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Abstract

Graph theoretic foundations for a kind of infinite rooted in-trees T ðRÞ ¼ ðV, EÞwith root
R, weighted vertices v ∈ V, and weighted directed edges e∈E⊂V � V are described.
Vertex degrees deg(v) are always finite but the trees contain infinite paths (vi)i ≥ 0. A
concrete group theoretic model of the rooted in-trees T ðRÞ is introduced by representing
vertices by isomorphism classes of finite p-groups G, for a fixed prime p, and directed
edges by epimorphisms π: G ! πG of finite p-groups with characteristic kernels ker(π).
The weight of a vertex G is realized by its nuclear rank n(G) and the weight of a directed
edge π is realized by its step size sðπÞ ¼ logpð#kerðπÞÞ. These invariants are essential for

understanding the phenomenon of multifurcation. Pattern recognition methods are used
for finding finite subgraphs which repeat indefinitely. Several periodicities admit the
reduction of the complete infinite graph to finite patterns. The proof is based on infinite
limit groups and successive group extensions. It is underpinned by several explicit
algorithms. As a final application, it is shown that fork topologies, arising from repeated
multifurcations, provide a convenient description of complex navigation paths through
the trees, which are of the greatest importance for recent progress in determining p-class
field towers of algebraic number fields.

Keywords: rooted directed in-trees, descendant trees, infinite paths, vertex distance,
weighted edges, pattern recognition methods, pattern classification, independent
component analysis, graph dissection, finite p-groups, projective limits, periodicity,
group extensions, nuclear rank, multifurcation, presentations, commutators, central series

1. Introduction

In Section 2, we describe the abstract graph theoretic foundations for a kind of infinite rooted

in-trees T ðRÞ ¼ ðV, EÞ with root R, weighted vertices v∈V , and weighted directed edges

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



e∈E⊂V � V , which are suited perfectly for describing the crucial phenomenon of

multifurcation in Section 2.3. The vertex degrees degðvÞ are always finite, but the trees contain

infinite paths ðviÞi ≥ 0. In Section 3, we introduce a group theoretic model of the rooted in-trees

T ðRÞ. Vertices are represented by isomorphism classes of finite p-groups G, for a fixed prime

number p. Directed edges are represented by epimorphisms π : G ! πG of finite p-groups with

characteristic kernels kerðπÞ. The weight of a vertex G is realized by its nuclear rank nðGÞ, and

the weight of a directed edge π is realized by its step size sðπÞ ¼ logpð#kerðπÞÞ. Since the

structure of our rooted in-trees is rather complex, we use pattern recognitionmethods in Section

3.1 for finding finite subgraphs which repeat indefinitely as branches of coclass subtrees, thus

giving rise to a first periodicity. Additionally, we employ independent component analysis for

obtaining a graph dissection into pruned subtrees, either by Galois action in Section 3.2.1 or

by Artin transfers in Section 3.2.2. A second periodicity of pruned coclass subtrees eventually

admits the reduction of the complete infinite graph T ðRÞ to finite patterns. Evidence of these

newly discovered periodic bifurcations is provided by a mixture of bottom up techniques, using

successive extensions by means of p-covering groups in the p-group generation algorithm and top

down techniques using infinite limits and their finite quotients in Sections 3.4 and 3.5. As a

coronation of this chapter, we show in Sections 3.6 and 4 that fork topologies provide a conve-

nient description of very complex navigation paths through the trees, arising from repeated

multifurcations, which are of the greatest importance for recent progress in determining p-class

field towers Fð∞Þp of algebraic number fields F.

2. Underlying abstract graph theory

Let G ¼ ðV, EÞ be a graph with set of vertices V and set of edges E. We expressly admit infinite

sets V and E, but we assume that the in and out degree of each vertex is finite.

2.1. Directed edges and paths

In this chapter, we shall be concerned with directed graphs (digraphs) whose edges are rather

ordered pairs ðv1, v2Þ∈V � V than only subsets {v1, v2}⊂V with two elements. Such a directed

edge e ¼ ðv1, v2Þ is also denoted by an arrow v1 ! v2 with starting vertex v1 and ending vertex

v2. Thus, we have E⊂V � V. Now, infinitude comes in.

Definition 2.1. (Finite and infinite paths.)

A finite path of length ℓ ≥ 0 in G is a finite sequence ðviÞ0 ≤ i ≤ ℓ of vertices vi ∈V such that

ðvi, viþ1Þ∈E for 0 ≤ i ≤ ℓ � 1. We call v0, respectively, vℓ , the starting vertex, respectively, ending

vertex, of the path. The degenerate case of a single vertex ðv0Þ is called a point path of length

ℓ ¼ 0.

An infinite path in G is an infinite sequence ðviÞi ≥ 0 of vertices vi ∈V such that ðviþ1, viÞ∈E for all

i ≥ 0. In this case, v0 is the ending vertex of the path, and there is no starting vertex.
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2.2. Rooted in-trees with parent operator

Our attention will even be restricted to rooted in-trees G ¼ T ðRÞ, that is, connected digraphs

without cycles such that the root vertex R has out-degree 0, whereas any other vertex v∈V\{R}

has out-degree 1. A vertex with in-degree at least 1 is called capable, whereas a vertex with

in-degree 0 is called a leaf. For a rooted in-tree, we can define the parent operator as follows.

Definition 2.2. Let T ðRÞ ¼ ðV, EÞ be a rooted in-tree. Then, the mapping π : V\{R} ! V,

v↦πv, where ðv,πvÞ∈E is the unique edge with starting vertex v, is called the parent operator

of T ðRÞ. For each vertex v∈V, there exists a unique finite root path from v to the root R,

v ¼ π
0v ! π

1v ! π
2v !…! π

ℓ�1v ! π
ℓv ¼ R,

expressed by iterated applications of the parent operator and with some length ℓ ≥ 0. Each

vertex in the root path of v is called an ancestor of v.

The descendant tree T ðaÞ ¼ ðVðaÞ, EðaÞÞ of a vertex a∈V is the subtree of T ðRÞ ¼ ðV, EÞ

consisting of vertices v with ancestor a, that is v∈VðaÞ :¼ {u∈V j ð∃ j ≥ 0Þ πju ¼ a}, and edges

e∈EðaÞ :¼ E⋂ðVðaÞ � VðaÞÞ.

A vertex u∈V is called an immediate descendant (or child) of a vertex a∈V , if there exists a

directed edge ðu, aÞ∈E. In this case, a ¼ πu is necessarily the parent of u.

We can define a partial order on the vertices u, a∈V of the tree T ðRÞ by putting u ≥ a if u∈ T ðaÞ,

that is, if u is descendant of a and a is ancestor of u. The root R is the minimum.

The root R is always a common ancestor of two vertices u, v∈V. By the fork of u and v, we

understand their biggest common ancestor, denoted by Forkðu, vÞ, which admits a measure.

Definition 2.3. (Vertex distance.) The sum ℓu þ ℓv of the path lengths from two vertices u, v∈V

to their fork is called the distance dðu, vÞ of the vertices.

2.3. Mainlines and multifurcation

We shall also need weight functions with nonnegative integer values for vertices wV : V ! N0,

and with positive integer values for edges wE : E ! N. In particular, the sets of vertices and

edges have disjoint partitions

V ¼ ⋃
�

n ≥ 0 Vn with Vn :¼ fv∈V jwVðvÞ ¼ ng for n ≥ 0;

E ¼ ⋃
�

s ≥ 1 Es with Es :¼ {e∈E jwEðeÞ ¼ s} for s ≥ 1;

ð1Þ

such that V0 is precisely the set of leaves of the tree T ðRÞ. Thus, there arise weighted measures.

Definition 2.4. (Path weight and weighted distance.)
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By the path weight of a finite path ðviÞ0 ≤ i ≤ ℓ with length ℓ ≥ 0 in T ðRÞ such that ðvi, viþ1Þ∈Esi for

0 ≤ i ≤ ℓ � 1, we understand the sum
X

ℓ�1

i¼0
si. The sum wu þ wv of the path weights from two

vertices u, v∈V to their fork is called the weighted distance wðu, vÞ of the vertices.

In Definitions 2.5 and 2.6, some concepts are introduced using the minimal possible weight.

Definition 2.5. (Mainlines and minimal trees.) An infinite path ðviÞi ≥ 0 in T ðRÞ with edges of

weight 1, that is, such that ðviþ1, viÞ∈E1 for all i ≥ 0, is called a mainline in T ðRÞ.

