-conversion method (pulse width, 80 fs) [23].

2.2. MDS calculations

The starting structure of the pig kidney DAAO monomer was obtained from using the X-ray

structure of the DAAO-benzoate complex dimer (PDB code 1VE9) [10], removing benzoate

and/or one of the subunits. All calculations were carried out using the AMBER 10 suite of

programs [47]. The parm99 force field [48] was used to describe the protein atoms, whereas the

general AMBER force field [49] with the restrained electrostatic potential (RESP) charges [50]

was used for the ligand and FAD. The simulated systems were subsequently solvated with a

cubic box of ca. 4000 TIP3P water molecules. Electrostatic interactions were corrected by the
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particle mesh Ewald method [51]. The SHAKE algorithm [52] was employed to constrain all

bonds involving hydrogen atoms. Details of the methods are described elsewhere [53–56].

2.3. Method of ET analysis

2.3.1. ET theory

The original Marcus theory [57–59] has been modified in various ways [60–73]. Kakitani

and Mataga (KM) theory [66–68] is used for ET phenomena in flavoproteins, because it is

applicable both for adiabatic and nonadiabatic ET process and has been found to give satisfac-

tory results for both static [26–30] and dynamic ET analyses [31–36].

Here, the ET rate with the KM model for the DAAO dimer [53] is described as expressed by

Eq. (3). The rates are similar for other DAAOs and DAOBs:

k
jk
ET Tð Þ ¼

ν
q
0

1þ exp βq Rjk � R
q
0

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffi

kBT

4πλ
q
jk

s

exp �
ΔG0

k Tð Þ � e2=ε
pk
0 Rjk þ λ

q
jk þ Ek

Net jð Þ
n o2

4λ
q
jkkBT

2

6

4

3

7

5
ð3Þ

where k
jk
ET Tð Þ is the ET rate from the donor j to the Iso* in subunit k (k = Sub A or Sub B) at

temperature T (�C), and q denotes Trp or Tyr. The term υ
q
0 is an adiabatic frequency, βq is the ET

process coefficient, and Rjk and R
q
0 are the donor j-Iso distance in subunit k and its critical

distance for the ET process, respectively, and are expressed with Rc (center-to-center distance).

The ET process is adiabatic when Rjk < R
q
0 and nonadiabatic when Rjk > R

q
0. The temperature (T)

is expressed in K unit at the right-hand side. The term �e2=ε
pk
0 Rjk is the electrostatic (ES) energy

between the donor cation and acceptor anion (ESDA), in which ε
pk
0 is static dielectric constant.

The terms kB and e are the Boltzmann constant and electron charge, respectively. Ek
Net jð Þ is the net

ES (NetES) energy of the donor j in subunit k. The DAAO monomer contains 10 Trp and 14 Tyr

residues. In the present work, the ETrates from all of these aromatic amino acids to Iso* are taken

into account for the analysis.

Solvent reorganization energy (SROE) [57, 58] of the ETdonors q and j (λ
q
jk) is expressed in Eq. (4):

λ
q
jk ¼ e2

1

2aIso
þ

1

2aq
�

1

Rjk

	 


1

ε
∞

�
1

ε
pk
0

 !

ð4Þ

where aIso and aq are the radii of Iso and Trp or Tyr, ε
∞
is the optical dielectric constant, and ε

pk
0

is the static dielectric constant inside subunit k. The optical dielectric constant used was 2.0.

The radii of Iso (aIso), Trp (aTrp), and Tyr (aTyr) are 0.224, 0.196, and 0.173 nm, respectively, as

previously reported [26–36].

The standard free energy gap (SFEG) between the products and reactants, ΔG0
k Tð Þ, was

expressed with the ionization potential of the ET donor (E
q
IP) as in Eq. (5):
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ΔG0
k Tð Þ ¼ E

q
IP � G0

k Tð Þ ð5Þ

where G0
k Tð Þ is the standard free energy gap related to the electron affinity of Iso* in subunit k

at temperature T. The values of E
q
IP for Trp and Tyr are 7.2 eV and 8.0 eV, respectively [74].

2.3.2. Electrostatic energy between the photoproducts and ionic groups inside the DAAO dimer

The FAD cofactor in DAAO has two negative charges at the pyrophosphate, while DAAO

itself contains 22 Glu, 13 Asp, 12 Lys, and 21 Arg residues per subunit as ionic amino acids.

The ES energy between the Iso anion or donor cation j and all other ionic groups in subunit k

(Sub A or Sub B) is expressed by Eq. (6):

Ek jð Þ ¼
X44

i¼1

CjCGlu

ε
pk
0 Rj Glu� ið Þ

þ
X26

i¼1

CjCAsp

ε
pk
0 Rj Asp� ið Þ

þ
X24

i¼1

CjCLys

ε
pk
0 Rj Lys� ið Þ

þ
X42

i¼1

CjCArg

ε
pk
0 Rj Arg� ið Þ

þ
X8

i¼1

CjCP

ε
pk
0 Rj P� ið Þ

ð6Þ

Here, j = 0 is for the Iso anion in subunit k, 1–10 and 11–20 for the Trp cations in Sub A and Sub

B, respectively, and 21–34 and 35–48 for the Tyr cations in Sub A and Sub B, respectively. The

charge of the aromatic ionic species j (Cj) is -e for j = 0 (Iso anion) and +e for j = 1–48 (cations of

the donors). CGlu (= �e), CAsp (= �e), CLys (= + e), and CArg (= + e) are the charges of the Glu, Asp,

Lys, and Arg residues, respectively. FAD contains two phosphate atoms, each of which binds

two oxygen atoms, where the charge of each oxygen atom is CP = �0.5e and so the total charge

of four oxygen atoms is �2e. The distances between the aromatic ionic species j and the ith Glu

(i = 1–44) were denoted as Rj(Glu� i), while the distances between the aromatic ionic species jth

and the ith Asp (i = 1–26) were denoted as Rj(Asp� i) and so on for the each amino acid residue.

The NetES in Eq. (3) is then expressed as in Eq. (7):

Ek
Net jð Þ ¼ Ek 0ð Þ þ Ek jð Þ ð7Þ

where j ranges from 1 to 48 and represents the jth ET donor.

