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Abstract

Multi‐objective hyper‐heuristics is a search method or learning mechanism that oper‐
ates over a fixed set of low‐level heuristics to solve multi‐objective optimization prob‐
lems by controlling and combining the strengths of those heuristics. Although numerous 
papers on hyper‐heuristics have been published and several studies are still underway, 
most research has focused on single‐objective optimization. Work on hyper‐heuristics for 
multi‐objective optimization remains limited. This chapter draws attention to this area 
of research to help researchers and PhD students understand and reuse these methods. 
It also provides the basic concepts of multi‐objective optimization and hyper‐heuristics 
to facilitate a better understanding of the related research areas, in addition to exploring 
hyper‐heuristic methodologies that address multi‐objective optimization. Some design 
issues related to the development of hyper‐heuristic framework for multi‐objective opti‐
mization are discussed. The chapter concludes with a case study of multi‐objective selec‐
tion hyper‐heuristics and its application on a real‐world problem.

Keywords: hyper‐heuristics, multi‐objective optimization, meta‐heuristics, evolutionary 
algorithms, computational search problems

1. Introduction

Many real‐world problems are complex. Owing to the (often) NP‐hard nature of such 
problems, researchers and practitioners frequently resort to problem‐tailored heuristics 
in order to obtain a reasonable solution within a reasonable amount of time. Hyper‐heu‐

ristics are methodologies that operate on a search space of heuristics rather than directly 
searching the solution space for solving hard computational problems. One of the main 
aims of hyper‐heuristics is to raise the level of generality of search methodologies and to 
automatically adapt the algorithm by combining the strength of each heuristic and making 
up for the weaknesses of others. References to multi‐objective hyper‐heuristics are scarce 
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as most research in this area has been limited to single‐objective optimization. The pur‐

pose of this chapter is to provide an introduction to hyper‐heuristic methodologies that are 
designed for multi‐objective optimization (HHMOs). The chapter might help researchers 
and PhD students interested in this research area to understand and use these methods. 
Hyper‐ heuristics for multi‐objective optimization is a relatively new area of research in 
operational research (OR) and evolutionary computation [1, 2]. Few studies have dealt with 
hyper‐heuristics for multi‐objective problems. In order to offer a better understanding of 
the subject, the basic concepts of multi‐objective optimization and hyper‐heuristics are pro‐

vided in Section 2. This chapter also provides a brief survey of hyper‐heuristic methodolo‐

gies that address multi‐objective optimization in Section 3. Some design issues related to the 
development of a hyper‐heuristic framework for multi‐objective optimization are discussed 
in Section 4. Additionally, a case study of multi‐objective selection hyper‐heuristics and its 
application on a real‐world problem is presented in Section 5. Finally, promising research 
areas for future application are provided in Section 6.

2. The basic concepts and underlying issues

2.1. Multi‐objective optimization

Multi‐objective problems (MOPs): MOPs comprise several objectives (two or more), which 
need to be minimized or maximized depending on the problem. A general definition of an 
MOP [3] is

An MOP minimizes  F  (  x )    =   (   f  
1
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k
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Multi‐objective optimization techniques are divided into three classes [3, 4]:

• A priori approach (decision making and then a search):
In this class, the objective preferences or weights are set by the decision maker prior 
to the search process. An example of this is aggregation‐based approaches such as the 
weighted sum approach.

• A posteriori approach (a search and then decision making):
The search is conducted to find solutions for the objective functions. Following this, a 
 decision process selects the most appropriate solutions (often involving a trade‐off). Multi‐
objective evolutionary optimization (MOEA) techniques, whether non‐Pareto‐based  
or Pareto‐based, are examples of this class.

• Interactive or progressive approach (search and decision making simultaneously):
In this class, the preferences of the decision maker(s) are made and adjusted during 
the search process.
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Pareto dominance: The idea behind the dominance concept is to generate a preference between 
MOP solutions since there is no information regarding objective preference provided by the 
decision maker. This preference is used to compare the dominance between any two solutions 
[5]. A more formal definition of Pareto dominance (for minimization case) is as follows [4]:

A vector  u =   (   u  
1
  , … ,  u  

k
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1
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All non‐dominated solutions are also known as the Pareto optimal sets. The corresponding 
Pareto optimal set, with respect to the objective space, is known as the Pareto optimal front. 
The quality of the obtained Pareto optimal set can be determined in Refs. [6, 7]: the extent of the 
Pareto optimal set and the distance and the distribution of the Pareto optimal front.