The minimal tree T 1ðaÞ ¼ ðV1ðaÞ, E1ðaÞÞ of a vertex a∈V is the subtree of the descendant tree

T ðaÞ ¼ ðVðaÞ, EðaÞÞ consisting of vertices v, whose root path in T ðaÞ possesses edges e of weight

1 only, that is v∈V1ðaÞ :¼ {u∈VðaÞjð∀ 0 ≤ j < ℓÞ ðπju,πjþ1uÞ∈E1}, and edges e∈E1ðaÞ :¼

EðaÞ⋂ðV1ðaÞ � V1ðaÞÞ.

Definition 2.6. (Branches.) Let ðviÞi ≥ 0 be a mainline in T ðRÞ. For i ≥ 0, the difference set

BðviÞ :¼ T 1ðviÞ\T 1ðviþ1Þ of minimal trees is called the branch with root vi of the minimal tree

T 1ðv0Þ. The branches give rise to a disjoint partition T 1ðv0Þ ¼ ⋃˙

i ≥ 0 BðviÞ.

Finally, we complete our abstract graph theoretic language by considering arbitrary weights.

Definition 2.7. (Multifurcation.)

Let n ≥ 2 be a positive integer. A vertex a∈Vn has an n-fold multifurcation if its in-degree is an

n-fold sum N1 þN2 þ…þNn due to Ns ≥ 1 incoming edges of weight s, for each 1 ≤ s ≤ n. That

is, we define counters Ns of all incoming edges of weight s, and additionally, we have counters

Cs of all incoming edges of weight s with capable starting vertex

Ns :¼ NsðaÞ :¼ #{e∈Esje ¼ ðu, aÞ for some u∈V},

Cs :¼ CsðaÞ :¼ #{e∈Esje ¼ ðu, aÞ for some u∈V with wVðuÞ ≥ 1}:
ð2Þ

We also define an ordering and a notation [1] for immediate descendants of a by writing

a� #s; i for the ith immediate descendant with edge of weight s, where 1 ≤ s ≤ n and 1 ≤ i ≤Ns.

3. Concrete model in p-group theory

Now, we introduce a group theoretic model of the rooted in-trees T ðRÞ ¼ ðV, EÞ in Section 2.

Vertices v∈V are represented by isomorphism classes of finite p-groups G, for a fixed prime

number p. Directed edges e∈E are represented by epimorphisms π : G ! πG of finite p-groups

with characteristic kernels kerðπÞ ¼ γcG, where c :¼ clðGÞ denotes the nilpotency class of G

and ðγiGÞi ≥ 1 is the lower central series of G.

We emphasize that the symbol π is used now intentionally for two distinct mappings, the

abstract parent operator π : V\{R} ! V, v↦πv, in Definition 2.2, and the concrete natural

projection onto the quotient π : G ! πG≃G=γcG, g↦πðgÞ ¼ g � γcG, for each individual ver-

tex G ¼ v∈V\{R}, which should precisely be denoted by π ¼ πG, but we omit the subscript,

since there is no danger of misinterpretation. In both views, πG is the parent of G.
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The weight of a vertex G is realized by its nuclear rank nðGÞ ([2], section 14, eqn. (28), p. 178)

and the weight of a directed edge π : G ! πG is realized by its step size sðπÞ ¼ logpð#γcGÞ ([2],

section 17, eqn. (33), p. 179). These invariants are essential for understanding the phenomenon

of multifurcation in Definition 2.7. In particular, we can hide multifurcation by restricting all

edges π to step size sðπÞ ¼ 1, that is, by considering the minimal tree T 1ðvÞ instead of the entire

descendant tree T ðvÞ of a vertex v∈V. In our concrete p-group theoretic model, all vertices G

of a minimal tree share a common coclass, which is the additive complement ccðGÞ :¼

loðGÞ � clðGÞ of the (nilpotency) class c ¼ clðGÞ with respect to the logarithmic order loðGÞ :¼

logpðordðGÞÞ of G. Generally, the logarithmic order of an immediate descendant G with parent

πG increases by the step size, loðGÞ ¼ loðπGÞ þ sðπÞ, since logpð#πGÞ ¼ logpð#ðG=kerπÞÞ ¼

logpð#GÞ � logpð#kerπÞ. Consequently, the coclass remains fixed in a minimal tree with

sðπÞ ¼ 1, since

ccðGÞ ¼ loðGÞ � clðGÞ ¼ loðπGÞ þ 1� ðclðπGÞ þ 1Þ ¼ loðπGÞ � clðπGÞ ¼ ccðπGÞ:

A minimal tree T 1ðGÞ which contains a unique infinite mainline is called a coclass tree. It is

denoted by T
ðrÞðGÞ :¼ T 1ðGÞ when its root G is of coclass r :¼ ccðGÞ. For further details, see

([2], section 5, p. 164).

In view of the principal goals of this chapter, we must specify our intended situation even more

concretely. We put p :¼ 3, the smallest odd prime number, and we select as the root either

R :¼ 〈243; 6〉 orR :¼ 〈243; 8〉, characterized by its SmallGroup identifier [3]. These aremetabelian

3-groups of order #R¼ 243 ¼ 35, logarithmic order loðRÞ ¼ 5, class c ¼ 3, and coclass r ¼ 2.

3.1. Periodicity of finite patterns

Within the frame of the above-mentioned model with p ¼ 3 for the theory of rooted in-trees as

developed in Section 2, the following finiteness and periodicity statement becomes provable.

The virtual periodicity of depth-pruned branches of coclass trees has been proven rigorously

with analytic methods (using zeta functions and cone integrals) by du Sautoy [4] in 2000, and

with algebraic methods (using cohomology groups) by Eick and Leedham-Green [5] in 2008.

We recall that a coclass tree contains a unique infinite path of edges π with uniform step size

sðπÞ ¼ 1, the so-called mainline. Pattern recognition and pattern classification concern the

branches.

Theorem 3.1. (A finite periodically repeating pattern.)

Among the vertices of any mainline ðviÞi ≥ 0 in T ðRÞ, there exists a periodic root vϱ with ϱ ≥ 0 and a

period length λ ≥ 1 such that the branches

BðviþλÞ≃BðviÞ

are isomorphic finite graphs, for all i ≥ ϱ. Up to a finite preperiodic component, the minimal tree T 1ðv0Þ

consists of periodically repeating copies of the finite pattern ⋃̇
λ�1

i¼0 BðvϱþiÞ.

Modeling Rooted in‐Trees by Finite p‐Groups
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Proof. According to [4, 5], the claims are true for pruned branches with any fixed depth.

However, for p ¼ 3 and under the pruning operation on T ðRÞ described in Section 3.2.2, the

virtual periodicity becomes a strict periodicity, since the depth is bounded uniformly for all

branches. □

Before we visualize a particular instance of Theorem 3.1 in the diagram of Figure 1, we have to

establish techniques for disentangling dense branches of high complexity.

3.2. Graph dissection by independent component analysis

3.2.1. Dissection by Galois action

Figure 1 visualizes a graph dissection of the tree T ðRÞ by independent component analysis.

This technique drastically reduces the complexity of visual representations and avoids over-

laps of dense subgraphs. The left hand scale gives the order of groups whose isomorphism

classes are represented by vertices of the graph. The mainline skeleton (black) connects

branches of non σ-groups (red) in the left subfigure and branches of σ-groups (green) in the

right subfigure. This terminology has its origin in the action of the Galois group GalðF=QÞ on

the abelianization M=M0, when a vertex of T ðRÞ is realized as second 3-class group M :¼

Gal F
ð2Þ
3 =F

� �

of an algebraic number field F. For quadratic fields F, we obtain σ-groups.

Figure 1. Graph dissection into pruned branches connected by the mainline skeleton.
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Definition 3.1. A σ-group G admits an automorphism σ∈AutðGÞ acting as inversion

σðxÞ ¼ x�1 on the commutator quotient G=G0.

The actual graph T ðRÞ consists of the overlay (superposition) of both subfigures in Figure 1.

Infinite mainlines are indicated by arrows. The periodic bifurcations form an infinite path with

edges of alternating step sizes 1 and 2, according to Theorem 3.2. We call it the maintrunk.