2.3.3. Determination of the ET parameters

The calculated lifetimes of subunit k at temperature (T) are given by Eq. (8):

τTkCalc ¼
1

X48

j¼1

k
jk
ET Tð Þ

ð8Þ

where the fluorescence lifetimes are expressed in ps unit. The physical quantities related to the

electronic coupling term (υ
q
0, β

q, and R
q
0) for Trp and Tyr are taken from those reported for

flavin mononucleotide binding proteins [32] and are assumed to be independent of tempera-

ture within the 10–30�C temperature range. In contrast, the free energy, G0
k Tð Þ, which is related

to the electron affinity of Iso*, is assumed to be both temperature and subunit dependent,
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because G
0
k
Tð Þ may be modified with the H-bond structure. The unknown ET parameters are

G
0
A
10ð Þ, G0

B
10ð Þ, G0

A
30ð Þ, and G

0
B
30ð Þ in Eq. (5) and ε

A

0 , ε
B
0 , and ε

DA

0 , which are assumed to be

independent of temperature. These ET parameters are determined so as to obtain the mini-

mum value of χ2, as given by Eq. (9):

χ
2 ¼

τ
10A
Calc

� τ
10
Obs

� �2

τ
10A
Calc

þ
τ
10B
Calc

� τ
10
Obs

� �2

τ
10B
Calc

þ
τ
30A
Calc

� τ
30
Obs

� �2

τ
30A
Calc

þ
τ
30B
Calc

� τ
30
Obs

� �2

τ
30B
Calc

ð9Þ

3. Cooperative binding of FAD associated with the monomer-dimer

equilibrium in DAAO

The DAAO exists in a monomer (Mw 39 kDa)-dimer equilibrium state at relatively low concen-

trations [75–79] and in a dimer-tetramer equilibrium at higher concentrations [80–82]. The

protein structures of the DAAO dimer in solution, as obtained by MDS [53, 54], are shown in

Figure 1. The values of Kd are obtained at various concentrations of holo-DAAO and apo-DAAO

[42, 43] according to Eq. (1). Figure 2 shows Kd vs. DAAO concentration relationship [42]. The

values of Kd are remarkably dependent on the protein concentration both in holo-DAAO and

apo-DAAO [42], higher at the low concentrations and lower at the high concentrations. Figure 3

Figure 1. Structure of FAD binding site in holo-DAAO dimer obtained by MDS. (A) Sub A10 and (B) Sub B10 denote

subunits of A and B at 10�C, and (C) Sub A30 and (D) Sub B30 denote subunits of A and B at 30�C. (Reproduced from [53]

with permission from the PCCP Owner Societies).
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Figure 2. Dependence of Kd on the concentration of DAAO. (A) shows the holo-DAAO and (B) apo-DAAO. DAAO was

dissolved into buffer solution at pH 8.3. (Reprinted with permission from [42]. Copyright (1979) American Chemical

Society).

Figure 3. Hill plot of FAD binding in holo-DAAO. Measurements were made at pH 8.3 and 20�C. The binding fraction of

FAD is ν ¼ F½ �
b
= P½ �0 where [F]b is the concentration of bound FAD. The dashed line indicates a straight line with the Hill

coefficient equal to 1. (Reprinted with permission from [42]. Copyright (1979) American Chemical Society).
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shows Hill plot for FAD binding, which reveals that the Hill coefficient is nearly 1 at the lower

concentrations but appreciably deviates from 1 toward greater than 1 at the higher concentra-

tions of DAAO [42]. The results show that the binding process of FAD is positively cooperative.

Approximate relative concentrations of various species of DAAO and the dissociation constants

are illustrated in Figure 4 [42]. The origin of the cooperativity is elucidated to be mainly that Kc

(0.01 μM) is much less than Ka (0.74 μM). Namely, the binding of FAD to apo-DAAO monomer

induces association of the holo-DAAO monomers into the holo-DAAO dimer, because the

protein dissociation constants between holo monomers (K2 = 3.8 μM) are least comparing to the

other protein dissociation constants (K1 and K0).

The concept of “allosteric transition” is originally proposed by Monod, Wyman, and Changeux

to explain the sigmoidal curve of O2 binding to hemoglobin [83]. Then, an induced-fit model for

the O2 binding is proposed by Koshland, Némethy, and Filmer [84]. A ligand-induced polymer-

ization of a protein is considered as an alternative model to explain allosteric effect [85–87]. The

enzyme activity of the DAAOmonomer is 1.5-fold higher than that of the dimer [88]. Under the

presence of enough FAD in the brain, DAAO is considered to form the dimer, for which activity

is lower than that of the monomer. The enzyme activity may be physiologically regulated

through the binding of FAD, which should be significant in schizophrenia, because the activity

of DAAO is twofold higher in the patients with schizophrenia [7].

4. Fluorescence lifetimes of DAAO and DAOB in picoseconds-

femtoseconds time domain

The dissociation constants of FAD in DAAO are much smaller by 1/74 in the dimer,

comparing to the monomer [42, 43] as stated above. This suggests that local structures near

Iso binding site are different between the dimer and monomer. The fluorescence lifetimes of

Figure 4. Dissociation equilibrium constants among the various species of DAAO. M1 and M0 indicate holomonomer and

apomonomer, and D2, D1, and D0 indicate holodimer, heterodimer of holo- and apomonomers, and apodimer, respec-

tively. Ka, Kb, and Kc are dissociation equilibrium constants of FAD from holomonomer, heterodimer, and holodimer,

respectively. The dissociation constants are indicated in the unit of μM. The square binds FAD, while the circle has no

FAD. The concentration of DAAO is 5 μM. The area of the various species is approximately proportional to their

concentrations. (Reprinted with permission from [42]. Copyright (1979) American Chemical Society).
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DAAO obtained by Nakashima et al. [44] are 40 ps in the dimer and 130 ps in the monomer.

Later, the lifetimes were measured with the new method of single-photon counting instru-

ments and listed in Table 1 at various concentrations of DAAO and temperatures [46, 47].