2.2. Hyper‐heuristics

The main aim of the hyper‐heuristic methodology is raising the level of generality of search 
techniques by producing general search algorithms that are applicable for solving a wide 
range of the problems in different domains [2, 8, 9]. In a hyper‐heuristic approach, differ‐

ent heuristics (or heuristic components) can be selected, generated, or combined to solve a 
given optimization problem in an efficient way. Since each heuristic has its own strengths and 
weaknesses, one of the aims of hyper‐heuristics is to automatically inform the algorithm by 
combining the strength of each heuristic and making up for the weaknesses of others. This 
process requires the incorporation of a learning mechanism into the algorithm to adaptively 
direct the search at each decision point for a particular state of the problem or the stage 
of search. It is obvious that the concept of hyper‐heuristics has strong ties to operational 
research (OR) in terms of finding optimal or near‐optimal solutions to computational search 
problems. It is also firmly linked to artificial intelligence (AI) in terms of machine‐learning 
methodologies [8].

2.2.1. Generic hyper‐heuristic framework

In their simplest form, hyper‐heuristics is a search methodology that encompasses a high‐
level strategy (which could be a meta‐heuristic) that controls the search over a set of heuris‐

tics (low‐level heuristics) rather than controlling a search over a direct representation of the 
solutions. Usually, in a hyper‐heuristic framework, there is a clear separation between high‐
level strategy and the set of low‐level heuristics [10]. The purpose of domain barrier is to give 
the hyper‐heuristics a higher level of abstraction. This also increases the level of generality of 
hyper‐heuristics by enabling its application to a new problem without the need for a frame‐

work change. Only information relevant to the problem domain is provided from low level to 
high level, including cost/fitness measured by an evaluation function, indicating the quality 
of a solution. The high‐level strategy can be a (meta‐) heuristic or a learning mechanism. The 
task of the high‐level strategy is to guide the search intelligently and adapt according to the 
success/failure of the low‐level heuristics or combinations of heuristic components during 
the search process.
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2.2.2. Hyper‐heuristics classification

Generally, there are two recognized methodologies of hyper‐heuristics: selection and generation 

hyper‐heuristics. For both hyper‐heuristic methodologies, there are two types of heuristics: (i) 
constructive heuristics, which process a partial solution(s) and build a complete solution(s) and 
(ii) perturbative heuristics, which operate on complete solution(s).

In the context of hyper‐heuristics for multi‐objective optimization, we could classify them into 
three categories:

• Multi‐objective selection hyper‐heuristic manages a number of heuristics during an itera‐

tive process for a given time. At each iteration, one of best heuristics is chosen at a decision 
point to operate and run. This type comprises two main stages: heuristic selection and move‐

acceptance strategy.

• Multi‐objective combination/hybridization hyper‐heuristic combines a number of heu‐

ristics or (components of heuristics) that operate simultaneously and adaptively to create 
new solutions.

• Multi‐objective generation hyper‐heuristic: To the best of the authors’ knowledge, there 
are no studies addressing multi‐objective generation hyper‐heuristic in the literature.

3. Brief survey of hyper‐heuristics for multi‐objective optimization

The hyper‐heuristics for multi‐objective optimization problems is a new area of research in 
evolutionary computation and operational research [2, 8]. To date, few studies have been 
identified that deal with hyper‐heuristics for multi‐objective problems (see Table 1).

Regarding multi‐objective selection hyper‐heuristics, a multi‐objective hyper‐heuristic tabu 
search (TS) based (TSRoulette Wheel) was presented in Ref. [11]. In this approach, an appro‐

priate heuristic is selected at each iteration using tabu search as a high‐level search strategy. 
The experiments showed results with acceptable solution when applied in space allocation 
and timetabling problems. In Ref. [12], an online selection hyper‐heuristic, Markov‐chain‐
based hyper‐heuristic (MCHH), is investigated. The Markov chain guides the selection of 
heuristics and applies online reinforcement learning to adapt transition weights between 
heuristics. In MCHH, hybrid meta‐heuristics and evolution strategies were incorporated and 
applied to the DTLZ test problems [13] and compared to a (1+1) evolution strategy meta‐
heuristic, a random hyper‐heuristic, and TSRoulette Wheel [11]. The comparison shows the 
efficacy of the proposed approach in terms of Pareto convergence and learning ability to select 
good heuristic combinations. Further work is needed in terms of diversity‐preserving mecha‐

