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Abstract

This chapter provides a brief and coarse discussion on the theory of fractal interpolation
functions and their recent developments including some of the research made by the
authors. It focuses on fractal interpolation as well as on recurrent fractal interpolation in
one and two dimensions. The resulting self-affine or self-similar graphs, which usually
have non-integral dimension, were generated through a family of (discrete) dynamic
systems, the iterated function system, by using affine transformations. Specifically, the
fractal interpolation surfaces presented here were constructed over triangular as well as
over polygonal lattices with triangular subdomains. A further purpose of this chapter
is the exploration of the existent breakthroughs and their application to a flexible and
integrated software that constructs and visualises the above-mentioned models. We intent
to supply both a panoramic view of interpolating functions and a useful source of links to
assist a novice as well as an expert in fractals. The ideas or findings contained in this paper
are not claimed to be exhaustive, but are intended to be read before, or in parallel with,
technical papers available in the literature on this subject.

Keywords: approximation, attractor, fractal, interpolating function, iterated function
system, recurrent, self-affinity, self-similarity, surface construction

1. Introduction

In the mathematical field of numerical analysis, interpolation is a method of constructing new

data points within the range of a discrete set of known data points. Interpolation by fractal

(graph of) functions, as defined in Refs. [1, 2], is based on the theory of iterated function systems

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and can be seen as an alternative to traditional interpolation techniques, aiming mainly at data

which present detail at different scales, some degree of self-similarity or self-affinity. A fractal

interpolation function can be seen as a continuous function whose graph is the attractor of an

appropriately chosen iterated function system. This attractor is called a fractal interpolation

surface, since the graph of a continuous function of two variables defined over a connected

open subset of R2 is a topological surface, if the so formed graph belongs to the three-dimen-

sional space and has Hausdorff-Besicovitch dimension between 2 and 3. It is called a fractal

interpolation volume whenever the graph has dimension greater than three. The key difficulty

in constructing fractal interpolation surfaces (or volumes) involves ensuring continuity.

Another important element necessary in modelling complicated surfaces of this type is the

existence of the contractivity, or vertical scaling, factors.

1.1. Historical background

Massopust introduced in Ref. [3] fractal surfaces constructed as attractors of iterated function

systems. He considered the case of a triangular domain with coplanar boundary data. Later

on, Geronimo and Hardin in Ref. [4] presented a slightly more general construction of such

fractal surfaces. They examined the case when the domain is a polygonal region with arbitrary

interpolation points but with identical contractivity factors. In Ref. [5], Rm-valued multivariate

fractal functions were investigated. The latter two constructions use the recurrent iterated-

function-system formalism. The construction of Wittenbrink [6] either produces discontinuous

surfaces (and volumes) or reduces to the case, where the contractivity factors must be constant.

Zhao [7] allows the contractivity factors to become a continuous ‘contraction function’ and

uses consistent triangulation in order to guarantee continuity. All of the previous constructions

are based on triangular subdomains. As it is always possible to construct fractal surfaces as

tensor products of univariate continuous fractal functions, Massopust in Ref. [8], Section 9.4

suggests a construction by taking the tensor product of two univariate fractal interpolation

functions. The derived function is uniquely determined by its evaluation along a pair of

adjacent sides of the rectangular domain.

Two piecewise self-affine models for representing discrete image data on rectangular lattices

by using fractal surfaces are proposed in Ref. [9]. In Ref. [10], the piecewise self-affine IFS

model is extended from R
3 to Rn (n is an integer greater than 3), which is called the multi-

dimensional piecewise self-affine fractal interpolation model. The same methodology is repeated in

Ref. [11]. According to Ref. [12], the self-affine iterated function systemmodel is extended from

R
3 to Rn (n is an integer greater than 3), which is called the multi-dimensional self-affine fractal

interpolation model. Vijender and Chand in Ref. [13] proposed a class of affine fractal interpola-

tion surfaces that stitch a given set of surface data arranged on a rectangular grid. The created

fractal interpolation surfaces are a blend of the affine fractal interpolation functions

constructed along the grid lines of a given interpolation domain.