With the aid of Figure 1, a particular instance of Theorem 3.1 can be expressed in a more

concrete and ostensive way by taking the tree root as the ending vertex v0 :¼ R of the mainline

ðviÞi ≥ 0, and by using the variable class c ≥ 3 and the fixed coclass r ¼ 2 as parameters describing

all mainline vertices MðrÞ
c :¼ vc�3. The periodic root is M

ð2Þ
5 ¼ v2 with ϱ ¼ 2 and the period

length is λ ¼ 2. The finite periodic pattern consists of the two branches BðMð2Þ
5 Þ ¼

{M
ð2Þ
5 , G

ð2Þ
6;1, G

ð2Þ
6;2} (red) and BðMð2Þ

6 Þ ¼ {M
ð2Þ
6 , G

ð2Þ
7;1, G

ð2Þ
7;2, G

ð2Þ
7;3} (green). The preperiod is irregular

and consists of the two branches BðMð2Þ
3 Þ ¼ {M

ð2Þ
3 , G

ð2Þ
4;1, G

ð2Þ
4;2, T

ð2Þ
5;1, T

ð2Þ
5;2} (red) and BðMð2Þ

4 Þ ¼
{M

ð2Þ
4 , G

ð2Þ
5;1, G

ð2Þ
5;2, G

ð2Þ
5;3} (green). But M

ð2Þ
4 is not coclass-settled, has nuclear rank n ¼ 2 and gives

rise to a bifurcation with immediate descendants S
ð3Þ
5;1, S

ð3Þ
5;2, S

ð3Þ
5;3,M

ð3Þ
5 (green) of step size s ¼ 2.

3.2.2. Dissection by Artin transfers

In Figure 1, we have tacitly used a second technique of graph dissection by independent

component analysis. Figure 2 is restricted to the coclass tree T
ð2ÞðRÞ with exemplary root

R ¼ 〈243; 8〉, which is the leftmost coclass tree in both subfigures of Figure 1. However, now

this coclass tree is drawn completely up to logarithmic order 15, containing both, nonσ-

branches and σ-branches. The tree is embedded in a kind of coordinate system having the

transfer kernel type (TKT) ϰ as its horizontal axis and the first component τð1Þ of the transfer

target type (TTT) τ as its vertical axis ([6], Dfn. 4.2, p. 27). It is convenient to employ a second

graph dissection, according to three fundamental types of transfer kernels

• the vertices with simple types E:8, ϰ ¼ ð1231Þ, and E:9, ϰ ¼ ð2231Þ, which are leaves (left of

the mainline), except those of order 36,

• the vertices with scaffold (or skeleton) type c:21, ϰ ¼ ð0231Þ, which are either infinitely

capable mainline vertices or nonmetabelian leaves (immediately right of the mainline),

• the vertices with complex type G:16, ϰ ¼ ð4231Þ, which are capable at depth 1 and give rise

to a complicated brushwood of various descendants (right of the mainline).

The tacit omission in Figure 1 concerns all vertices with complex type and the leaves with

scaffold type. Our main results in this chapter will shed complete light on all mainline vertices

and the vertices with simple types. Underlined boldface integers in Figure 2 indicate the

minimal discriminants d of (real and imaginary) quadratic fields F ¼ Qð
ffiffiffi

d
p

Þ whose second

3-class group G
ð2Þ
3 F :¼ Gal F

ð2Þ
3 =F

� �

realizes the vertex surrounded by the adjacent oval. Three

leaves of type E:8 are drawn with red color, because they will be referred to in Theorem 4.1 on

3-class towers.
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Figure 2. Coclass tree T ð2Þð〈243; 8〉Þ with simple, scaffold, and complex types.
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3.3. Periodicity of infinite patterns

With the aid of a combination of top down and bottom up techniques, we are now going to

provide evidence of a new kind of periodic bifurcations in pruned descendant trees which contain

a unique infinite path of edges π with strictly alternating step sizes sðπÞ ¼ 1 and sðπÞ ¼ 2, the

so-calledmaintrunk. It is very important that the trees are pruned in the sense explained at the end

of the preceding Section 3.2.2; for otherwise, themaintrunkwill not be unique. In fact, each of our

pruned descendant trees T ðRÞ is a countable disjoint union of pruned coclass trees T
ðrÞ, r ≥ 2,

which are isomorphic as infinite graphs and connected by edges of weight 2, and finite batches

T
ðrÞ
0 , r ≥ 3, of sporadic vertices outside of coclass trees. The top down and bottom up techniques

are implemented simultaneously in two recursive Algorithms 3.1 and 3.2.

The first Algorithm 3.1 recursively constructs the mainline verticesMðrÞ
c , with class c ≥ 2r� 1, of

the coclass tree T ðrÞ
⊂T ðRÞ, for an assigned value r ≥ 2, by means of the bottom up technique. In

each recursion step, the top down technique is used for constructing the class-c quotient LðrÞ
c of

an infinite limit group L
ðrÞ. Finally, the isomorphism MðrÞ

c ≃L
ðrÞ
c is proved.

Theorem 3.2 (An infinite periodically repeating pattern.) Let ur ¼ 30 be an upper bound. An infinite

path is generated recursively, since for each 2 ≤ r < ur, the immediate descendant M
ðrþ1Þ
2rþ1 ¼ M

ðrÞ
2r � #2; 1

of step size 2 of the second mainline vertex M
ðrÞ
2r of the coclass tree T ðrÞðM

ðrÞ
2r�1Þ is root of a new coclass

tree T ðrþ1ÞðM
ðrþ1Þ
2ðrþ1Þ�1Þ. The pruned coclass trees

T
ðrÞðM

ðrÞ
2r�1Þ≃ T

ð2ÞðM
ð2Þ
3 Þ

are isomorphic infinite graphs, for each 2 ≤ r ≤ur. Note that the nuclear rank nðM
ðrÞ
2r Þ ¼ 2.

This is the first main theorem of the present chapter. The proof will be conducted with the aid

of an infinite limit group L�, due to M. F. Newman. Certain quotients of L� give precisely the

mainline verticesMðrÞ
c with r ≥ 2 and c ≥ 2r� 1 as will be shown in Theorem 3.3 and Remark 3.2.

Conjecture 3.1. Theorem 3.2 remains true for any upper bound ur > 30.

3.4. Mainlines of the pruned descendant tree T ðRÞ

Definition 3.2. The complete theory of the mainlines in T ðRÞ is based on the group

L� :¼ 〈 a, t j ðatÞ3 ¼ a3, ½½t, a�, t� ¼ a�3 j〉: ð3Þ

For each r ≥ 2, quotients of L� are defined by

L
ðrÞ
� :¼ L� = 〈 a3

r

〉: ð4Þ

Modeling Rooted in‐Trees by Finite p‐Groups
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For each r ≥ 2, and for each c ≥ 2r� 1, quotients of L
ðrÞ
� are defined by

L
ðrÞ
�,c :¼

L
ðrÞ
� = 〈 ½t,a�3

ℓ

〉 if c ¼ 2ℓ þ 1 odd, ℓ ≥ r� 1;

L
ðrÞ
� = 〈 t3

ℓ

〉 if c ¼ 2ℓ even, ℓ ≥ r:

(

ð5Þ

The following Algorithm 3.1 is based on iterated applications of the p-group generation

algorithm by Newman [7] and O'Brien [8]. It starts with the root R, given by its compact

presentation, and constructs an initial section of the unique infinite maintrunk with strictly

alternating step sizes 1 and 2 in the pruned descendant tree T ðRÞ. In each step, the required

selection of the child with appropriate transfer kernel type (TKT) is achieved with the aid of

our own subroutine IsAdmissible(), which is an elaborate version of ([9], section 4.1, p. 76).

After reaching an assigned coclass r¼ hbþ2, our algorithm navigates along the mainline of the

coclass tree T
ðrÞ
⊂T ðRÞ and tests each vertex for isomorphism to the corresponding quotient

L
ðrÞ
�, c of class c ≤ 2r � 1þvb.

Algorithm 3.1. (Mainline vertices.)

Input: prime p, compact presentation cp of the root, bounds hb,vb, sign s.