nisms. The MCHH was applied to the Walking Fish Group (WFG) test problems [14], and 
although the results from the performed tests show the ability of the approach, future work 
needs to be made to improve the search strategies [12]. MCHH has been applied to real‐
world water distribution networks and it produced competitive results [15]. A multi‐objective 
hyper‐heuristic optimization scheme for engineering system designs is presented in Ref. [16]. 
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Simulated annealing (SA) [17], genetic algorithm, and particle swarm optimization [18] are 

used as low‐level heuristics. A multi‐ indicator hyper‐heuristics for multi‐objective optimiza‐

tion is proposed in Ref. [19]. The approach based on multiple rank of indicators is taken from 
NSGAII [20], SPEA2 [22], and IBEA [21]. In Ref. [23], a multi‐objective hyper‐heuristic genetic 
algorithm (MHypGA) for multi‐objective software module clustering problem is presented. 
In MHypGA, different strategies of selection, crossover, and mutation operations of genetic 
algorithms are incorporated as low‐level heuristics. In Refs. [24–26], online‐learning multi‐
objective hyper‐heuristics are presented. These multi‐objective hyper‐heuristics are based on 
a choice function. The multi‐objective choice‐function‐based hyper‐heuristics are combined 
with different move‐acceptance strategies including all‐moves (AMs) and the great deluge 
algorithm (GDA) [27] and late acceptance (LA) [28]. The multi‐objective hyper‐heuristic con‐

trols and combines the strengths of three well‐known multi‐objective evolutionary algorithms 
(NSGAII [20], SPEA2 [22], and MOGA [30]). The performance of the proposed multi‐objective 

Component name Application domain/test problems Reference(s)

Tabu search Space allocation, timetabling [8]

Traveling salesman problems [35]

Markov chain, evolution strategy Real‐world water distribution networks 
design/DTLZ, WFG

[12]

NSGAII Irregular 2D cutting stock [37]

Strip packing and cutting stock [39]

NSGAII, quasi‐Newton algorithm Stacked neural network [40]

Number of operations from NSGAII, SPEA2, 
and IBEA

A number of continuous multi‐objective test 
problems

[19]

Number of selection, crossover, and mutation 
operations of evolutionary algorithms

Software module clustering [23]

Hypervolume Dynamic‐mapped island‐based model/WFG [36]

Particle swarm optimization, adaptive metropolis 
algorithm, differential evolution

Water resource problems/a number of 
continuous multi‐objective test problems

[41]

Memory strategy, genetic and differential operators Dynamic optimization problems/a number of 
continuous multi‐objective test problems

[46]

Genetic algorithm, simulated annealing, particle 
swarm optimization

Engineering system design problems/a 
number of classical multi‐objective test 
problems

[16]

Simulated annealing Shelf‐space allocation [34]

NSGAII, SPEA2,MOGA, choice function, great 
deluge algorithm, and late acceptance

WFG/the vehicle crashworthiness design 
problem

[24–26]

NSGAII, SPEA2, IBEA, choice function, great 
deluge algorithm

WFG/wind farm layout optimization [32]

Markov model DTLZ [33]

Table 1. Heuristic components and application domains of hyper‐heuristics for multi‐objective optimization.
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choice‐function‐based hyper‐heuristics is evaluated on the Walking Fish Group (WFG) test 
suite [14] and is applied to the vehicle crashworthiness design problem [31]. The results of 
both benchmark test problems demonstrate the capability and potential of the multi‐objec‐

tive hyper‐heuristic approaches in solving continuous multi‐objective optimization problems. 
More details about these approaches are provided as a study case in Section 5. In Ref. [32], 
a multi‐objective selection hyper‐heuristics for a multi‐objective wind farm layout optimiza‐

tion is proposed. The experiential results show that the proposed approach is successfully 
applied to this optimization problem. In Ref. [33], a multi‐objective selection sequence‐
based hyper‐heuristic (MOSSHH) is proposed. The MOSSHH algorithm employs a hidden 
Markov model based on a sequence of heuristics that is determined by transition probabilities 
on ɛ‐dominance. The proposed approach has been applied to DTLZ test problems [13] and 