The study of fractals is a field in science that unifies mathematics, theoretical physics, art and

computer science. Therefore, it is not difficult to find applications of fractal interpolation

functions in almost every scientific field wherein information available in finite number of grid

points has to be modelled with a continuous function. Applications of this theory include
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geometric design, data visualisation, reverse engineering, physics, geology, image encoding

and compression (see Ref. [14]), signal processing and wavelet theory. Fractal interpolation also

provides a good representation of economic time series such as the stock market fluctuation

and weather data. The reason for this variety of applications lies in the underlying complicated

mathematical structure of fractal (graph of) functions, produced with simple recursive con-

struction. It has been noted that, for certain problems, they provide better approximants than

their classical non-recursive counterparts.

1.2. Clarifications and interpretations

Although, in most of the cases, the words function, map and mapping can be used as nouns

interchangeably in several parts of mathematics, they generally do not have the same meaning.

Originally, the word ‘map’ comes from the medieval LatinMappa mundi, wherein mappameant

napkin or cloth and mundi the world. ‘Mapping’ as a noun is the process of making maps. In

mathematics, we think of a map as a way of sending elements from one set to elements of

another set. A mapping shows how the elements are paired. A function is a way or rule of

associating elements from one set, the domain, to elements of another set, the codomain. So, a

domain is where a function maps from, and a range, as a subset of the codomain, is where it

maps to. The definition of a function requires that each element in the domain corresponds to

one and only one element of the codomain. Moreover, a function is commonly used as a special

type of mapping, namely it is used as a mapping from a set into the set of numbers, that is, into

R, or C or into a field K. So, a map is slightly more general, as it allows a many-to-one

situation, arbitrary sets, etc. For example, we refer to ‘The open mapping theorem’ and not to

the ‘The open function theorem’, and we refer to ‘The contraction mapping theorem’and so on.

A mapping of a set into itself is called a transformation.

An affine map (from the Latin, affinis, “connected with”) between two (vector) spaces consists of

a linear map followed by a translation. Similarly, one can define an affine transformation. In a

geometric setting, these are precisely the functions that map straight lines to straight lines. Be

aware that the term linear function refers to two distinct but related notions. It may be a linear

map or a polynomial of degree one or less, including the zero polynomial, because its graph,

when there is only one independent variable, is a non-vertical straight line.

Another common error involves the incorrect use of the notions ‘self-affine function’ and ‘self-

similar function’. There is no ‘self-affine’ or ‘self-similar’ function but a function with a self-

affine or self-similar graph. Therefore, an object or a set, but not a function, can be self-affine or

self-similar. Each part of a self-affine object is an image of the whole object (either strictly or in a

statistical sense) scaled differently in different directions. Self-affine sets form an important

class of sets, which include self-similar sets as a particular case. A self-similar object is exactly or

approximately similar to a part of itself (i.e. the whole has the same shape as one or more of the

parts).

The aim of our paper is to review the usage of fractal interpolation functions in order to

construct self-affine graphs generated by iterated function systems. Furthermore, we compare

and contrast several constructions presented in Refs. [3–8] by pointing out some of their

ambiguities, limitations and restrictions. Particularly, in Section 2, we briefly review the theory

On Self‐Affine and Self‐Similar Graphs of FIF's Generated from IFS's
http://dx.doi.org/10.5772/intechopen.68499

189



of iterated function systems. In Section 3, we revisit the 1D fractal interpolation theory and

state the prerequisites of the constructions. Necessary conditions for the attractor of an iterated

function system to be the graph of a continuous function interpolating a given set of data are

also given. In Section 4, we revisit the two-dimensional fractal interpolation theory. A compar-

ison to existing methods and some examples of fractal interpolation surfaces constructed by

them are also presented. The corresponding algorithms for constructing these surfaces are

developed and illustrated through several graphic examples. Finally, Section 5 summarises

our conclusions and points out areas of future work.