Code: uses the subroutine IsAdmissible().

r :¼ 2; // initial coclass

Root :¼ PCGroup(cp);

for i in [1..hb] do // bottom up in double steps along the maintrunk

Des :¼ Descendants(Root,NilpotencyClass(Root)þ1: StepSizes:¼[1]);

for j in [1..#Des] do

if IsAdmissible(Des[j],p,0) then

Root :¼ Des[j];

end if;

end for;

r :¼ r þ 1; // coclass recursion

Des :¼ Descendants(Root,NilpotencyClass(Root)þ1: StepSizes:¼[2]);

for j in [1..#Des] do

if IsAdmissible(Des[j],p,0) then

Root :¼ Des[j];

end if;

end for;

end for;

c :¼ 2*r - 1; // starting class c in dependence on the coclass r

er :¼ pˆr; l :¼ (c - 1) div 2; ec :¼ pˆl;

M<a,t> :¼ Group<a,t|(a*t)ˆp¼aˆp,((t,a),t)¼aˆ(s*p),aˆer¼1,(t,a)ˆec¼1>;

QM,pM :¼ pQuotient(M,p,c); // top down construction

if IsIsomorphic(Root,QM) then // identification

printf “Isomorphism for cc¼%o, cl¼%o.\n”,r,c;

end if;
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for i in [1..vb] do // bottom up in single steps along a mainline

c :¼ c þ 1; // nilpotency class recursion

if (0 eq c mod 2) then // even nilpotency class

l :¼ c div 2; ec :¼ pˆl;

M<a,t> :¼ Group<a,t|(a∗t)ˆp¼aˆp,((t,a),t)¼aˆ(s∗p),aˆer¼1,tˆec¼1>;

else // odd nilpotency class

l :¼ (c - 1) div 2; ec :¼ pˆl;

M<a,t>:¼ Group<a,t|(a∗t)ˆp¼aˆp,((t,a),t)¼aˆ(s∗p),aˆer¼1,(t,a)ˆec¼1>;

end if;

QM,pM :¼ pQuotient(M,p,c); // top down construction

Des :¼ Descendants(Root,NilpotencyClass(Root)þ1: StepSizes:¼[1]);

for j in [1..#Des] do

if IsAdmissible(Des[j],p,0) then

Root :¼ Des[j];

end if;

end for;

if IsIsomorphic(Root,QM) then // identification

printf “Isomorphism for cc¼%o, cl¼%o.\n”,r,c;

end if;

end for;

Output: coclass r and class c in each case of an isomorphism.

Remark 3.1.Algorithm 3.1 is designed to be called with input parameters the prime p¼3 and cp

the compact presentation of either the root 〈243; 6〉 with sign s¼-1 or the root 〈243; 8〉 with sign

s¼þ1. In the current version V2.22-7 of the computational algebra system MAGMA [10], the

bounds are restricted to r¼hbþ2≤8 and c¼vbþ2r�1≤35, since otherwise the maximal possi-

ble internal word length of relators in MAGMA is surpassed. Close to these limits, the required

random access memory increases to a considerable value of approximately 8 GB RAM.

Theorem 3.3. (Mainline vertices as quotients of the limit group L�.) Let ur :¼ 8, uc :¼ 35.

1. For each 2 ≤ r ≤ur, and for each 2r� 1 ≤ c ≤uc, the mainline vertex MðrÞ
c of coclass r and nilpotency

class c in the tree T ðRÞ is isomorphic to L
ðrÞ
�,c.

2. For each 2 ≤ r ≤ur, the projective limit of the mainline MðrÞ
c

� �

c ≥ 2r�1
with vertices of coclass r in the

tree T ðRÞ is isomorphic to L
ðrÞ
� .

3. L� is an infinite nonnilpotent profinite limit group.

Proof. (1) The repeated execution of Algorithm 3.1 for successive values from hb:¼0 to hb:¼6,

with input data p:¼3, cp:¼CompactPresentation(SmallGroup(243,i)), i∈ {6; 8},

s∈ {� 1; þ 1}, and vb:¼32, proves the isomorphisms MðrÞ
c ≃L

ðrÞ
�, c for 2 ≤ r ≤ur ¼ 8 and

2r� 1 ≤ c ≤uc ¼ 35. The algorithm is initialized by the starting groupR ¼ M
ð2Þ
3 ¼ 〈243;i〉 of coclass

r:¼2. The first loop moves along the maintrunk recursively with strictly alternating step sizes 1
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and2 until the rootM
ðrÞ
2r�1 of the coclass treeT

ðrÞ withr¼2þhb is reached.The second loop iterates

through the mainline verticesMðrÞ
c , c ≥ 2r� 1, of the coclass tree T ðrÞ M

ðrÞ
2r�1

� �

, always checking for

isomorphism to the appropriate quotient L
ðrÞ
�, c. The subroutine IsAdmissible() tests the trans-

fer kernel type of all descendants and selects the unique capable descendant with type c:18,

respectively, c:21. (2) Since periodicity sets in for 2ur � 1 ¼ 17 ≤ c ≤uc ¼ 35, the claim is a conse-

quence of Theorem 3.1. (3) The quotient L
ð1Þ
� is already infinite and nonnilpotent. Adding the

relation ½t, ta, t� ¼ 1 suffices to give [t, a, t] central andL� profinite. □

Conjecture 3.2. Theorem 3.3 remains true for arbitrary upper bounds ur > 8, uc > 35.

Remark 3.2. When the top down constructions in Algorithm 3.1 are cancelled, the bottom up

operations are still able to establish much bigger initial sections of the infinite maintrunk and

of the infinite coclass tree with fixed coclass r ≥ 2. Admitting an increasing amount of CPU

time, we can easily reach astronomic values of the coclass, r ¼ 32, and the nilpotency class,

c ¼ 63, that is a logarithmic order of rþ c ¼ 95, without surpassing any internal limitations of

MAGMA, and the required storage capacity remains quite modest, i.e., clearly below 1 GB

RAM. This remarkable stability underpins Conjecture 3.2 with additional support from the

bottom up point of view.

3.5. Covers of metabelian 3-groups

Only one of the coclass subtrees T ðrÞ, r ≥ 2, of the entire rooted in-tree T ðRÞ contains metabelian

vertices, namely the first subtree T ð2Þ. The following theorem shows how transfer kernel types

are distributed among metabelian vertices G of depth dpðGÞ ≤ 1 on the tree T
ð2Þ, as partially

illustrated by the Figures 1 and 2.

Theorem 3.4. (Metabelian vertices of the coclass tree T ð2ÞR.)

For each finite 3-group G, we denote by c :¼ clðGÞ the nilpotency class, by r :¼ ccðGÞ the coclass, and

by ϰ the transfer kernel type of G. More explicitly, such a group is also denoted by G ¼ GðrÞ
c . The

following statements describe the structure of the metabelian skeleton of the coclass tree T ð2ÞR with root

R :¼ 〈243; 6〉, respectively, R :¼ 〈243; 8〉, down to depth 1.

1. For each c ≥ 3, the mainline vertex Mð2Þ
c of the coclass tree possesses type c:18, ϰ ¼ ð0122Þ,

respectively, c:21, ϰ ¼ ð0231Þ.

2. For each c ≥ 4, there exists a unique child G
ð2Þ
c;1 of M

ð2Þ
c�1 with type E:6, ϰ ¼ ð1122Þ, respectively,

E:8, ϰ ¼ ð1231Þ.

3. For even c ≥ 4, there exists a unique child G
ð2Þ
c;2 of M

ð2Þ
c�1 with type E:14, ϰ ¼ ð3122Þ, respectively,

E:9, ϰ ¼ ð2231Þ. Thus, N1ðM
ð2Þ
c�1Þ ¼ 3 and C1ðM

ð2Þ
c�1Þ ¼ 1, in the pruned tree.

4. For odd c ≥ 5, there exist two children G
ð2Þ
c;2 , G

ð2Þ
c;3 of M

ð2Þ
c�1 with type E:14, ϰ ¼ ð3122Þ � ð4122Þ,

respectively, E:9, ϰ ¼ ð2231Þ � ð3231Þ. Thus, N1ðM
ð2Þ
c�1Þ ¼ 4 and C1ðM

ð2Þ
c�1Þ ¼ 1.
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5. For even c ≥ 4, there exists a unique child G
ð2Þ
c;4 of M

ð2Þ
c�1 with type H:4, ϰ ¼ ð2122Þ, respectively,

G:16, ϰ ¼ ð4231Þ. It is removed from the pruned tree.

6. For odd c ≥ 5, there exist two children G
ð2Þ
c;4 , G

ð2Þ
c;5 of M

ð2Þ
c�1 with type H:4, ϰ ¼ ð2122Þ, respectively,

G:16, ϰ ¼ ð4231Þ. They are removed from the pruned tree.

Proof. See Nebelung ([11], Lemma 5.2.6, p. 183, Figures, p. 189 f., Satz 6.14, p. 208). □

Definition 3.3. For e∈ {0; 1}, we define the cover limit, due to M. F. Newman, to be the group

C
ðeÞ

:¼〈 a, t, u, y, z j ta ¼ u, uatuy ¼ ½u, t�e, a3½t, a, t� ¼ z, ½u, t, t� ¼ ½u, t, u� ¼ 1,

y3 ¼ 1; ½a, y� ¼ ½t, y� ¼ ½u, y� ¼ ½z, y� ¼ 1; z3 ¼ 1; ½t, z� ¼ ½u, z� ¼ 1 〉,
ð6Þ

which was introduced in [12]. For each k∈ {� 1; 0; 1} and for each integer c ≥ 4, let

Q
ðe,kÞ
c :¼ C

ðeÞ = 〈 ywk
cvc, zwc 〉 ð7Þ

be the class-c quotient with parameter k of CðeÞ, where wc :¼ ½t, a,…, a�
zfflfflffl}|fflfflffl{
ðc�1Þtimes

and vc :¼ ½wc�2, ½t, a��.