results showed its capability to solve it through the learning process. A multiple neighbor‐

hood hyper‐heuristic for two‐dimensional (2D) shelf‐space allocation problem is proposed 
in Ref. [34]. The proposed hyper‐heuristic is based on a simulated annealing algorithm. 
A two‐stage multi‐objective hyper‐heuristic approach is presented in Ref. [35]. The first phase 
targets in producing an efficient Pareto front, and the second phase focuses on solving a given 
problem in a flexible way so as to drive a subset of the population to the desired Pareto front. 
The approach was assessed on the multi‐objective‐traveling salesman problems using 11 low‐
level heuristics. Comparison with other methods from the scientific literature revealed that 
the proposed approach produces high‐quality results. Nevertheless, upcoming efforts are 
still necessary in advancing the approach. In Ref. [36], a hypervolume‐based hyper‐heuristic 
for a dynamic‐mapped multi‐objective island‐based model is proposed. This method shows 
its superiority when compared to the contribution‐based hyper‐heuristic and other standard 
parallel models over the WFG test problems [14]. A new hyper‐heuristic based on the multi‐
objective evolutionary algorithm NSGAII [20] is proposed in Ref. [37]. The main idea of this 
method involves the production of the final Pareto‐optimal set, through a learning process 
that evolves combinations of condition‐action rules based on NSGAII. The proposed method 
was tested on many instances of irregular 2D‐cutting stock benchmark problems and pro‐

duced promising results. A hyper‐heuristic‐based codification is proposed in Refs. [38, 39], 
for solving strip packing and cutting stock problems in order to maximize the total profit and 
minimize the total number of cuts. The experimental results show that outcomes of the pro‐

posed hyper‐heuristic outperform single heuristics. In Ref. [40], a multi‐objective hyper‐heu‐

ristic for the design and optimization of a stacked neural network is proposed. The proposed 
approach is based on NSGAII [20] combined with a local search algorithm (Quasi‐Newton 
algorithm).

Regarding multi‐objective hybridization hyper‐heuristic, an adaptive multi‐method (multi‐
point) search called AMALGAM is proposed in Ref. [41]. It employs multiple search algo‐

rithms, NSGAII [20], PSO [18], AMS [42], and DE [43], simultaneously using the concepts 
of multi‐method search and adaptive offspring creation. AMALGAM has been applied to a 
number of continuous multi‐objective test problems, and it has been shown to be superior to 
other methods. It has also been applied to solve a number of water resource problems and has 
yielded very good solutions [44, 45]. A multi‐strategy ensemble, multi‐objective evolutionary 
algorithm called MS‐MOEA for dynamic optimization, is proposed in Ref. [46]. The approach 
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combines differential operators and different strategies, including strategy and genetic, 
to adoptively creating offspring and increase the convergence speed. The results show that 
 MS‐MOEA obtains solution with good quality.

It is worth mentioning that multi‐objective hybridization hyper‐heuristics are similar to 
multi‐objective selection hyper‐heuristics in terms of the incorporation of different algo‐

rithms. However, they are different in their concepts. Multi‐objective selection hyper‐heuris‐

tic is based on two successive stages: a selection mechanism and an acceptance move strategy. 
By contrast, multi‐objective hybridization hyper‐heuristics is based on an adaptive creation 
 offspring strategy. In multi‐objective selection hyper‐heuristics, a sequence of heuristics/
meta‐heuristics is executed during the search, that is, one heuristic/meta‐heuristic is selected 
and applied at each stage (iteration/decision point) of the search. The high‐level strategy in 
hyper‐heuristics evaluates the performance of a set of heuristics/meta‐heuristics in order to 
improve the population of solutions. By contrast, in multi‐objective hybridization hyper‐heu‐

ristics, multiple heuristic/meta‐heuristics run concurrently. Each heuristic/meta‐heuristic pro‐

duces a different population of offspring, and then, all produced offspring are evaluated to 
evolve a new population of offspring by an adaptive creation offspring strategy.

4. Multi‐objective hyper‐heuristics design issues

The idea of hybridizing a number of algorithms (heuristics) into a hyper‐heuristic framework 
is straightforward and meaningful. However, many design issues related to the development 
of hyper‐heuristics for multi‐objective optimization require more attention when designing 
such a framework to be applicable and effective.