2. Fractal image generation

In mathematics, an iterated map is a map composed with itself, possibly ad infinitum, in a

process called iteration. Iteration means the act of repeating a process with the aim of

approaching a desired goal, target or result. More formally, let X be a set and f : X!X be a

map. Define f k as the k-th iterate of f, where k is a non-negative integer, by f 0 ¼ idX and f kþ1 ¼ f ◦

f k, where idX is the identity map on X and f ◦ g denotes map composition.

A contraction mapping, or contraction, on a metric space (X, ρ) is a function f from Χ to itself, that

is, a transformation, with the property that there is a non-negative real number s < 1 such that

for all x and y in X, ρ(f(x), f(y)) ≤ s�ρ(x, y), where ρ is a distance function between elements of X.

The smallest such value of s is called the Lipschitz constant or contractivity factor of f. If the above

condition is satisfied for s ≤ 1, then the mapping is said to be non-expansive. A contraction

mapping has at most one fixed point, that is, a point x* in X such that f(x*) ¼ x*. Moreover, the

Banach fixed point theorem, also known as the contraction mapping theorem or contraction mapping

principle, states that every contraction mapping on a non-empty, complete metric space has a

unique fixed point, and that for any x in X the iterated function sequence x, f(x), f(f(x)), f(f(f(x))),

… converges to this fixed point. Furthermore, this fixed point can be found as follows: Start

with an arbitrary element x0 in X and define an iterative sequence by xn ¼ f(xn�1) for n¼ 1, 2, 3,

…. This sequence converges and its limit is x*.

2.1. Iterated function systems

An iterated function system, or IFS for short, is defined as a collection of a complete metric space

(X, ρ), for example, (Rn, k�k) or a subset, together with a finite set of continuous transforma-

tions {wi: X!X, i ¼ 1, 2,…, M}. It is often convenient to write an IFS formally as {X; w1, w2,…,

wM} or, somewhat more briefly, as {X; w1�M}. If wi are contractions with respective contractivity

factors si, i ¼ 1, 2,…, M, the IFS is termed hyperbolic.

Hutchinson in Ref. [15] showed that, for the metric space Rn, such a (hyperbolic) system of

functions has a unique compact (closed and bounded) fixed set S. One way for constructing a

fixed set is to start with an initial point or set S0 and iterate the actions of the wi, taking Snþ1 to

be the union of the image of Sn under the wi; then taking S to be the closure of the union of the

Sn. Symbolically, the unique fixed (non-empty compact) set S ⊂ R has the property
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S ¼ ⋃
M

i¼1

wiðSÞ: ð1Þ

The set S is thus the fixed set of the Hutchinson operator

HðAÞ ¼ ⋃
M

i¼1

wiðAÞ,

where A is any subset of Rn. The operator H itself is a contraction with contractivity factor

s ¼max{s1, s2,…, sM} (Ref. [2], Theorem 7.1, p. 81 or Ref. [16]). The existence and uniqueness of

S, which is called the attractor, or invariant set, of the IFS, are a consequence of the contraction

mapping principle as is the fact that lim
k!∞

HkðAÞ ¼ S � A
∞
for all A in H(Rn), where H(X) is the

metric space of all non-empty, compact subsets of X with respect to some metric, for example,

the Hausdorff metric. The operator H is also called the collage map to alert us to the fact that H(A)

is formed as a union or ‘collage’ of sets. If X is a Euclidean space and the wi are similitudes, that

is, similarity transformations, then the attractor is called a self-similar set. These sets are usually

fractals.

A fractal derived by an IFS is made up of the union of several copies of itself, each copy being

transformed by a function (hence ‘function system’). A canonical example is the Sierpiński

gasket; see Figure 1. The functions are normally contractions which means they bring points

closer together and make shapes smaller. Hence, such a shape is made up of several possibly

overlapping smaller copies of itself, each of which is also made up of copies of itself, ad

infinitum. This is the source of its self-similar nature. Note that this infinite process is not

dependent upon the starting shape being a triangle—it is just clearer that way. The first few

steps starting, for example, from a square also tend towards a Sierpiński gasket; see Figure 2.