The values of lifetimes in DAAO monomer are 228 ps at 10�C and 182 ps at 30�C. The

values of the lifetime in the dimer are 44.2 ps at 10�C and 37.7 ps at 30�C [46]. The lifetime

of free FAD in water is 2.5 ns [15, 16]. The lifetime in DAAO dimer is shorter by ca. 1/60

times than that in free FAD in water, which is ascribed to fast ET from aromatic amino

acids to Iso* [19–21].

The fluorescence lifetime of DAOB is 60 ps in the monomer, and shorter than 5 ps in the dimer,

obtained by Nakashima et al. [44]. Time resolution of the lifetime instruments in 1980 was not

enough to obtain exact lifetime of DAOB dimer. In 2000 the lifetimes of the DAOB dimer are

obtained to be 0.848 and 4.77 ps [23] by means of the up-conversion method, which are much

shorter than those in DAAO, and described more in detail later.

T (�C) Conc. (μM) τ0

(ps)

α0 τ1

(ps)

α1 τ2 α2 τ3

(ns)

α3 χ
2

40 1.6 27.9 �0.877 43.7 0.850 191 0.079 1.91 0.071 1.028

100 26.5 �0.962 36.2 0.945 162 0.047 1.61 0.008 1.362

Av. 25.9 40.0 169 1.76

35 0.78 26.2 �1.030 45.4 0.834 202 0.084 2.10 0.081 0.993

100 23.5 �0.903 39.9 0.910 161 0.080 1.68 0.010 1.516

Av. 25.6 41.8 170 1.91

30 1.6 26.7 �0.989 48.3 0.824 182 0.116 2.23 0.060 1.007

100 26.7 �1.024 37.7 0.956 169 0.044 1.76 0.005 1.479

Av. 26.2 43.2 177 2.02

25 0.78 28.6 �0.842 54.7 0.822 245 0.080 2.47 0.098 1.148

100 23.5 �0.977 41.0 0.906 165 0.086 1.83 0.008 1.559

Av. 26.0 43.7 184 2.20

15 0.78 29.5 �0.841 46.6 0.822 214 0.110 2.78 0.068 1.134

100 23.5 �1.003 42.9 0.892 179 0.099 1.95 0.009 1.324

Av. 26.1 45.2 190 2.44

10 0.78 27.6 �0.980 47.1 0.807 228 0.121 2.93 0.072 1.016

100 25.3 �0.979 44.2 0.899 194 0.092 2.04 0.009 1.366

Av. 25.1 48.5 208 2.61

aDAAOwas dissolved in 0.017 M pyrophosphate buffer at pH 8.3. The fluorescent species with the lifetimes, τ1, τ2, and τ3,

were assigned to be the dimer, monomer, and free FAD, respectively, and α1, α2, and α3 are their fractions. τ0 is a lifetime

for process from an intermediate state to the fluorescent state [46, 47]. χ2 means a reduced chi-square distribution between

the calculate decay function and experimental decay curve. Av. indicates the averaged lifetimes over seven or eight

different levels of the enzyme ranging from 100 to 1.6 or 0.78 M. (Reprinted with permission from [47]).

Table 1. Fluorescence decay parameters of FAD in DAAO measured with a synchronously pumped, cavity-dumped dye

laser and single-photon counting system.a.
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5. Conformational difference between the DAAO dimer and monomer

revealed by MDS and ET analyses

The results of the fluorescence lifetimes of DAAO and DAOB reveal that the local structures

differ between the monomers and dimers. However, no structural information can be drawn

by the lifetimes alone. Details of the structural difference between DAAOmonomer and dimer

are obtained through MDS and ET analyses [53, 54].

Table 2 lists the donor-acceptor distances between Iso and the five shortest donors from Iso in the

DAAO dimer and monomer. In the dimer, the Rc distances are the shortest in Tyr224 followed by

Tyr228, except for Sub A at 30�Cwhere Tyr228 is the shortest followed by Tyr224. In the monomer

Protein T (�C) Subunit Donor b (Rc/nm)

DAAO dimerc 10 A Tyr224 Tyr228 Tyr55 Tyr314 Tyr279

(0.74) (0.82) (1.07) (1.11) (1.32)

10 B Tyr224 Tyr228 Tyr55 Tyr314 Tyr279

(0.79) (0.83) (0.99) (1.05) (1.20)

30 A Tyr 228 Tyr 224 Tyr 314 Tyr 279 Tyr 55

(0.85) (0.90) (1.06) (1.30) (1.47)

30 B Tyr 224 Tyr 228 Tyr 314 Tyr 55 Trp 185

(0.72) (0.81) (1.06) (1.06) (1.14)

DAAO monomerd 10 Tyr224 Tyr228 Tyr314 Trp185 Tyr55

(0.82) (0.88) (1.06) (1.27) (1.64)

30 Tyr224 Tyr228 Tyr314 Tyr55 Trp185

(0.88) (0.88) (1.18) (1.20) (1.49)

DAOB dimere 20 A Tyr55 Tyr228 Tyr314 Trp185 Tyr224 Benzoate

(0.95) (0.96) (1.06) (1.10) (1.32) (0.66)

20 B Tyr228 Tyr314 Tyr224 Tyr55 Trp185 Benzoate

(0.99) (1.02) (1.04) (1.05) (1.31) (0.68)

DAOB monomerf 20 Tyr228 Tyr224 Tyr314 Tyr279 Tyr74 Benzoate

(0.81) (0.97) (1.07) (1.24) (1.80) (0.61)

aThe ET acceptor is Iso*. Mean donor-acceptor distances (Rc) are listed over 5000 snapshots in parentheses. A value of Rc

in one snapshot was evaluated as mean distance of all possible pairs between aromatic atoms in Iso and aromatic atoms in

a donor.
bFive shortest distances between Iso and the aromatic amino acids (plus Bz in DAOB) are listed in order from shorter to

longer distances.
cData taken from Ref. [53].
dData taken from Ref. [54].
eData taken from Ref. [56].
fData taken from Ref. [55].