In each step, i ≥ 1, of the second Algorithm 3.2, the top down technique constructs a certain

class-c quotient Qc, c ¼ iþ 3, of a fixed infinite pro-3 group C, the cover limit, and the bottom up

technique constructs all metabelian children of a certain vertexMi�1 on the mainline of the first

coclass tree T ð2ÞðRÞ, and selects, firstly, the next vertexMi of depth dpðMiÞ ¼ 0 on the mainline

of T ð2ÞðRÞ for continuing the recursion, secondly, a vertex Gi of depth dpðGiÞ ¼ 1 with assigned

transfer kernel type ϰðGiÞ. Each recursion step is completed by proving that Gi is isomorphic to

the second derived quotient Qc=Q
00
c, that is, Qc ∈ covðGiÞ belongs to the cover of Gi in the sense

of ([13], section 1.3, Dfn. 1.1, p. 75). More precisely, we have Mi ¼ M
ð2Þ
iþ3 and Gi ¼ G

ð2Þ
iþ3;j with

some j.

Algorithm 3.2. (Shafarevich cover.)

Input: prime p, compact presentation cp of the root, bound vb, parameters e and k.

Code: uses the subroutine IsAdmissible().

C<a,t,u,y,z> :¼ Group< a,t,u,y,z |

yˆp, (a,y), (t,y), (u,y), (y,z), (t,z), (u,z), zˆp,

(u,t,t), (u,t,u), tˆa ¼ u, uˆa∗t∗u∗y∗(u,t)ˆ-e, aˆp∗(t,a,t) ¼ z >;

Root :¼ PCGroup(cp);

Leaf :¼ Root;

for i in [1..vb] do // bottom up along the mainline of coclass 2

c :¼ i þ 3; // nilpotency class

w :¼ [t];

for j in [1..c] do // construction of iterated commutator

s :¼ (w[j],a);
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Append(�w,s);

end for;

w1 :¼ w[c-2]ˆ-1∗(a,t)∗w[c-2]∗(t,a);

H :¼ quo<C | y∗w[c]ˆk∗w1, z∗w[c]>;

Q,pQ :¼ pQuotient(H,p,c); // top down construction of Shafarevich cover

Des :¼ Descendants(Root,NilpotencyClass(Root)þ1);

m :¼ 0;

for cnt in [1..#Des] do

if IsAdmissible(Des[cnt],p,0) then

Root :¼ Des[cnt]; // next mainline vertex

elif IsAdmissible(Des[cnt],p,2) then

m :¼ m þ 1;

if (1 eq m) then

Leaf :¼ Des[cnt]; // first leaf with assigned TKT

end if;

end if;

end for;

DQ :¼ DerivedSubgroup(Q);

D2Q :¼ DerivedSubgroup(DQ);

Q2Q :¼ Q/D2Q; // metabelianization

if IsIsomorphic(Leaf,Q2Q) then // identification

printf “Dsc.cl.%o isomorphic to 2nd drv.qtn.of Cov.cl.%o.\n”,c,c;

end if;

end for;

Output: nilpotency class c in each case of an isomorphism.

The next theorem is the second main result of this chapter, establishing the finiteness and

structure of the cover for each metabelian 3-group with transfer kernel of type E.

Theorem 3.5. (Explicit covers of metabelian 3-groups.) Let u :¼ 8 be an upper bound and G
ð2Þ
c, j in

T
ð2Þ M

ð2Þ
3

� �

be the metabelian 3-group of nilpotency class c ≥ 4 with transfer kernel type

ϰ ¼
ð1122Þ, E:6; resp: ð1231Þ, E:8 if j ¼ 1;

ð3122Þ, E:14; resp: ð2231Þ, E:9 if j ¼ 2 or ðj ¼ 3 and c oddÞ:

�

1. The cover of G
ð2Þ
c, j is given by

cov G
ð2Þ
c, j

� �

¼
G

ð2Þ
c, j ; G

ð3Þ
c, j ,…, G

ðℓþ1Þ
c, j , G

ðℓþ2Þ
c, j , T

ðℓþ2Þ
cþ1;j

n o

if c ¼ 2ℓ þ 4; 1 ≤ j ≤ 2;

G
ð2Þ
c, j ; G

ð3Þ
c, j ,…, G

ðℓþ1Þ
c, j , G

ðℓþ2Þ
c, j , S

ðℓþ3Þ
c, j

n o

if c ¼ 2ℓ þ 5; 1 ≤ j ≤ 3:

8

>

<

>

:

ð8Þ

where 0 ≤ ℓ ≤u. In particular, the cover is a finite set with ℓ þ 2 elements (ℓ þ 1 of them nontrivial),

which are nonσ-groups for even c ≥ 4, and σ-groups for odd c ≥ 5.
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2. The Shafarevich cover of G
ð2Þ
c, j with respect to imaginary quadratic fields F is given by

cov G
ð2Þ
c, j , F

� �

¼
ø if c ¼ 2ℓ þ 4; 0 ≤ ℓ ≤u, 1 ≤ j ≤ 2;

S
ðℓþ3Þ
c, j

n o

if c ¼ 2ℓ þ 5; 0 ≤ ℓ ≤u, 1 ≤ j ≤ 3:

(

ð9Þ

In particular, the Shafarevich cover contains a unique Schur σ-group, if c ≥ 5 is odd.

3. The class-c quotient with parameter k of the cover limit CðeÞ is isomorphic to a Schur σ-group

Q
ðe,kÞ
c ≃S

ðℓþ3Þ
c, j , for c ¼ 2ℓ þ 5 or to a nonσ-group Q

ðe,kÞ
c ≃G

ðℓþ2Þ
c, j , for c ¼ 2ℓ þ 4. The precise

correspondence between the parameters k and j is given in the following way.

Types E:6;E:8 : Q
ðe,0Þ
c ≃

S
ðℓþ3Þ
c,1 for odd class c ¼ 2ℓ þ 5; 0 ≤ ℓ ≤u,

G
ðℓþ2Þ
c,1 for even class c ¼ 2ℓ þ 4; 0 ≤ ℓ ≤u,

8

<

:

type E:9 : Q
ðþ1,�1Þ
c ≃

S
ðℓþ3Þ
c,2 for odd class c ¼ 2ℓ þ 5; 0 ≤ ℓ ≤ u,

G
ðℓþ2Þ
c,2 for even class c ¼ 2ℓ þ 4; 0 ≤ ℓ ≤ u,

8

<

:

type E:9 : Q
ðþ1,þ1Þ
c ≃

S
ðℓþ3Þ
c,3 for odd class c ¼ 2ℓ þ 5; 0 ≤ ℓ ≤u,

G
ðℓþ2Þ
c,2 for even class c ¼ 2ℓ þ 4; 0 ≤ ℓ ≤u:

8

<

:
ð10Þ

In particular, Qðþ1,�1Þc ≃Q
ðþ1,þ1Þ
c for even class c ¼ 2ℓ þ 4, 0 ≤ ℓ ≤ u.

The variant e ¼ 0, respectively, e ¼ 1, is associated to the root R ¼ 〈243; 6〉, respectively,

R ¼ 〈243; 8〉.

4. A parameterized family of fork topologies for second 3-class groups Gal F
ð2Þ
3 =F

� �

of imaginary

quadratic fields F is given uniformly for the states ↑ℓ (ground state for ℓ ¼ 0, excited state for

1 ≤ ℓ ≤u) of transfer kernels with type E by the symmetric topology symbol

P ¼ E!
1

zffl}|ffl{
Leaf

c!
1

n o2ℓ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{
Mainline

c
z}|{
Fork

 
2
c 

1
c

n oℓ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
Maintrunk

 
2
E

zffl}|ffl{
Leaf

ð11Þ

with scaffold type c and the following invariants:

distance d ¼ 4ℓ þ 2 (Definition 2.3), weighted distance w ¼ 5ℓ þ 3 (Definition 2.4),

class increment Δcl ¼ ð2ℓ þ 5Þ � ð2ℓ þ 5Þ ¼ 0, coclass increment Δcc ¼ ðℓ þ 3Þ � 2 ¼ ℓ þ 1,

logarithmic order increment Δlo ¼ ð3ℓ þ 8Þ � ð2ℓ þ 7Þ ¼ ℓ þ 1 ([13], Dfn. 5.1, p. 89).