The main components of the hyper‐heuristic framework are low‐level heuristics, selection 
method, learning mechanism, and move‐acceptance method. The choosing of these compo‐

nents is critical. Each component in the hyper‐heuristic framework plays a significant role in 
improving the quality of both the search and the eventual solution. The components of the 
hyper‐heuristic in the context of multi‐objective optimization are discussed as follows.

4.1. Low‐level heuristics

The choice of appropriate low‐level heuristics is not an easy task. Many questions arise here, 
what heuristics (algorithms) are suitable for dealing with multi‐objective optimization prob‐

lems? Are priori approaches or a posteriori approaches more suitable? Are non‐Pareto‐based 
or Pareto‐based approaches more applicable? The author agrees with many researchers [30, 
38, 47–51] that evolutionary algorithms and population‐based methods such as decomposi‐

tion‐based approaches MOEA/Ds (e.g., [52, 53]) and indicator‐based approaches (e.g., [54, 55] 

are more suitable in dealing with multi‐objective optimization problems because of their 
population‐based nature, which means that they can find Pareto optimal sets (trade‐off solu‐

tions) in a single run, thus allowing a decision maker to select a suitable compromise solution 
(with respect to the space of the solutions). In the context of multi‐objective hyper‐heuristics, 
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a  decision maker here could be a selection method that decides which is the best low‐level 
heuristic to select at each decision point (with respect to the space of the heuristics).

4.2. Selection methods

As a selection hyper‐heuristic relies on an iterative process, the main questions arising here 
are what is an effective way to choose an appropriate heuristic at each decision point, and 
how to choose this heuristic, that is, which criteria can be considered when choosing a heu‐
ristic? In single‐objective cases, this criterion is easy to determine by measuring the quality of 
the solution, such as the objective/cost value and time. However, this is more complex when 
tackling a multi‐objective problem. The quality of the solution is not easy to assess. There are 
many different criteria that should be considered, such as the number of non‐dominated indi‐
viduals and the distance between the non‐dominated front and the POF. To make a simple 
framework, a higher level of abstraction of the hyper‐heuristics should be considered when 
designing such a framework. It is not necessary to provide any problem‐specific information, 
such as the number of objectives or the nature of the solution space to the high‐level strategy. 
More attention should be given to the performance of the low‐level heuristics. This will boost 
the intensification element. Therefore, a heuristic with the best performance will be chosen 
more frequently to exploit the search area. The aim is to achieve a kind of balance between 
the intensification and diversification when choosing a heuristic. Selection methods based 
on randomization support only the diversification by exploring unvisited areas of the search 
space. Reinforcement learning (RL) [56] uses support intensification as a selection method by 
rewarding and punishing each heuristic based on its performance during the search using a 
scoring mechanism. An example of good selection method is the choice function, which could 
provide a balance between intensification and diversification.

4.3. Learning and feedback mechanism

Not all hyper‐heuristic approaches incorporate a learning mechanism. However, a learning 
mechanism is strongly linked to the selection method. An example of this is a random hyper‐
heuristic classified as an offline‐learning approach [1], because the random selection does not 
provide any kind of learning. The learning mechanism guides the selection method to which 
best heuristic should be chosen at each decision point. A best heuristic refers to the heuristic 
that produces solutions with good quality based on some criteria using performance measure‐
ments. It is good to note that the measurement of the quality of the solution for multi‐objective 
problems requires assessing different aspects of the non‐dominated set in the objective space. 
In the scientific literature, many performance metrics have been proposed to measure differ‐
ent aspects of the quality and quantity of the resulting non‐dominated set [4, 29, 57].

4.4. Move‐acceptance method

The selection hyper‐heuristic framework comprises two main stages: selection and move‐
acceptance methods. A move‐acceptance criterion can be deterministic or non‐deterministic. 
A deterministic move‐acceptance criterion produces the same result, given the configuration 
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(e.g., proposed new solution, etc.). Non‐deterministic move‐acceptance criteria may gen‐
erate a different result even when the same solutions are used for the decision at a same 
given time. This could be because the move‐acceptance criterion depends on time or it might 
have a stochastic component while making the accept/reject decision. Examples of determin‐
istic move‐acceptance criteria are all‐moves, only‐improving, and improving & equal. For 
non‐deterministic move‐acceptance criteria, the candidate solution is always accepted if it 
improves the solution quality, while worsening solutions can be accepted based on an accep‐
tance function, including GDA [27], LA [28], Monte Carlo [58], and SA [17]. Selection of the 
move‐acceptance criteria has to be compatible with the selection methods. In the scientific 
literature, many combinations of the selection method and move‐acceptance criterion have 
been successfully applied to single‐objective optimization [59]. It could be worth employing 
them in the context of hyper‐heuristics for multi‐objective optimization.