Sometimes each functionwi is required to be a linear, or more generally an affine transformation,

and hence represented by a matrix. Formally, a transformationw is affine, if it may be represented

by a matrixA and translation t as w(x) ¼ Ax þ t, or, if X ¼ R2,

w
x
y

� �

¼
a b
c s

� �

x
y

� �

þ
d
e

� �

: ð2Þ

The code of w is the 6-tuple (a, b, c, s, d, e) and the code of an IFS is a table whose rows are the

codes of w1, w2, …, wM. For the three-dimensional case, this becomes

Figure 1. The evolution of the Sierpiński gasket.
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w
x
y
z

0

@

1

A ¼
a b c
d e g
h k s

0

@

1

A

x
y
z

0

@

1

Aþ
l
m
r

0

@

1

A

: ð3Þ

However, IFS’s may also be built from non-linear functions, including projections and Möbius

transformations.

2.2. Recurrent iterated function systems

An IFS with probabilities, written formally as {X; w1, w2, …,wM; p1, p2, …, pM} or, somewhat

more briefly, as {X; w1�M; p1�M}, gives to each transformation in H a probability or weight. If

the weights of transformations differ, so do the measures on different parts of the attractor. A

non-self-similar attractor, however, is more easily represented with a recurrent iterated function

system, or RIFS for short. Each transformation has, instead of a single weight for the next

iteration, a vector of weights for each transformation, {X; w1�M; pi,j ∈ [0, 1]; i, j ¼ 1, 2, …, M},

so that the matrix of weights is a recurrent Markov operator for the Hutchinson operator’s

transformation (see Ref. [17]). Therefore, the attractor of a RIFS need not exhibits the self-

similarity or self-tiling properties characteristic of the attractor of an IFS, such as Eq. (1).

The most common algorithm to compute fractals derived by IFS is called the chaos game or

random iteration algorithm. It consists of picking a random point in the plane, then iteratively

applying one of the functions chosen at random from the function system and drawing the

point. An alternative algorithm, the deterministic iteration algorithm, or DIA for short, is to

generate each possible sequence of functions up to a given maximum length and then to plot

the results of applying each of these sequences of functions to an initial point or shape. For a

short survey on iterated function systems see Ref. [18].

3. Fractal interpolation functions in R

Based on a theorem of Hutchinson ([15], p. 731) and using the IFS theory of Ref. [16], Barnsley

introduced a class of functions (see Ref. [1]) which he called fractal interpolation functions. He

basically worked with affine fractal interpolation functions, in the sense that they are obtained

using affine transformations. Their main difference from elementary functions is their fractal

character. Since their graphs usually have non-integral dimension, they can be used to approx-

imate image components such as the profiles of mountain ranges, the tops of clouds and

Figure 2. Iterating from a square.
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horizons over forests, to name but a few. For a short survey on fractal interpolation functions

see Ref. [19].

Fractal interpolation functions are suitable for data sets with points linearly ordered with

respect to their abscissa. This is often sufficient, for example, when interpolating time series

data. In practice, however, there are many cases where the data are suitable for fractal interpo-

lation but define a curve rather than a function, for example, when modelling coastlines or

plants. There exist methods for constructing fractal interpolation curves based on the theory of

fractal interpolation functions. These methods use various approaches, such as generalisations

to higher dimensions, use of index coordinates or application of reversible transformations.

Let the continuous function f be defined on a real closed interval I ¼ [x0, xM] and with codomain

the metric space (R, |�|), where x0 < x1 < ⋯ < xM. It is not assumed that these points are

equidistant. The function f is called an interpolation function corresponding to the generalised set of

data {(xm, ym) ∈ K : m ¼ 0, 1,…,M}, if f(xm) ¼ ym for all m ¼ 0, 1,…,M and K ¼ I � R. The points

(xm, ym) ∈ R
2 are called the interpolation points. We say that the function f interpolates the data and

that (the graph of) f passes through the interpolation points. The graph of f is the set of points

G(f) ¼ {(x, f(x) : x ∈ X}.