Proof. We compare the uniform generator rank d1 ¼ 2 of all involved groups G
ðrÞ
c, j , c ≥ 4, r ≥ 2,

1 ≤ j ≤ 3, with their relation rank d2. Since d2 ¼ μ and the p-multiplicator rank is μ ¼ 2 for S
ðrÞ
c, j
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with odd c ¼ 2ℓ þ 5 ≥ 5 and r ¼ ℓ þ 3 ≥ 3, but μ ¼ 3 otherwise, only the groups S
ðrÞ
c, j are Schur σ-

groups with balanced presentation d2 ¼ 2 ¼ d1, and are therefore admissible as 3-tower

groups of imaginary quadratic fields F, according to our corrected version ([6], section 5,

Thm. 5.1, pp. 28–29) of the Shafarevich Theorem ([14], Thm. 6, (180)). Finally, we remark that

the nuclear rank is ν ¼ 1 for G
ðrÞ
c, j with even c ¼ 2ℓ þ 4, r ¼ ℓ þ 2, and child T

ðrÞ
cþ1;j, but ν ¼ 0

otherwise.

The execution of Algorithm 3.2 with input data p:¼3, vb:¼25, either i:¼6, e:¼0, or

i:¼8, e:¼1, and cp:¼CompactPresentation(SmallGroup(243,i)), proves the iso-

morphisms Q
ðe,kÞ
c ≃S

ðℓþ3Þ
c, j , c ¼ 2ℓ þ 5, respectively, Qðe,kÞ

c ≃G
ðℓþ2Þ
c, j , c ¼ 2ℓ þ 4, for 4 ≤ c ≤ 20, that

is, 0 ≤ ℓ ≤ u ¼ 8. The algorithm is initialized by the starting group R ¼ M
ð2Þ
3 of coclass 2. The

loop navigates through the mainline vertices Mð2Þ
c , c ≥ 3, of the coclass tree T

ð2Þ M
ð2Þ
3

� �

. The

subroutine IsAdmissible() tests the transfer kernel type of all descendants and selects

either the unique capable descendant with type c:18, respectively, c:21, for the flag 0 or the

unique descendant with type E:6, respectively, E:8, for the flag 1, or the first or second

descendant with type E:9, for the flag 2. The selected nonmainline vertex is always checked

for isomorphism to the metabelianization of the appropriate quotient Q
ðe,kÞ
c . See also ([2],

section 21.2, pp. 189–193), ([15], pp. 751–756), the proof of Theorem 4.1, and Figures 5–7.

Here again, a pure bottom up approach without top down constructions, instead of using

Algorithm 3.2, is able to reach coclass r ¼ 32, nilpotency class c ¼ 63, and logarithmic order

rþ c ¼ 95, without surpassing internal limits of MAGMA, and strongly supports Conjecture 3.3.

Conjecture 3.3. Theorem 3.5 remains true for any upper bound u > 8.

Figure 3 shows exactly the same situation as Figure 1, supplemented by blue arrows indicat-

ing the projections of the quotients Q
ðe,kÞ
c onto their metabelianizations, that is, S

ðℓþ3Þ
c, j ! G

ð2Þ
c, j ,

for odd class c ¼ 2ℓ þ 5, in the right diagram with green branches, and G
ðℓþ2Þ
c, j ! G

ð2Þ
c, j , for even

class c ¼ 2ℓ þ 4, in the left diagram with red branches. For c ¼ 4, a degeneration occurs, since

Q
ðe,kÞ
4 is metabelian already, indicated by surrounding blue circles.

Strictly speaking, the caption of Figure 3, in its full generality, is valid for e ¼ 1,M
ð2Þ
3 ¼ 〈243; 8〉

only. For e ¼ 0, M
ð2Þ
3 ¼ 〈243; 6〉, all blue arrows have the same meaning as before but the

interpretation of the covers as quotients Q
ðe,kÞ
c is slightly restricted. Whereas we have the

following supplement to Eq. (10):

type E:14 : Q
ð0;�1Þ
c ≃

S
ðℓþ3Þ
c;3 for odd class c ¼ 2ℓ þ 5; 0 ≤ ℓ ≤ u,

G
ðℓþ2Þ
c;2 for even class c ¼ 2ℓ þ 4; 0 ≤ ℓ ≤ u,

8

<

:

ð12Þ

the quotients Q
ð0;þ1Þ
c lead into a completely different realm, namely the complicated brush-

wood of the complex transfer kernel type H:4.
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Figure 4 shows three pruned descendant trees T ∗ðℜÞwith rootsℜ ¼ 〈243; 4〉,ℜ ¼ 〈6561; 614〉,

andℜ ¼ 〈6561; 613〉 � #1; 1� #2; 1, all of whose vertices are of type H:4 exclusively. We restrict

the trees to σ-groups indicated by green color. The top vertex 〈27; 3〉 is intentionally drawn

twice to avoid an overlap of the dense trees and to admit a uniform representation of periodic

bifurcations.

The tree with root 〈243; 4〉 is not concerned by the quotients Qð0;þ1Þ
c . It is sporadic and consists

of periodically repeating finite saplings of depth 2 and increasing coclass 2; 3;…. Connected by

the maintrunk with vertices of type c:18 (red color) in the descendant tree T ð〈243; 6〉Þ, the trees

with roots 〈6561; 614〉 and 〈6561; 613〉 � #1; 1� #2; 1 form the beginning of an infinite sequence

of similar trees, which are, however, not isomorphic as graphs, since the depth of the consti-

tuting saplings increases in steps of 2. The projections of the quotients Qð0;þ1Þ
c with odd class

c∈ {5; 7} onto their metabelianizations are indicated by blue arrows.

3.6. Topologies in descendant trees

Tree topologies describe the mutual location of distinct higher p-class groups GðmÞ
p F and GðnÞ

p F,

with n > m ≥ 1, of an algebraic number field F. The case ðm, nÞ ¼ ð3; 4Þ will be crucial for

finding the first examples of four-stage towers of p-class fields with length ℓpF :¼ dlðGð∞Þ
p FÞ ¼ 4,

which are unknown up to now, for any prime p ≥ 2. Fork topologies with ðm, nÞ ¼ ð2; 3Þ have

proved to be essential for discovering p-class towers with length ℓpF ¼ 3, for odd primes p ≥ 3.

Figure 3. Projections Qðe,kÞ
c ! Q

ðe,kÞ
c = Q

ðe,kÞ
c

� �00

of the covers onto their metabelianizations.
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In ([13], Prp. 5.3, p. 89), we have pointed out that the qualitative topology problem for

ðm, nÞ ¼ ð1; 2Þ is trivial, since the fork of Gð1Þ
p F and Gð2Þ

p F is simply the abelian root Gð1Þ
p F≃ClpF

of the entire relevant descendant tree. However, the quantitative structure of the root path

between Gð2Þ
p F and Gð1Þ

p F is not at all trivial and can be given in a general theorem for

ClpF≃ ðp, pÞ and p∈ {2; 3} only. In the following Theorem 3.6, we establish a purely group

theoretic version of this result by replacing Gð2Þ
p F with an arbitrary metabelian 3-group M

having abelianization M=M0 of type ð3; 3Þ. Any attempt to determine the group

G :¼ GalðFð∞Þp =FÞ of the p-class tower Fð∞Þp of an algebraic number field F begins with a search

for the metabelianizationM :¼ G=G00, i.e., the second derived quotient, of the p-tower group G.

M is also called the second p-class group GalðFð2Þp =FÞ of F, and Fð2Þp can be viewed as a metabelian

approximation of the p-class tower Fð∞Þp . In the case of the smallest odd prime p ¼ 3 and a

number field F with 3-class group Cl3F of type ð3; 3Þ, the structure of the root path fromM to

the root 〈9; 2〉 is known explicitly. For its description, it suffices to use the set of possible

transfer kernel types

Figure 4. Branches of σ-groups with complex type H:4 connected by the maintrunk.
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X∈ {A,D,E, F,G,H, a,b, c,d}

of the ancestors πj
M, 0 ≤ j ≤ ℓ, and the symbol !

s
for a weighted edge of step size s ≥ 1 with

formal exponents denoting iteration. A capable vertex is indicated by an asterisk X∗.

Theorem 3.6. (Periodic root paths.)

There exist basically three kinds of root paths P :¼ π
j
M

� �

0 ≤ j ≤ ℓ
of metabelian 3-groups M with

abelianizationM=M0 of type ð3; 3Þ, which are located on coclass trees. Let c denote the nilpotency class

clðMÞ and r the coclass ccðMÞ ofM.

1. If r ¼ 1 and c ≥ 1, then P ¼ X !
1
a∗

n oc�1

, where X∈ {A, a, a∗}.

2. If r ¼ 2 and c ≥ 3, then either P ¼ Xf!
1
b∗g

c�3

!
2
a∗ !