5. Case study: multi‐objective choice‐function‐based hyper‐heuristics

5.1. The proposed multi‐objective hyper‐heuristics methodologies

This study [26] highlights the lack of scientific study that has been conducted in hyper‐heuris‐
tics and multi‐objective optimization, investigates the design of a hyper‐heuristic framework 
for multi‐objective optimization, and develops hyper‐heuristic approaches for multi‐objec‐
tive optimization (HHMOs) to solve continuous multi‐objective problems. Hyper‐heuristic 
frameworks generally impose a domain barrier that separates the hyper‐heuristic from the 
domain implementation along with low‐level heuristics to provide a higher level of abstrac‐
tion. The domain barrier does not allow any problem‐specific information to be passed to the 
hyper‐heuristic itself during the search process. The multi‐objective choice‐function‐based 
hyper‐heuristic framework is designed in this same modular manner (see Figure 1).

One of the advantages of the multi‐objective choice‐function‐based hyper‐heuristic frame‐
work is its simplicity. It is also highly flexible, and its components are reusable. Moreover, 
it is built on an interface that allows other researchers to write their own multi‐objective 
hyper‐heuristic components easily. Even the low‐level heuristics can be easily changed if 
required. If new and better‐performing components are found in the future, they can be 
incorporated. Based on the multi‐objective selection hyper‐heuristic framework, three online‐
learning‐selection, choice‐function‐based hyper‐heuristics are proposed: HHMO_CF_AM, 
HHMO_CF_GDA, and HHMO_CF_LA [24, 25]. The multi‐objective choice‐function‐based 
hyper‐heuristics control and combine the strengths of three well‐known multi‐objective 
evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are ‐utilized as the low‐level 
heuristics. The choice‐function‐selection heuristic acts as a high‐level strategy that adap‐
tively ranks the performance of those low‐level heuristics according to feedback received 
during the search process, determining which one to call at each decision point. Four perfor‐
mance measurements (algorithm effort (AE), ratio of non‐dominated individuals (RNI) [5], 
size of space covered (SSC) [60], and uniform distribution of a non‐dominated population 
(UD) [61]) are integrated into a ranking scheme that acts as a feedback‐learning mechanism 
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to provide knowledge of the problem domain to the high‐level strategy. The multi‐objec‐

tive choice‐function‐based hyper‐heuristic is combined with different move‐acceptance 
strategies, including all‐moves (AM) as a deterministic move acceptance and GDA [27] and 

LA [28] as a non‐deterministic move acceptance. GDA and LA require a change in the value 
of a single objective at each step, and hence a well‐known hypervolume metric, referred to 
as D metric, is proposed for their applicability to the multi‐objective optimization problems. 
The D metric is integrated into the non‐deterministic move‐acceptance criterion in order to 
convert the multi‐objective optimization to the single‐objective optimization without having 
to define value weights for the various objectives. For more details about the HHMOs algo‐

rithm, see Refs. [24, 25].

5.2. Problem description

The multi‐objective vehicle crashworthiness design problem has only five decision variables 
and no constraints [31]. The output of the problem provides a wider choice for engineers to 
make their final design decision based on the Pareto solution space. The decision variables 
of the problem represent the thickness of five reinforced members around the front as they 
could have a significant effect on the crash safety. The mass of the vehicle is tackled as the 

Figure 1. Proposed framework of the hyper‐heuristic choice function based on multi‐objective optimization problems.
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first design objective, while the integration of collision acceleration between   t  
1
    = 0.05 s and  

  t  
2
    = 0.07 s in the full‐frontal crash is considered as the second objective function. The toe‐board 

intrusion in the 40% offset‐frontal crash is tackled as the third objective as it is the most severe 
mechanical injury. The three objectives are formulated as follows:

  Mass = 1640.2823 + 2.3573285  t  
1
   − 2.3220035  t  

2
   + 4.5688768  t  3   + 7.7213633  t  4   + 4.4559504  t  5    (1)