3.1. Affine fractal interpolation

Let us represent our, real valued, set of data points as {(un, vn) : n ¼ 0, 1,…, N; un < unþ1} and the

interpolation points as {(xm, ym) : m ¼ 0, 1,…,M;M ≤ N}, where un is the sampled index and vn
the value of the given point in un. Let {R

2; w1�M} be an IFS with affine transformations of the

special form (see Eq. (2))

wi
x
y

� �

¼
ai 0
ci si

� �

x
y

� �

þ
di
ei

� �

constrained to satisfy

wi
x0
y0

� �

¼
xi�1

yi�1

� �

and wi
xM
yM

� �

¼
xi
yi

� �

ð4Þ

for every i ¼ 1, 2,…, M. Solving the above equations results in

ai ¼
xi � xi�1

xM � x0
, di ¼

xMxi�1 � x0xi
xM � x0

ci ¼
yi � yi�1

xM � x0
� si

yM � y0
xM � x0

, ei ¼
xMyi�1 � x0yi

xM � x0
� si

xMy0 � x0yM
xM � x0

i.e., the coefficients ai, ci, di, ei are completely determined by the interpolation points, while the

si are free parameters satisfying |si| < 1 in order to guarantee that the IFS is hyperbolic with

respect to an appropriate metric for every i ¼ 1, 2, …, M. The transformations wi are shear

transformations: line segments parallel to the y-axis are mapped to line segments parallel to the
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y-axis contracted by the factor |si|. For this reason, the si are called vertical scaling (or

contractivity) factors.

The IFS {R2; w1�M} has a unique attractor that is the graph of some continuous function which

interpolates the data points. This function is called a fractal interpolation function, or FIF for

short, because its graph usually has non-integral dimension. A section is defined as the function

values between interpolation points. It is a function with a self-affine graph since each affine

transformation wi maps the entire (graph of the) function to its section. The above function is

known as affine FIF, or AFIF for short. For example, let {(0, 0), (0.4, 0.5), (0.7, 0.2), (1, 0)} be a

given set of data points. Figure 3 shows the graph of an AFIF with s1 ¼ 0.5, s2 ¼ �0.2 and

s3 ¼ 0.4. The closeness of fit of a FIF is mainly influenced by the determination of its vertical

scaling factors. No direct way to find the optimum values of these factors exists, and various

approaches have been proposed in the literature.

3.2. Piecewise affine fractal interpolation

The piecewise self-affine fractal model is a generalisation of the affine fractal interpolation model

and has its mathematical roots embedded in RIFS theory. A pair of data points {ð~xi, j, ~yi, jÞ :

i ¼ 1, 2,…,M; j ¼ 1, 2}, which are called addresses or address points, is now associated with each

interpolation interval. Each pair of addresses defines the domain or address interval. The con-

straints Eq. (4) become

Figure 3. The construction of an affine FIF starting from the unit square and using the DIA.
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wi
~xi,1
~yi,1

� �

¼
xi�1

yi�1

� �

and wi
~xi,2
~yi,2

� �

¼
xi
yi

� �

subjected to ~xi,2 � ~xi,1 > xi � xi�1 for every i ¼ 1, 2,…,M. Solving the above equations results in

ai ¼
xi � xi�1

~xi,2 � ~xi,1
, di ¼

~xi,2xi�1 � ~xi,1xi

~xi,2 � ~xi,1,

ci ¼
yi � yi�1

~xi,2 � ~xi,1
� si

~yi,2 � ~yi,1
~xi,2 � ~xi,1

, ei ¼
~xi,2yi�1 � ~xi,1yi

~xi,2 � ~xi,1
� si

~xi,2~yi,1 � ~xi,1~yi,2
~xi,2 � ~xi,1

for every i ¼ 1, 2,…, M. The function constructed as the attractor of the above-mentioned IFS is

called recurrent fractal interpolation function, or RFIF shortly, corresponding to the interpolation

points. A RFIF is a piecewise self-affine function since each affine transformation wi maps the

part of the (graph of the) function defined by the corresponding address interval to each section.