1
a∗, where X∈ {d, b, b∗}, or

P ¼ Xf!
1
c∗g

c�3

!
2
a∗ !

1
a∗, where X∈ {E,G∗,H∗, c∗}. An additional variant arises for r ¼ 2,

c ≥ 5, with P ¼ X!
1
X∗f!

1
c∗g

c�4

!
2
a∗ !

1
a∗, where X∈ {G,H}.

3. If r ≥ 3 and c ≥ rþ 1, then either P ¼ Xf!
1
b∗g

c�ðrþ1Þ

f!
2
b∗g

r�2

!
2
a∗ !

1
a∗, where X∈ {d,b, b∗},

or P ¼ Xf!
1
d∗g

c�ðrþ1Þ

f!
2
b∗g

r�2

!
2
a∗ !

1
a∗, where X∈ {F,G∗,H∗,d∗}. An additional variant

arises for r ≥ 3, c ≥ rþ 3, with P ¼ X!
1
X∗f!

1
d∗g

c�ðrþ2Þ

f!
2
b∗g

r�2

!
2
a∗ !

1
a∗, where X∈ {G,H}.

In particular, the maximal possible step size is s ¼ 2, and the r� 1 edges with step size s ¼ 2 arise

successively without gaps at the end of the path, except the trailing edge of step size s ¼ 1.

Proof. X always denotes the type of the starting vertex M. The remaining vertices of the root

path form the scaffold, which connects the starting vertex with the ending vertex (the root

R ¼ 〈9; 2〉). The unique coclass tree T ð1Þ〈9; 2〉 with r ¼ 1 has a mainline of type a∗. Two of the

coclass trees T
ð2Þ〈243;n〉 with r ¼ 2, those with n∈ {6; 8}, have mainlines of type c∗ and an

additional scaffold of type a∗. For n ¼ 3, the mainline is of type b∗. The coclass trees T ðrÞ with

r ≥ 3 behave uniformly with mainlines of type b∗ or d∗ and scaffold types b∗, a∗. For details, see

Nebelung ([11], Satz 3.3.7, p. 70, Lemma 5.2.6, p. 183, Satz 6.9, p. 202, Satz 6.14, p. 208).

Remark 3.3. The final statement of Theorem 3.6 is a graph theoretic reformulation of the

quotient structure of the lower central series γjM

� �

j ≥ 1
of a metabelian 3-groupM, observing

that the root R ¼ 〈9; 2〉 corresponds to the bicyclic quotient γ1=γ2 ≃ ð3; 3Þ and the conspicuous

trailing edge !
1
a∗ corresponds to the cyclic bottleneck γ2=γ3 ≃ ð3Þ. The structure is drawn

ostensibly in eqn. (2.12) of ([16], section 2.2), using the CF-invariant e ¼ rþ 1 instead of the

coclass r.

Theorem 3.6 concerns periodic vertices on coclass trees. Sporadic vertices outside of coclass

trees must be treated separately in Corollary 3.1.
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Corollary 3.1. (Sporadic root paths.)

As before, let M be a metabelian 3-group with abelianization M=M0
≃ ð3; 3Þ, nilpotency class

c :¼ clðMÞ, and coclass r :¼ ccðMÞ. Assume thatM is located outside of coclass trees.

1. If r ¼ 2 and c ¼ 3, then P ¼ X!
2
a∗ !

1
a∗, where X∈ {D,G∗,H∗}.

2. If r ¼ 2 and c ¼ 4, then P ¼ X!
1
X∗ !

2
a∗ !

1
a∗, where X∈ {G,H}.

3. If r ≥ 3 and c ¼ rþ 1, then P ¼ X !
2
b∗

n or�2

!
2
a∗ !

1
a∗, where X∈ {F,G∗,H∗}.

4. If r ≥ 3 and c ¼ rþ 2, then P ¼ X!
1
X∗ !

2
b∗

n or�2

!
2
a∗ !

1
a∗, where X∈ {G,H}.

Proof. As in the proof of Theorem 3.6, see the dissertation of Nebelung [11]. □

3.7. Computing Artin patterns of p-groups

In both Algorithms 3.1 and 3.2, we made use of a subroutine IsAdmissible() which filters

p-groups G with abelianization G=G0
≃ ðp, pÞ having a prescribed transfer kernel type (TKT).

Since an algorithm of this kind is not implemented in MAGMA, we briefly communicate a

succinct form of the code for this subroutine.

Algorithm 3.3. (Transfer kernel type.)

Input: a prime number p and a finite p-group G.

Code:

if ([p,p] eq AbelianQuotientInvariants(G)) then

x :¼ G.1; y :¼ G.2; // main generators

A :¼ []; B :¼ []; // generators and transversal

Append(�A,y);

Append(�B,x);

for e in [0..p-1] do

Append(�A,x∗yˆe);

Append(�B,y);

end for;

DG :¼ DerivedSubgroup(G);

nTotal :¼ 0; nFixed :¼ 0;

TKT :¼ [];

for i in [1..pþ1] do

M :¼ sub<G|A[i],DG>;

DM :¼ DerivedSubgroup(M);

AQM,pr :¼ M/DM;

ImA :¼ (A[i]∗B[i]ˆ-1)ˆp∗B[i]ˆp; // inner transfer

ImB :¼ B[i]ˆp; // outer transfer

T :¼ hom<G->AQM|<A[i],(ImA)@pr>,<B[i],(ImB)@pr>>;
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KT :¼ sub<G|DG,Kernel(T)>;

if KT eq G then // total kernel

Append(�TKT,0);

nTotal :¼ nTotalþ1;

else

for j in [1..pþ1] do

if A[j] in KT then

Append(�TKT,j);

if (i eq j) then // fixed point

nFixed :¼ nFixedþ1;

end if;

end if;

end for;

end if;

end for;

image :¼ [];

for i in [1..pþ1] do

if not (TKT[i] in image) then

Append(�image,TKT[i]);

end if;

end for;

occupation :¼ #image;

repetitions :¼ 0; // maximal occupation number

intersection :¼ 0; // meet of repetitions and fixed points

doublet :¼ 0;

for digit in [1..pþ1] do

counter :¼ 0;

for j in [1..#TKT] do

if (digit eq TKT[j]) then

counter :¼ counter þ 1;

end if;

end for;

if (counter ge 2) then

doublet :¼ digit;

end if;

if (counter gt repetitions) then

repetitions :¼ counter;

end if;

end for;

if (doublet ge 1) then

if (doublet eq TKT[doublet]) then

intersection :¼ 1;

end if;

end if;

end if;
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Output: transfer kernel type TKT, number nTotal of total kernels, number nFixed of fixed

points, and further invariants occupation,repetitions,intersection describing the

orbit of the TKT.

The output of Algorithm 3.3 is used for the subroutine IsAdmissible(G,p,t) in depen-

dence on the parameter flag t. When the root R ¼ 〈243; 8〉 is selected for the tree T ðRÞ the

return value is determined in the following manner

if (0 eq t) then

return ((1 eq nTotal) and (2 eq nFixed)); // type c.21

elif (1 eq t) then

return ((0 eq nTotal) and (3 eq nFixed)); // type E.8

elif (2 eq t) then

return ((0 eq nTotal) and (2 eq nFixed) and (3 eq occupation)); // type E.9

end if;

For the root R ¼ 〈243; 6〉, we have

if (0 eq t) then

return ((1 eq nTotal) and (0 eq nFixed)); // type c.18

elif (1 eq t) then

return ((0 eq nTotal) and (1 eq nFixed)); // type E.6

elif (2 eq t) then

return ((0 eq nTotal) and (0 eq nFixed) and (3 eq occupation)); // type E.14

end if;

3.8. Benefits and drawbacks of bottom up and top down techniques

In this chapter, we have presented several convenient ways of expressing information about

infinite sequences of finite p-groups. Each of them has its benefits and drawbacks.

The bottom up strategy of constructing finite p-groups as successive extensions of a (metabelian

or even abelian) starting group R, called the root, by recursive applications of the p-group

algorithm by Newman [7] and O'Brien [8] has the benefit of visualizing the graph theoretic

root path in the descendant tree T ðRÞ. Its implementation in MAGMA is incredibly stable and

robust without surpassing any internal limits up to logarithmic orders of 95 and even more.

Only the consumption of CPU time becomes considerable in such extreme regions.