  Ain = 6.5856 + 1.15  t  
1
   –1.0427  t  

2
   + 0.9738  t  3   + 0.8364  t  4   –0.3695  t  

1
    t  4   + 0.0861  t  

1
    t  5    

        + 0.3628  t  
2
    t  4   –0.1106  t  

1
  2  –0.3437  t  3  2  + 0.1764  t  4  2   (2)

  Intrusion = –0.0551 + 0.0181  t  
1
   + 0.1024  t  

2
   + 0.0421  t  3   –0.0073  t  

1
    t  

2
   + 0.024  t  

2
    t  3    

                            –0.0118  t  
2
    t  4   –0.0204  t  3    t  4   –0.008  t  3    t  5   –0.0241  t  

2
  2  + 0.0109  t  4  2   (3)

Thus, the multi‐objective design of vehicle crashworthiness problem in  T  decision variable 

space is formulated as

   

m ∈ F  (  x )    =   [  Mass, Ain, Intrusion ]   

    s . t.1 mm ≤ x ≤ 3 mm   

where x =   (   t  
1
  ,  t  

2
  ,  t  3  ,  t  4  ,  t  5   )     

T

 

    (4)

5.3. Performance evaluation criteria and experimental settings

A set of experiments are conducted over a multi‐objective vehicle crashworthiness design 
problem as a real‐world problem to evaluate the performance of the multi‐objective choice‐
function‐based hyper‐heuristics: HHMO_CF_AM, HHMO_CF_GDA, and HHMO_CF_LA. 
The performance of three multi‐objective hyper‐heuristics is compared to the well‐known 
multi‐objective evolutionary algorithm, NSGAII [20]. Five performance metrics are used to 
measure the quality of the approximation sets from different aspects: (i) RNI [5], (ii) SSC [60], 
(iii) UD [61], (iv) generational distance (GD) [62], and (v) inverted generational distance (IGD) 
[63]. In addition, the t‐test is used as a statistical test for the average performance comparison 
of selection hyper‐heuristics and the results. Thirty independent runs are performed for each 
comparison method using the same parameter settings as those provided in Ref. [31] with 
a population size equal to 30. All multi‐objective hyper‐heuristics methodologies run for a 
total of 75 iterations (stages). In each iteration, a low‐level heuristic is selected and applied to 
execute 50 generations. Thus, all methods are terminated after 3750 generations. Other experi‐
mental settings are provided in Refs. [24, 25].

5.4. Results

The mean performance comparison of AM, GDA, LA, and NSGAII based on the performance 
metrics (RNI, SSC, UD, GD, and IGD) for solving the vehicle crashworthiness problems is 
provided in Tables 2 and 3.
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For each performance metric, the average, minimum, maximum, and standard deviation values are 
computed. For all metrics, a higher value indicates better performance, except in GD and IGD, where 
a lower value indicates better performance. The statistical t‐test results of NSGAII and the three 
multi‐objective choice‐function‐based hyper‐heuristics (AM, GDA, and LA) are given in Table 4.

The distribution of the simulation data of the 30 independent runs for the comparison 
methods with respect to these performance metrics is visualized as box plots, shown in 
Figure 2. The results indicate that all methods perform similar to each other with respect 
to the metric of RNI over. GDA exhibits the best performance in the metrics of SSC, GD, 
and IGD, and it converges better toward the POF than the other methods. GDA also 
exhibits the best performance in the metric of UD and distributes more uniformly than 
other methods.

The 50% attainment surface for each method, from the 30 fronts after 3750 generations, is 
computed and illustrated in Figure 3. GDA appears to generate a good convergence. It can 
be clearly observed that GDA converges to the best POF with a well‐spread Pareto front as 
 compared to the other approaches. By contrast, AM generates the poorest solutions. NSGAII 
and LA have similar convergence. In general, the hyper‐heuristics for real‐world multi‐objec‐

tive problems benefits from the use of a learning heuristic selection method as well as GDA. 
The results demonstrate the effectiveness of our selection hyper‐heuristics particularly when 
combined with great deluge algorithm as a move‐acceptance criterion. HHMO_CF_GDA 

Method GD IGD

AVG MIN MAX STD AVG MIN MAX STD

NSGAII 2.48E‐03 1.46E‐03 4.21E‐03 9.10E‐04 4.156E‐03 1.543E‐03 1.289E‐02 3.859E‐03

AM 2.71E‐03 1.59E‐03 4.06E‐03 7.90E‐04 4.376E‐03 1.738E‐03 1.288E‐02 4.168E‐03

GDA 2.11E‐03 1.10E‐03 4.28E‐03 7.10E‐04 3.552E‐03 1.661E‐03 1.230E‐02 3.075E‐03

LA 3.32E‐03 1.70E‐03 6.76E‐03 1.33E‐03 3.604E‐03 1.525E‐03 1.238E‐02 2.582E‐03

Table 3. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the generational distance 
(GD) and the inverted generational distance (IGD).