Table 2. ET donor-acceptor distance in DAAO and DAOB.a.
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the distance is also the shortest in Tyr224 at both 10 and 30�C, followed by Tyr228 and Tyr314. The

hydrogen bonding (H-bond) structures between Iso and the amino acid residues markedly vary

with the protein systems (Table 3). At 10�C, in the dimer Iso forms H-bonds with Leu51 (IsoN3H),

Thr317 (IsoO2), Gly50 (IsoO4), and Leu51 (IsoO4) in Sub A and with Gly315 (IsoO2), Leu316

(IsoO2), and Thr317 (IsoO2) in Sub B (atom notations are shown inChart 1), while in themonomer,

Iso forms H-bond only with Gly50 (IsoO4). At 30�C Iso in the dimer forms H-bonds with Leu51

(IsoN3H) and Thr317 (IsoO2) in Sub A and with Gly315 (IsoO2), Leu316 (IsoO2), and Thr317

(IsoO2) in Sub B, while in the monomer, Iso forms H-bondwith Leu316 (IsoO2) and Gly50 (isoO4).

The number of H-bonds and kind of H-bond pairs are quite different between the DAAO dimer

and monomer, though Iso may also form H-bonds with water molecules as described below.

Protein Subunit T (�C) Iso N3H

Leu51

(O)

Iso N5

Ala49

(N)

Iso O2

Gly315

(N)

Iso O2

Leu316

(N)

Iso O2

Thr317

(OG1)

Iso O4

Gly50

(N)

Iso O4

Leu51

(N)

DAAO Ab 10 0.29 - - - 0.28 0.29 0.29

30 0.29 - - - 0.28 - -

Bb 10 - - 0.29 0.28 - - -

30 - - 0.29 0.28 - - -

Monomerc 10 0.29 0.29 - 0.29 0.28 0.28 0.29

30 - 0.29 - 0.28 0.28 0.28 -

DAOB Ad 20 0.31 0.31 - - 0.35 - -

Bd 0.32 0.31 - - - - -

Monomere 10 0.29 0.29 - 0.29 0.28 0.28 0.29

20 0.29 0.29 0.29 - 0.28 - -

30 0.29 0.29 - - - 0.28 0.29

Subunit T (�C) Bz O1 Bz O2 Bz O2

Arg283

(NH2)

Arg283

(NE)

Arg283

(NH2)

DAOB Ad 20 0.29 0.27 0.30

Bd 0.28 0.28 0.30

Monomere 10 0.28 0.28 0.29

20 0.26 0.28 0.29

30 0.28 0.28 0.28

aThe distances in nm units are obtained by averaging over 10,000 MDS snapshots and collected those shorter than 0.3 nm.

Atomic notations in Iso are indicated in Chart 1. Atom notations of amino acids shown in parentheses are taken from

PDB, where N, O, and OG1 denote peptide N and O atoms and O atom of the side chain, respectively. Bz O1 and Bz O2

denote two oxygen atoms of carboxylate in benzoate (Bz).
bThe data are taken from Ref. [53].
cThe data are taken from Ref. [54].
dThe data are taken from Ref. [56].
eThe data are taken from Ref. [55].

Table 3. Comparison of H-bond distances among the DAAO dimer, monomer, and DAOB dimer and monomer.a.
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As shown in Eq. (3), the ET rate contains several parameters, which are determined by the

method described above. Table 4 lists the ET parameters as εDA
0 and G0

k Tð Þ in DAAO dimer

(Sub A and Sub B), DAAOmonomer, DAOB dimer (Sub A and Sub B), and DAOB monomer.

Microscopic information can be obtained as the donor-acceptor distances and H-bond dis-

tances with MDS and the protein structures. Submicroscopic information can be obtained

with the ET parameters, ET rates, and related physical quantities. Among the ET parameters,

G0
k Tð Þ is one of most influential parameters for the ET rate, according to the fluorescence

lifetime.

The distribution of the logarithmic ET rates (ln rate) from the five fastest donors to Iso* in the

DAAO dimer and monomer is shown in Figure 5. At 10�C the three fastest donors are

Tyr224, Tyr314, and Tyr228 in Sub A in this order and Tyr314, Tyr224, and Tyr55 in Sub B in

the dimer, while they are Tyr224, Tyr314, and Tyr228 in the monomer. At 30�C the three

fastest donors are Tyr314, Tyr228, and Tyr224 in Sub A and Tyr224, Tyr314, and Trp185 in

Sub B in the dimer, while they are Tyr314, Tyr224, and Tyr55 in the monomer. The values of

ET rates are listed in Table 5. The ET rates in the dimer are several times faster than those in

the monomer.

T (�C) Protein Subunit ε
DA
0 b G

0
k
Tð Þc (eV) τ (ps)

Obs d Calc e

10 DAAO dimerf Sub A 5.79 8.61 44.2 44.2

Sub B 5.82 8.54 - -

DAAO monomerf � 5.88 8.69 228 228

30 DAAO dimerf Sub A 5.79 8.73 37.7 37.7

Sub B 5.82 8.48 - -

DAAO monomerf 5.89 8.51 182 182

20 DAOB dimerg Sub A 2.53 8.42 4.77 4.77

Sub B 2.64 8.43 0.848 0.848

DAOB monomerh - 2.45 8.53 60 60

aStatic dielectric constants inside the proteins (εA0 and εB0 ) are similar, 5.8–5.9 among all species. The reported values of ET

parameters were used for the electronic coupling term (ν
Trp
0 = 1016 ps�1, ν

Tyr
0 = 197 ps�1, βTrp = 21.0 nm�1, βTyr = 6.25 nm�1,

R
Trp
0 = 0.663 nm, and R

Tyr
0 = 0.499 nm) [32].

bThe static dielectric constant between Iso and the donors within 1 nm from Iso.
cTemperature-dependent electron affinity of Iso*.
dExperimental fluorescence lifetimes for DAAO dimer and monomer [46] and for DAOB dimer [23] and DAOB mono-

mer [45]. The lifetimes of Sub A and Sub B in DAAO dimer are not experimentally resolved.
eCalculated lifetimes.
fData are taken from the work for DAAO dimer [53] and DAAO monomer [54].
gData are taken from the reported work of Ref. [56].
hData are taken from the reported work of Ref. [55].

Table 4. ET parameter in DAAO and DAOB.a.