The top down strategy of expressing finite p-groups as quotients of an infinite pro-p group with

given pro-p presentation has the benefit of including nonmetabelian groups with arbitrary

coclass r ≥ 3, periodic mainline vertices in Algorithm 3.1, and sporadic Schur σ-leaves in

Algorithm 3.2. The drawback is that the evaluation of the pro-p presentation in MAGMA

exceeds the maximal permitted word length for nilpotency class c ≥ 36.
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Up to this point, we have not yet touched upon parameterized polycyclic power-commutator pre-

sentations [17]. For the root R ¼ 〈243; 6〉, the metabelian vertices G of the coclass tree T
ð2ÞðRÞ

with class c ¼ clðGÞ ≥ 5, down to depth dpðGÞ ≤ 1, can be presented in the form

Gcðα, βÞ ¼ 〈x, y, s2, t3, s3,…, sc j
s2 ¼ ½y, x�, t3 ¼ ½s2, y�, si ¼ ½si�1, x� for 3 ≤ i ≤ c,

x3 ¼ sαc , y
3s�23 s�14 ¼ sβc , s

3
i ¼ s2iþ2siþ3 for 2 ≤ i ≤ c� 3; s3c�2 ¼ s2c 〉,

ð13Þ

where the parameters α and β depend on the transfer kernel type ϰðGÞ,

ðα, βÞ ¼
ð0; 0Þ for ϰðGÞ � ð0122Þ, c:18;

ð1; 0Þ for ϰðGÞ � ð1122Þ, E:6;

ð0; 1Þ or ð0; 2Þ for ϰðGÞ � ð2122Þ, H:4;

ð1; 1Þ or ð1; 2Þ for ϰðGÞ � ð3122Þ � ð4122Þ, E:14:

8

>

>

<

>

>

:

ð14Þ

This presentation has the benefit of including six periodic sequences with distinct transfer

kernel types, and the drawback of being restricted to the fixed coclass 2.

4. The first 3-class towers of length 3

In our long desired disproof of the claim by Scholz and Taussky ([18], p. 41) concerning the

3-class tower of the imaginary quadratic field F ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�9 748
p

Þ, we presented the first p-class

towers with exactly three stages, for an odd prime p, in cooperation with Bush ([19], Cor. 4.1.1, p.

775). The underlying fields F were of type E:9 in its ground state, which admits two possibilities

for the second 3-class group,M≃ 〈2187; 302〉 or 〈2187; 306〉. Now we want to illustrate the way

which led to the fork topologies in Theorem 3.5 by using the more convenient type E:8, where the

groupM is unique for every state, in particular,M≃ 〈2187; 304〉 for the ground state.

Remark 4.1. Concerning the notation, we are going to use logarithmic type invariants of abelian

3-groups, for instance ð21Þ¼^ ð9; 3Þ, ð32Þ¼^ ð27; 9Þ, ð43Þ¼^ ð81; 27Þ, and ð54Þ¼^ ð243; 81Þ.

Let F ¼ Qð
ffiffiffi

d
p
Þ be an imaginary quadratic number field with 3-class group Cl3F≃ ð3; 3Þ, and let

E1,…, E4 be the unramified cyclic cubic extensions of F.

Theorem 4.1. (First towers of type E:8.) Let the capitulation of 3-classes of F in E1,…, E4 be of type

ϰ1F � ð1, 2, 3; 1Þ, which is called type E:8. Assume further that the 3-class groups of E1,…, E4 possess

the abelian type invariants τ1F � ½T1; 21; 21; 21�, where T1 ∈ {32; 43; 54}.

Then, the length of the 3-class tower of F is precisely ℓ3F ¼ 3.

Proof. We employ the p-group generation algorithm [7, 8] for searching the Artin pattern

APðFÞ ¼ ðτ1F,ϰ1FÞ among the descendants of the root R :¼ C3 � C3 ¼ 〈9; 2〉 in the tree T ðRÞ.
After two steps, 〈9; 2〉 〈27; 3〉 〈243; 8〉, we find the next root U5 :¼ 〈243; 8〉 of the unique

relevant coclass tree T ð2ÞðU5Þ, using the assigned simple TKT E.8, ϰ3 ¼ ð1231Þ, and its associ-

ated scaffold TKT c.21, ϰ0 ¼ ð0231Þ. Finally, the first component T1 ¼ τ1ð1Þ∈ {32; 43; 54} of the
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TTT provides the break-off condition, according to ([13], Thm. 1.21, p. 79), respectively, Theo-

rem M in ([20], p. 14), and we get M≃ 〈2187; 304〉 ¼ 〈729; 54〉� #1; 4 for the ground state

T1 ¼ ð32Þ, M≃ 〈6561; 2050〉� #1; 2 for the first excited state T1 ¼ ð43Þ, and M≃ 〈6561; 2050〉

ð�#1;1Þ2 � #1; 2 for the second excited state T1 ¼ ð54Þ, where 〈2187; 303〉 ¼ 〈729; 54〉� #1; 3

and 〈6561; 2050〉 ¼ 〈2187; 303〉� #1; 1. The situation is visualized by Figure 2, where the three

metabelianizations M≃G=G00 of the 3-tower group G, for the ground state and two excited

states, are emphasized with red color. Figure 2, showing the second 3-class groups M, was

essentially known to Ascione in 1979 [21, 22], and to Nebelung in 1989 [11]. Compare the

historical remarks ([2], section 3, p. 163).

In the next three Figures 5–7, which were unknown until 2012, we present the decisive break-

through establishing the first rigorous proof for three-stage towers of 3-class fields. The key

ingredient is the discovery of periodic bifurcations ([2], section 3, p. 163) in the complete descen-

dant tree T ðU5Þ which is of considerably higher complexity than the coclass tree T ð2ÞðU5Þ.

For the ground state T1 ¼ ð32Þ, the first bifurcation yields the cover

covðMÞ ¼ {M, 〈6561; 622〉}

of M≃ 〈2187; 304〉. The relation rank d2M ¼ 3 eliminates M as a candidate for the 3-tower

group G, according to the Corollary ([20], p. 7) of the Shafarevich Theorem ([13], Thm. 1.3, pp.

75–76), and we end up getting G≃ 〈6561; 622〉 ¼ 〈729; 54〉� #2; 4 with a siblings topology

E!1 c  2 E

which describes the relative location ofM and G.

For the first excited state T1 ¼ ð43Þ, the second bifurcation yields the cover

covðMÞ ¼ {M, 〈6561; 621〉� #1; 1� #1; 2;〈6561; 621〉� #1; 1� #2; 2}

ofM≃ 〈6561; 2050〉� #1; 2, where 〈6561; 621〉 ¼ 〈729; 54〉� #2; 3. The relation rank d2 ¼ 3 elim-

inates M and 〈6561; 621〉� #1; 1� #1; 2 as candidates for the 3-tower group G, according to

Shafarevich, and we get the unique G≃ 〈6561; 621〉� #1; 1� #2; 2 with fork topology

E!1 c!1
n o2

c  2 c 1 c
n o

 2 E:

Similarly, the second excited state T1 ¼ ð54Þ yields a more complex advanced fork topology

E!1 c!1
n o4

c  2 c 1 c
n o2

 2 E:

Figure 5 impressively shows that entering the unnoticed secret door, which is provided by

the bifurcation at the vertex 〈729; 54〉, immediately leads to the long desired 3-tower group

G≃ 〈6561; 622〉 ¼ 〈729; 54〉� #2; 4 of the imaginary quadratic field F ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�34 867
p

Þ. The siblings
topology is emphasized with red color, and the projectionG!M≃G=G00 is drawn in blue color.
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In Figure 6, we see that the path to the 3-tower group G≃ 〈729; 54〉 � #2; 3� #1; 1� #2; 2 of the

imaginary quadratic field F ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�370 740
p

Þ contains two bifurcations at 〈729; 54〉 and

〈729; 54〉 � #2; 3� #1; 1. As before, the fork topology is emphasized with red color, and the

projection G !M≃G=G00 is drawn in blue color. Two projection arrows of type E:9 are black.

Figure 5. Tree topology of type E in the ground state.
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Figure 7 shows the path to the 3-tower group G≃ 〈729; 54〉 � #2; 3� #1; 1� #2; 1� #1; 1� #2; 2

of the imaginary quadratic field F ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4 087 295
p

Þ. It requires three bifurcations at 〈729; 54〉,
〈729; 54〉 � #2; 3� #1; 1, and 〈729; 54〉 � #2; 3� #1; 1� #2; 1� #1; 1. Again, the fork topology is

emphasized with red color, and the projection G !M≃G=G00 is drawn in blue color.

Figure 6. Tree topology of type E in the first excited state.
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5. Future developments

Fork topologies with significantly higher complexity and step sizes up to 3 and even 4 will be

investigated in cooperation with M. F. Newman [23] for finite 3-groups with TKT F.

Figure 7. Tree topology of type E in the second excited state.
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