Method RNI SSC UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

NSGAII 1.00 1.00 1.00 0.00 7.936E+07 4.168E+07 9.587E+07 1.595E+07 0.592 0.532 0.670 0.045

AM 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050

GDA 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.580E+07 1.954E+07 0.613 0.555 0.692 0.034

LA 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062

Table 2. The performance NSGAII and the selection choice‐function‐based hyper‐heuristics using different move‐
acceptance strategies on the vehicle crashworthiness problems with respect to the metrics: the ratio of non‐dominated 
individuals (RNI), the hypervolume (SSC), and the uniform distribution (UD).
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Methods Metrics

RNI SSC UD GD IGD

NSGAII:AM n/a + ± ± ±

NSGAII:GDA n/a − + ± −

NSGAII:LA n/a + + + −

AM:GDA n/a − − ± −

AM:LA n/a − ± + −

GDA:LA n/a + + + ±

Table 4. The t‐test results of NSGAII and the three multi‐objective choice‐function‐based hyper‐heuristics methodologies 
on the multi‐objective vehicle crashworthiness design problems with respect to the metrics: the ratio of non‐dominated 
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD), the generational distance (GD), and the 
inverted generational distance (IGD).

Figure 2. Box plots of multi‐objective choice‐function‐based hyper‐heuristics methodologies and NSGAII on the multi‐
objective vehicle crashworthiness design problems.
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Figure 3. The 50% attainment surfaces for NSGAII and the three multi‐objective choice‐function‐based hyper‐heuristics 
(AM, GDA, and LA) after 3750 generations on the multi‐objective design of vehicle crashworthiness problem.

turns out to be the best choice for solving this problem. Although other multi‐objective hyper‐
heuristics still produce solutions with acceptable quality in some cases, they could not per‐

form as well as NSGAII. In summary, the results of the real‐world problem demonstrate the 
capability and potential of the multi‐objective hyper‐heuristic approaches in solving continu‐

ous multi‐objective optimization problems.

6. Some promising research area

Multi‐objective hyper‐heuristic offers interesting potential research directions in multi‐objec‐

tive optimization. Some of these promising research areas are recommended as follows:

• Many heuristic selection methods can be adapted from previous research in single‐objective 
optimization and can be used for multi‐objective optimization within multi‐objective selection 
hyper‐heuristic. This process is not a trivial process, requiring elaboration of  existing methods 
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and their usefulness in a multi‐objective setting. Furthermore, other acceptance criteria such 
as simulated annealing (SA) and tabu search (TS) [58] could be employed as a move‐accep‐

tance component within the selection hyper‐heuristic framework for multi‐objective optimi‐
zation. As those criteria involve many parameters, this methodology would require initial 
experiments to tune the parameters for multi‐objective settings, such as defining a cooling 
schedule and an initial temperature for SA and aspiration  criterion and tabu tenure for TS.

• There are many low‐level heuristics choices possible and, therefore, great scope for 
 research in this area. It would be interesting to employ state‐of‐the‐art multi‐objective 

optimizers and other population‐based methods that obtain promising results to act as 
low‐level heuristics within the multi‐objective combination/selection hyper‐heuristic 
framework.

• It would be interesting to test the level of generality of existing multi‐objective hyper‐heu‐

ristic frameworks further on some other problems and domains, including the continuous 
real‐valued constrained, combinatorial, discrete, and dynamic problems.

• Since no studies are found in the scientific literature that address multi‐objective generation 
hyper‐heuristic, it would be interesting to propose a multi‐objective generation hyper‐heu‐

ristic framework. This indicates great scope for research. Many‐generation hyper‐heuristic 
methodologies have been successfully applied to single‐objective optimization; it would 
also be interesting to modify them to deal with multi‐objective optimization.
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