Amino Acid - New Insights and Roles in Plant and Animal86



A NetES sometimes plays an important role on the ET rates and is defined as an ES energy

between the photoproducts (Iso anion plus a donor cation), and other ionic groups in the pro-

tein [31–36] as described above are also listed in Table 5. The NetES has never been numerically

evaluated by other research groups. The NetES values in the monomer are greatly modified upon

the formation of dimer, which is ascribed to inter-subunit interactions, namely, that the NetES of a

donor in Sub A is strongly influenced by that in Sub B and vice versa, because the electrostatic

energy is influential over a long range.

Figure 5. Distribution of logarithmic ET rate from aromatic amino acids to Iso*. Sub A10 and Sub B10 denote Sub A and

Sub at 10�C, and Sub A30 and Sub B30 denote Sub A and Sub B at 30�C in DAAO dimer, respectively. Inserts show amino

acids with the top fastest ET rates. The distributions for DAAOmonomers at 10�C (Monomer 10) and 30�C (Monomer 30)

are also shown for comparison. The kinds of the amino acids are different among the six groups including monomer.

(Reproduced from [53] with permission from the PCCP Owner Societies).
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Protein T (�C) Subunit Donor Rate (ps�1) NetES energy (eV)

DAAO dimerb 10 A Tyr224 1.29 � 10�2 0.044

Tyr314 7.57 � 10�3
�0.406

Tyr228 1.20 � 10�3 0.146

Tyr55 9.08 � 10�4
�0.119

Trp185 9.71 � 10�6
�0.104

10 B Tyr314 1.38 � 10�2
�0.479

Tyr224 5.96 � 10�3
�0.021

Tyr55 1.54 � 10�3
�0.161

Tyr228 1.25 � 10�3 0.056

Tyr279 6.08 � 10�5
�0.076

30 A Tyr314 1.63 � 10�2
�0.293

Tyr228 5.86 � 10�3 0.130

Tyr224 3.39 � 10�3 0.108

Tyr55 2.43 � 10�4
�0.207

Trp52 2.15 � 10�4
�0.593

30 B Tyr224 1.68 � 10�2
�0.038

Tyr314 6.51 � 10�3
�0.422

Trp185 1.43 � 10�3
�0.465

Tyr55 9.70 � 10�4
�0.210

Tyr228 8.30 � 10�4 0.097

DAOB dimerd 20 A Tyr228 1.17 � 10�1 0.075

Bz 7.50 � 10�2
�0.085

Tyr55 1.14 � 10�2
�0.103

Trp185 4.65 � 10�3
�0.434

Tyr314 1.58 � 10�3
�0.323

Trp52 1.68 � 10�5
�0.113

20 B Bz 8.92 � 10�1
�0.094

Tyr228 2.80 � 10�1 0.070

Tyr314 6.56 � 10�3
�0.442

Tyr55 2.64 � 10�4
�0.159

Tyr224 5.38 � 10�5
�0.010

Trp185 3.72 � 10�5
�0.183

DAAO monomerc 10 Tyr224 2.27 � 10�3 0.192

Tyr314 1.38 � 10�3
�0.073

Tyr228 5.94 � 10�4 0.215

Trp185 1.15 � 10�4
�0.249
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The dependence of the ln Rate on the donor-acceptor distances has been predicted by a Dutton

rule to be linear [69]. In DAAO dimer and monomer, the ln Rate linearly decreased with Rc in

all cases [53, 54]. This means that the fluorescence lifetimes of FAD in DAAO become longer as

the Rc increased. The dimer Rc is mostly shorter than those in the monomer [53]. It is con-

cluded that the shorter lifetimes of the dimer are due to their shorter Rc values compared to the

monomer.

6. The two subunits in the DAAO dimer are not equivalent in solution

The conformations of the two subunits in the DAAO dimer are found to be not equivalent in

solution [53], as shown in Figure 1. The Rc values in Sub A between Iso and the main donors

are quite different from those in Sub B (Table 2), and the H-bond structure between Iso and the

nearby amino acids in Sub A is also quite different from that in Sub B (Table 3), though

H-bonds between Iso and water molecules are not taken into account. The structural differ-

ences led to the nonequivalent ET rate and NetES (Table 5), and its related physical quantities

as the electrostatic energy between the donor and acceptor (ESDA), and solvent reorganization

energy (SROE). The ratio of the ET rate in Sub A/the rate in Sub B is 2.3 in Tyr224, 0.55 in

Tyr314, and 0.96 in Tyr228 at 10�C and 0.20 in Tyr224, 2.5 in Tyr314, and 7.1 in Tyr228 at 30�C.

Protein T (�C) Subunit Donor Rate (ps�1) NetES energy (eV)

Tyr279 1.57 � 10�5 0.144

30 Tyr314 2.35 � 10�3
�0.434

Tyr224 1.65 � 10�3
�0.035

Tyr55 8.00 � 10�4
�0.324

Tyr228 6.85 � 10�4 0.051

Tyr106 5.47 � 10�6
�0.342

DAOB monomere 20 Bz 9.92 � 10�3 0.898

Tyr228 4.23 � 10�3 0.172

Tyr224 1.93 � 10�3 0.022

Tyr314 5.05 � 10�4
�0.130

Tyr55 6.59 � 10�5
�0.171

Trp185 1.37 � 10�5
�0.095

aMean ET rates from aromatic amino acids to Iso* and related physical quantities are listed over 10,000 snapshots. The

expression of ET rate with KM model is given by Eq. (3). NetES energy denotes electrostatic energy between the

photoproducts (Iso anion and a donor cation) and other ionic groups in the proteins given by Eq. (7).
bThe data are taken from Ref. [53].
cThe data are taken from Ref. [54].
dThe data are taken from Ref. [56].
eThe data are taken from Ref. [55].