4. Fractal interpolation functions in R2

Let the discrete data {(xi, yj, zi,j ¼ z(xi, yj)) ∈ R
3 : i ¼ 0, 1,…, N; j ¼ 0, 1,…, M} be known. Each

affinemapping that comprises the hyperbolic IFS {R3;w1�N, 1�M} is given by the following special

form of Eq. (3)

wn,m

x
y
z

0

@

1

A ¼

an,m bn,m 0
cn,m dn,m 0
en,m gn,m sn,m

0

@

1

A

x
y
z

0

@

1

Aþ

hn,m
kn,m
ln,m

0

@

1

A,

with |sn,m| < 1 for every n ¼ 1, 2,…, N and m ¼ 1, 2,…, M. The condition

�

�

�

�

an,m bn,m
cn,m dn,m

�

�

�

�

< 1

ensures that

un,m
x
y

� �

¼
an,m bn,m
cn,m dn,m

� �

x
y

� �

þ
hn,m
kn,m

� �

is a similitude and the transformed surface does not vanish or flip over.

A formal definition for the fractal interpolation surfaces, as presented in Ref. [4], with some

generalisations is given below. Let D be a convex polygon in R2 with ℓ vertices and let S ¼ {q0,

q1, …, qm�1} be m, with m > ℓ, distinct points in D such that q0, q1,…, qℓ�1 are the vertices of D.

Given real numbers z0, z1,…, zm�1, we wish to construct a function f such that f(qj)¼ zj, j¼ 0, 1,…,

m�1 and whose graph is self-affine or self-similar. Let us denote by C(D) the linear space of all

real-valued continuous functions defined on D, that is,
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C Dð Þ ¼ {f : D ! R j f continuous}:

A mapping Φ on C(D) which corresponds to piecing the G(Φ(f)) together using copies of parts

of G(f) will be defined.

4.1. Affine fractal interpolation

The basic idea is to decompose D into N non-degenerate subregions Δ1, Δ2, …, ΔN with

vertices chosen from S and define affine maps Li: D ! Δi and Fi: D � R ! R, i ¼ 1, 2, …, N

such that Φ defined by

Φðf ÞðxÞ ¼ Fi L
�1
i ðxÞ, f L�1

i ðxÞ
� �� �

ð5Þ

for x ∈ Δi maps an appropriate subset of C(D) onto itself. The main work is in showing that Φ is

well defined and contractive on some subset of C(D). If Li is invertible, G(f) is mapped onto

G Φðf Þj
Δi

� �

by (Li, Fi). Henceforth, we assume that the set Δif gNi¼1 consists of non-degenerate

convex polygons with extreme points whose interior are non-intersecting, L�1
i ðΔiÞ ¼ D and the

set of vertices of Δif gNi¼1 equals S. Let k: {1, 2, …, N} � {0, 1, …, ℓ�1} ! {0, 1, …, m�1} be such

that fqkði, jÞg
ℓ�1

j¼0
gives the vertices of Δif gNi¼1:

Let i ∈ {1, 2,…, N}. Since D and Δi are non-degenerate, there exists an invertible map satisfying

LiðqjÞ ¼ qkði, jÞ, j ¼ 0, 1,…, ℓ � 1: ð6Þ

Also, given any necessary free parameters,

Fiðqj, zjÞ ¼ zkði, jÞ, j ¼ 0, 1,…, ℓ � 1: ð7Þ

With these definitions for Li and Fi, if f ∈ C(D) and f(qj) ¼ zj, j ¼ 0, 1, …, ℓ�1, then ΦjΔi
∈ C(Δi)

and Φ(f)(qk(i, j)) ¼ zk(i, j), j ¼ 0, 1,…, ℓ�1. If Δi and Δi' are adjacent polygons with common edge

qjqj0 , it remains to be determined if Φ is well defined along qjqj0 , that is, whether Φ(f) satisfies

for all x ∈ qjqj0 the ‘join-up’ condition

FiðL
�1
i ðxÞ, f ðL�1

i ðxÞÞÞ ¼ Fi0ðL
�1
i0 ðxÞ, f ðL�1

i0 ðxÞÞÞ:

When there is no proof that our construction always satisfies it, the surface may be not

continuous and a geometrical and visual artefact, known as ‘discontinuity’, appears. When a

surface suffers from discontinuities, a correct visualisation should render aligned horizontal

holes over the surface. A surface with discontinuities should not be considered as a fractal

interpolation surface; the function f is ambiguous on the common edge points and Φ(f) is not

well defined.