Table 5. Comparison of ET rate and NetES energy among DAAO dimer and monomer and DAOB dimer and monomer.a.
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7. Temperature-induced structural transition in DAAO monomer

Massey et al. [39] first reported a temperature-induced conformational change (temperature

transition) of DAAO, where the tryptophan fluorescence exhibited a temperature transition at

around 15�C. The van’t Hoff plot of the enzyme activity is nonlinear and best expressed by two

straight lines with different activation energies. The enzyme activities showed a temperature-

dependent equilibrium between the high- and low-temperature states [89], while the equilib-

rium constant of the association of monomers to form dimers exhibited a discontinuous

change at 18�C [88]. However, this transition is not found in the specific heat change at the

transition temperature by means of a differential scanning microcalorimetry [90]. The temper-

ature transition of DAAO has been studied by monitoring the fluorescence lifetimes [46]. The

modified Arrhenius plots of the fluorescence quenching constants of the monomer and dimer

based upon the absolute rate theory displayed two linear functions both in the monomer and

dimer. The fluorescence quenching in DAAO is ascribed to the ET from aromatic amino acids

to Iso* [19–21], as described above. The activation enthalpy gap and the entropy gap for the

quenching constants of DAAO displayed different values in the lower and higher temperature

ranges than at 16–18�C, but not in the free FAD. The quenching constant of the monomer

displayed a more pronounced transition than that of the dimer. No indication of appreciable

transition in the specific heat change [90] may be due to the measurements being performed at

very high concentrations of DAAO, where the enzyme should be in the dimer or higher

association state, and so it might be difficult to detect the transition.

The structural basis for the temperature-induced transition in the DAAO monomer is studied

by means of MDS and ETanalyses [54]. The Rc values of Tyr224 are 0.82 and 0.88 nm at 10 and

30�C, respectively, and those of Tyr314 are 1.06 and 1.18 nm at 10 and 30�C, respectively, as

shown in Table 2. H-Bonds are formed between IsoN1 (see Chart 1 for atom notations of Iso

ring) and Gly315N (peptide), between IsoN3H and Leu51O (peptide), and between IsoN5 and

Chart 1. Chemical structure and atom notations of Iso.
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Ala49N (peptide) at 10�C, while no H-bond is formed at IsoN1 and IsoN3H at 30�C (Table 3).

The H-bond of IsoO4 with Leu51N (peptide) at 10�C is switched to Ala49N (peptide) at 30�C.

These results may account for the shorter reported fluorescence lifetime of the monomer at

10�C (228 ps) and 30�C (182 ps) [54]. The ET rate from Tyr224 is the fastest among donors at

10�C and the second fastest at 30�C among the donors, while that from Tyr314 is the second

fastest at 10�C and the fastest at 30�C (see Table 5). The values of NetES in Tyr224 are 0.192 eV

at 10�C and�0.035 eVat 30�C, and in Tyr314 are�0.073 eVat 10�C and �0.434 eVat 30�C. The

other physical quantities related to the ET rates also displayed appreciable differences at 10

and 30�C. The electron affinities of Iso* are calculated at both temperatures with the semiem-

pirical molecular orbital (MO) method (MOPAC software, PM6 basis set) [54]. The mean

calculated electron affinities over 100 snapshots with 0.1 ns intervals are 7.69 eV at 10�C and

7.59 eV at 30�C. Thus, the difference in the observed fluorescence lifetimes between 10 and

30�C is ascribed to the differences in the standard free energy gap and also NetES between the

two temperatures.

8. Comparison of the DAOB monomer and dimer structures

Characteristics of monomer and dimer in DAOB and DAAO are compared in Table 6.

The Rc values between Iso and Bz are 0.61 nm in the DAOB monomer but 0.66 and 0.68 in

Sub A and Sub B, respectively [55, 56], of the dimer as shown in Table 2. In the DAOB

monomer, the second and third shortest donors are Tyr228 and Tyr224 (0.81 and 0.97 nm,

Physical quantity DAOB DAAO

Fluorescence lifetime (ps)

Monomer 60b 130c, 228 at 10�Cd, 182 ps at 30�Cd

Dimer

Sub A

Sub B

4.8e

0.85e
40c, 44.2 at 10�Cd, 37.7 at 30�Cd

Relative quantum yield of FAD in the enzyme to free FAD e 0.0048–0.0077f 0.08–0.13c

Apparent dissociation constant of FAD (nm) 0.14–0.15f 100–300f

Dissociation constant of dimer into monomer (μM) 0.4 � 0.3f 3.7g

aData are taken with some modifications from [45]. The lifetimes of the DAAO dimer were not separated between the two

subunits [44, 46].
bTemperature was 20�C. Data are taken from Ref. [45].
cTemperature was 20�C. Data are taken from Ref. [44].
dData are taken from Ref. [46].
eData are taken from Ref. [23].
fData are taken from Ref. [45].
gData are taken from Ref. [42, 43].

Table 6. Comparison of characteristics among DAAO monomer and the dimer and DAOB monomer and the dimer.a.
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respectively), while in the dimer, they are Tyr55 and Tyr228 (0.95 and 0.96 nm) in Sub A

and Tyr228 and Tyr314 (0.99 and 1.02 nm) in Sub B. The donor-acceptor Rc distances in

the DAOB monomer are, therefore, modified substantially upon formation of the dimer.

The H-bond distances between Iso and the nearby amino acids in DAOB are shown in

Table 3. In the DAOB monomer, IsoN3H forms H-bonds with Leu51, IsoN5 with Ala49,

IsoO4 with Leu51, and IsoO2 with Gly315 and Thr317 (see Chart 1 for the atomic nota-

tions). In the dimer, Iso forms H-bonds with Leu51, Asp 49, and Thr317 in Sub A and only

with Leu51 and Ala49 in Sub B. The H-bonds of IsoO4 with Leu51 and Gly50 dissociate in

the dimer, and in addition the H-bond of IsoO2 with Thr317 dissociates in Sub B as does

the H-bond of BzO1 (one of two carboxylate O atoms in Bz) with Tyr228OH. Thus,

H-bond structures between Iso or Bz and the nearby amino acids are greatly modified upon

dimer formation.

Figure 6 shows comparison of distributions of ln Rate from aromatic amino acids and Bz

to Iso* among DAOB monomer and Sub A and Sub B in DAOB dimer [55, 56]. The

distribution of Bz in the DAOB monomer shifts to smaller values compared to those of

DAOB dimer.