Let the number of extreme points of the convex region D be 3. A triangular domain is formed,

and the set Δif gNi¼1 contains non-degenerate triangles whose interior is non-intersecting. In
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what follows, we shall deal with a special class of maps, namely affine ones. For all i ¼ 1, 2,…,

N the invertible map Li: R
2! R

2 is defined as follows

Liðx, yÞ ¼ ðaixþ bi, ciyþ diÞ

and let the map Fi: R
3! R be defined by

Fiðx, y, zÞ ¼ eixþ f iyþ sizþ gi: ð8Þ

Then, the corresponding IFS is of the form {R3; w1�N}, where wi(x, y, z) ¼ (Li(x, y), Fi(x, y, z)),

i ¼ 1, 2, …, N and can be written in a matrix form

wi

x
y
z

0

@

1

A ¼
ai 0 0
0 ci 0
ei f i si

0

@

1

A

x
y
z

0

@

1

Aþ
bi
di
gi

0

@

1

A

:

The real numbers ai, bi, ci and di for i ¼ 1, 2,…, N are chosen to ensure that Condition (6) holds,

that is, Li(q0) ¼ qk(i, 0), Li(q1) ¼ qk(i, 1) and Li(q2) ¼ qk(i, 2). Thus, for i ¼ 1, 2, …, N,

ai ¼
xkði, j0Þ � xkði, jÞ

xj0 � xj
, bi ¼ xkði, jÞ � xj

xkði, j0Þ � xkði, jÞ

xj0 � xj
, j 6¼ j0 ∈ {0, 1, 2}, xj 6¼ xj0 ,

ci ¼
ykði, j0Þ � ykði, jÞ

yj0 � yj
, di ¼ ykði, jÞ � yj

ykði, j0Þ � ykði, jÞ

yj0 � yj
, j 6¼ j0 ∈ {0, 1, 2}, yj 6¼ yj0 :

After selecting the scaling factors si with |si|< 1, the values ei, fi and gi are chosen to ensure that

Condition (7) holds, that is, Fi(q0, z0) ¼ zk(i, 0), Fi(q1, z1) ¼ zk(i, 1) and Fi(q2, z2) ¼ zk(i, 2). That is,

si ∈ (�1, 1) is chosen and then

ei ¼
zkði,0Þðy1 � y2Þ þ zkði,2Þðy0 � y1Þ þ zkði,1Þðy2 � y0Þ

x0ðy1 � y2Þ þ x2ðy0 � y1Þ þ x1ðy2 � y0Þ
þ si

z1ðy0 � y2Þ þ z0ðy2 � y1Þ þ z2ðy1 � y0Þ

x0ðy1 � y2Þ þ x2ðy0 � y1Þ þ x1ðy2 � y0Þ
,

f i ¼
zkði,1Þðx0 � x2Þ þ zkði,0Þðx2 � x1Þ þ zkði,2Þðx1 � x0Þ

y1ðx0 � x2Þ þ y0ðx2 � x1Þ þ y2ðx1 � x0Þ
þ si

z0ðx1 � x2Þ þ z2ðx0 � x1Þ þ z1ðx2 � x0Þ

y1ðx0 � x2Þ þ y0ðx2 � x1Þ þ y2ðx1 � x0Þ
,

gi ¼
x0ðy1zkði,2Þ � y2zkði,1ÞÞ þ x1ðy2zkði,0Þ � y0zkði,2ÞÞ þ x2ðy0zkði,1Þ � y1zkði,0ÞÞ

x0ðy1 � y2Þ þ x1ðy2 � y0Þ þ x2ðy0 � y1Þ
þ

si
x0ðy2z1 � y1z2Þ þ x1ðy0z2 � y2z0Þ þ x2ðy1z0 � y0z1Þ

x0ðy1 � y2Þ þ x1ðy2 � y0Þ þ x2ðy0 � y1Þ
,

for all i ¼ 1, 2, …, N. We construct the IFS of the form {S; w1�N}, with the intention to produce