9. Nonequivalent structure between the two subunits in the DAOB dimer

in solution

The MDS structures of DAOB dimer and monomer are shown in Figure 7 [56]. The local

structures near Iso display quietly different between the two subunits. The H-bond pairs and

Figure 6. Comparison of the distribution of ln Rate between DAOB dimer and monomer. (A) Sub A and (B) Sub B in the

dimer. It was identified that the observed fluorescence lifetime of the dimer, τobs1 = 0.848 ps, is from Sub B and τ
obs

2 = 4.77 ps

is from Sub A. Inserts denote six fastest ET donors both in Sub A and Sub B. The distribution in the monomer is also

shown in (C) Monomer. The data are taken from [56]. (Reproduced by permission of The Royal Society of Chemistry).
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distances in DAOB also differ between them (see Table 3), where the H-bonds between IsoO2

and Thr317 and between BzO1 and Tyr228 in Sub A dissociate in Sub B.

Figure 8 shows ultrafast fluorescence dynamics of DAOB dimer [23]. It is evident that the

dimer displayed two lifetime components at any wavelengths monitored. Table 7 lists the

decay parameters at several wavelengths. The mean lifetimes are listed in Table 6, 0.848

and 4.77 ps, of which fluorescence is from Sub B and Sub A, respectively [56]. The three

main ET donors in the DAOB dimer are Bz, Tyr228, and Tyr55 in Sub A and Bz, Tyr228,

and Tyr314 in Sub B, while the three fastest are Bz, Tyr228, and Tyr224 donor in the DAOB

monomer. The ET rates and NetES in the DAOB dimer and monomer are listed in Table 5.

The ET rate from Bz is 7.50 � 10�2 ps�1 in Sub A and 8.92 � 10�1 ps�1 in Sub B of the

DAOB dimer. The ET rates from Tyr228 and Tyr55 are also quite different between Sub A

and Sub B in the DAOB dimer. Thus, the NetES values are not equivalent in the main

donors between Sub A and Sub B.

Figure 7. Structure of DAOB dimer at FAD binding site. (A) Sub A, (B) Sub B show subunits A and B in DAOB dimer.

(C) Superimposed shows superimposition of Sub A and Sub B. The potential ET donors, Bz, Tyr224, Tyr228, Tyr314,

Tyr55, Tyr279, and Trp185, are shown in addition to FAD. In bottom panel FAD and the aromatic amino acids are

indicated in green for Sub A, and in magenta for Sub B. MDS calculation was performed at 20 �C. The data are taken

from [56]. (Reproduced by permission of the Royal Society of Chemistry).
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Figure 8. Fluorescence dynamics of DAOB dimer observed at various emission wavelengths. The instrumental response

(fwhm ~210 fs) is also indicated with dotted line at the bottom. The decay parameters are listed in Table 6. (Reprinted

with permission from [23]. Copyright (2000) American Chemical Society).

Wavelength (nm) a1 a2 τ1 (fs) τ2 (ps) χ
2

480 0.815 0.185 300 1.90 0.74

485 0.710 0.290 420 4.23 0.62

490 0.600 0.400 506 4.46 0.64

510 0.220 0.780 942 4.47 0.10

530 0.337 0.663 1486 4.95 0.04

550 0.360 0.640 1460 5.00 0.05

580 0.260 0.740 940 4.52 0.06

600 0.250 0.750 877 4.40 0.17

630 0.486 0.514 840 6.46 0.35

640 0.470 0.530 713 7.34 1.05

The fluorescence decay functions are expressed by F(t) = α1 exp(�t/τ1) + α2 exp(�t/τ2), where τ1 and τ2 are lifetimes of the

fluorescent components 1 and 2, respectively, and α1 and α2 are their respective fractions. The chi-square (χ2) value

between the observed and calculated intensities with the two exponential decay functions is shown. The lifetimes are

emission wavelength dependent. (Reprinted with permission from [23]. Copyright (2000) American Chemical Society).

Table 7. Fluorescence decay parameters of the DAOB dimer.
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10. Comparison between DAAO and DAOB

The Sub A and Sub B structures of DAOB are almost equivalent in crystal, at least near the

FAD binding sites [10]. However, the superimposed MDS-derived Sub A and Sub B structures

in solution revealed that the structures near the Iso binding sites are not equivalent [56].

Further, the structures are quite different between the crystal Sub A and MDS-derived Sub A

and between the crystal Sub B and MDS-derived Sub B. This may be ascribed that, in the

crystal structure, the protein molecules are under the crystal field in the cell units, and so that

not many water molecules, while in solution the protein can be relaxed in freely mobile water

molecules.

It is evident that the structures near Iso in DAAO are markedly modified upon complex

formation with Bz. Absorption spectrum of DAAO is much modified upon binding of Bz.

The peak wavelength of the absorption band at around 450 nm of DAAO [39] shifts toward

longer wavelength by 13 nm in the complex with vibrational structure [23]. The fluorescence

lifetime of the DAOB monomer is 60 ps [45], while ca. 130 [44] or 200 ps [46] in DAAO

monomer. The lifetimes of the DAOB dimer stated above [23] are much shorter compared to

those of DAAO dimer and DAOB monomer. The remarkably shorter lifetimes in DAOB dimer

are mainly ascribed to the ET from Bz to Iso*. To compare the conformation of the DAAO and

DAOB using the Rc values of the aromatic amino acids other than Bz, the Rc values in the

DAAO dimer at 20�C are taken as the average of those at 10 and 30�C. The Rc values of Tyr224

in the DAAO dimer, 0.82 nm in Sub A, and 0.76 nm in Sub B (Table 2) are much smaller than in

Sub A (1.32 nm) and Sub B (1.04 nm) in the DAOB dimer. The values of Rc of Tyr228 in the

DAAO dimer (0.84 nm in Sub A and 0.82 nm in Sub B) are smaller than in the DAOB dimer

(0.96 nm in Sub A and 0.99 nm in Sub B), while those for Tyr55 in the DAAO dimer (1.27 nm in

Sub A and 1.03 nm in Sub B) are larger than in Sub A (0.95 nm) but broadly similar to that in

Sub B (1.05 nm) in the DAOB dimer. Thus, the Rc values are greatly modified upon the binding

of Bz.

Root of mean square fluctuation (RMSF) is considered to be a useful index for protein

fluctuation. Figure 9 shows RMSF values against residue numbers in all four species. The

mean RMSF values over all amino acids and FAD are the smallest in the DAOB dimer

(0.191 and 0.171 in Sub A and Sub B, respectively) among the four proteins, the DAOB

monomer (0.522) and DAAO (0.347, 0.344, and 0.701 in the dimer Sub A, Sub B, and the

monomer, respectively). It is well known that the binding of Bz to DAAO greatly stabi-

lizes the protein, and indeed this trait is used in the purification procedure of DAAO [78].

It is also recognized that the DAAO monomer is the most unstable among the DAAO

and DAOB species, and so the mean RMSF may be related to protein stability in general.

In fact the dissociation constant of FAD is the least in DAOB dimer and the greatest in

DAAO monomer [42, 43, 45]. Denaturation of DAAO easily takes place after FAD dissoci-

ation.

The static dielectric constants (εDA

0 ) between Iso and ET donors within 1 nm from Iso are

compared in both DAAO and DAOB [53–56], where the dielectric constants are larger

(5.7–5.9) in the DAAO isomers than in the DAOB isomers (2.45–2.64), as shown in Table 4.
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The polarity near Iso is considered to be higher when the value of εDA

0 is higher. The radial

distribution functions (RDFs) of water molecules and numbers of water molecules near Iso

are reported in DAAO dimer [53] and in DAOB [56]. The RDFs of DAAOs are shown in

Figure 10. At 10�C approximately 5.5 and 16 molecules are predicted to exist near Iso in

Sub A and Sub B, respectively, while at 30�C this switched to 12 and 6 water molecules in

Sub A and Sub B, respectively. The number of water molecules could also relate to

polarity around Iso. The RDF in DAOB is shown in Figure 11, where in the DAOB dimers

are few if any, and five water molecules existed near Iso in Sub A and Sub B, respectively.

No water molecules are predicted to exist near Iso in the DAOB monomer. Thus, the

number of water molecules is much greater in the DAAO dimer than that in DAOB dimer

and the monomer, which is in accordance with the ε
DA

0 results. Stokes shift of the fluores-

cence spectra in flavoproteins is related to the polarity around Iso. The fluorescence

spectra of Iso display at 523 nm of peak wavelength in the DAOB dimer [23] and at 530

nm in DAAO [39]. The ε
DA

0 values obtained by ET analyses and the RDF of water

molecules obtained by MDS are both in accordance with the behavior of the fluorescence

spectra.

Figure 9. Comparison of root of mean square fluctuations among DAAO dimer, DAAO monomer, DAOB dimer, and

DAOBmonomer. Root of mean square fluctuations (RMSFs) were obtained by AMBER 10. Holo M, Holo A, and Holo B in

the insert denote the DAAO monomer, Sub A, and Sub B of the DAAO dimer, respectively. DAOB M, DAOB A, and

DAOB B denote the DAOB monomer, Sub A, and Sub B of the DAOB dimer, respectively. RMSFs of DAAO monomer

were taken from [54], those for DAAO dimer from [53] and those of DAOB monomer from [55], and DAOB dimer

from [56]. (Reproduced by permission of the Royal Society of Chemistry).
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11. Conclusions

MDS is a useful tool to study the structures of DAAO and DAOB in solution, while their

experimental fluorescence lifetimes are also a useful index to monitor their structural changes,

because the fluorescence lifetimes in flavoproteins are determined by the rates of ET from the

aromatic amino acids to Iso*. Thus, combining the MDS structures and the experimental

fluorescence lifetimes by ET analysis provides more precise information on the submicroscopic

features of the structures of DAAO and DAOB. It is concluded as follows:

1. The origin of the cooperativity in the FAD binding processes is due to much lower (1/74

fold) dissociation constant of FAD in the DAAO dimer than in the monomer. The structural

Figure 10. (A) Sub A 10 �C, (B) Sub B 10 �C, (C) Sub A 30 �C and (D) Sub B 30 �C show the radial distribution function

derived number of water molecules near hetero atoms in Iso ring in the DAAO dimer. The vertical axes, G(r), denote the

radial distribution function. Inserts indicate mean numbers of water molecules at the distances of first layer from the

hetero atoms in Iso (see Chart 1 for atom notations). The data are taken from [53]. Reproduced by permission of the PCCP

Owner Societies.
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basis for the cooperative binding in DAAO is elucidated by differences in the H-bond

structures, the Rc, and the NetES values between the DAAO dimer and the monomer.

2. The temperature-induced transition in the DAAO monomer is ascribed to the differences

in the SFEG and NetES between the two temperatures. The change in the SFEG with

temperature may be brought about by the change in H-bond structures.

3. The two subunits of the DAAO dimer are not equivalent in solution, as revealed by MDS

and ET analyses.

4. The structures of DAOB dimer are almost equivalent for the two subunits in the crystal

but are nonequivalent in solution as revealed by the experimental fluorescence lifetimes,

MDS structures, and ET analyses.

5. The mean RMSF values over all residues are the smallest in the DAOB dimer and the

largest in the DAAO monomer. It is well recognized that the binding of Bz to DAAO

greatly stabilizes the protein and the DAAO monomer is the most unstable among the

DAAO and DAOB isomers. The mean RMSF may be related to protein stability in general.

6. The ε
DA

0 values in the DAAO isomers (5.7–5.9) are much larger than those in the DAOB

isomers (2.45–2.64), which are elucidated by the number of water molecules near Iso, as

derived from the RDF analysis. Water molecules in DAAO are excluded upon the binding

of competitive inhibitor of Bz.

Figure 11. Radial distribution function of water molecules near the heteroatoms of Iso in DAOB. Vertical axes, G(r),

denote the radial distribution functions. Red, blue, and black numbers showed the mean number of water molecules in

Sub A and Sub B of DAOB dimer, and DAOB monomer is indicated in red, blue, and black, respectively. The data for the

DAOB dimer are taken from [56] and for DAOB monomer from [55]. (Reproduced by permission of The Royal Society of

Chemistry).
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7. The Stokes shift of the fluorescence spectra is related to the polarity around Iso, with a

change in the emission peak from 524 nm in the DAOB dimer to 530 nm in the DAAO

dimer. The ε
DA

0 values obtained by ET analysis and number of water molecules near Iso

obtained by RDF analyses are both in accordance with the observed Stokes shift.
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