G(f) that is continuous and passes through the points (qj, zj), qj ∈ S, j ¼ 0, 1, …, m�1 as the

unique attractor A of the IFS. Since we consider f ∈ C(D), we must check if the ‘join-up’

condition is satisfied for all possible starting points of the IFS. Figure 4 illustrates the surface
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graph (Level ¼ 0) drawn with the original set of data {(0, 0, 0), (0.5, 0, 0.2), (1, 0, 0), (0, 0.5, 0.3),

(0.5, 0.5, 0.5), (0, 1, 0)} where s ¼ 0.6. See also Example 58 of Ref. [8].

4.1.1. Coplanar boundary data, arbitrary contractivity factors

If P is a non-vertical plane in R3, let Ĉ(D) denote the collection of continuous functions f :D! R

such that (x, f(x)) ∈ P for all x ∈ ∂D.

Theorem 4.1.1. Suppose the points {(qj, zj) : qj ∈ ∂D} are contained in a plane P ⊂ R
3. Let Φ be

defined by (5), where Li and Fi, i ¼ 1, 2,…, N are defined by Eqs. (6)–(8). Then, Φ: Ĉ(D)! Ĉ(D)

is well defined and contractive in the sup-norm k�k∞. Furthermore, for every j ¼ 0, 1, …, m�1

and f ∈ Ĉ(D), Φ(f)(qj) ¼ zj.

We call the unique attractor of the afore-mentioned IFS a self-affine fractal interpolation surface, or

SAFIS for short, with coplanar boundary data and arbitrary contractivity factors. Figure 5 illustrates

Example 1 constructed in Ref. [4].

4.1.2. Arbitrary boundary data, identical contractivity factors

The chromatic number of a graph is the smallest number of colours needed to colour its vertices

so that no two adjacent vertices share the same colour. Let G be the graph with S as its vertices

and its edges correspond to the decomposition of D to Δif gNi¼1: We assign a colour to each

vertex of the graph through the labelling function l ¼ l(j) ∈ {0, 1, 2}, j ¼ 0, 1, …, m�1; see

Figure 6.
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Figure 4. The generation of an affine fractal surface and its view from above.
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Figure 5. Three views of a SAFIS with coplanar boundary data and arbitrary contractivity factors.
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For i ¼ 1, 2, …, N and j ¼ 0, 1, 2 let k(i, j) be determined by the condition k(i, l(j0)) ¼ j0 for all

vertices qj’ of Δi. Then, for each of the vertices qj of Δi, Eqs. (6) and (7) become

Li qlðjÞ
� �

¼ qj and Fi qlðjÞ, zlðjÞ
� �

¼ zj: ð9Þ

Let Ĉ(D) denote the collection of continuous functions f such that f(qj) ¼ zj, qj ∈ ∂D.

Theorem 4.1.2. Suppose the graph associated with Δif gNi¼1 has chromatic number 3. Let Li and

Fi, i ¼ 1, 2, …, N be determined by Eqs. (8) and (9) with si ¼ s ∈ (�1, 1). Let Φ be defined by

Eq. (5). Then, Φ: Ĉ(D) ! Ĉ(D) is well defined and contractive in the sup-norm k�k∞. Further-

more, for every j ¼ 0, 1, …, m�1 and f ∈ Ĉ(D), Φ(f)(qj) ¼ zj.

We call the unique attractor of the afore-mentioned IFS a self-affine fractal interpolation surface, or

SAFIS for short, with arbitrary boundary data and identical contractivity factors. The colouring of

Theorem 4.1.2 is also known as ‘consistent triangulation’ within the context of computational

geometry. We will be using this term from now on, for simplicity. Figure 7 illustrates Example

2 constructed in Ref. [4].
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Figure 6. Domain for fractal interpolating surfaces over triangular lattice and possible subdomains.
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Figure 7. Two views of a SAFIS with arbitrary boundary data and identical contractivity factors.
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4.1.3. Arbitrary boundary data, arbitrary contractivity factors

Zhao in Ref. [7] deploys a piecewise linear function γ over the graph G of the IFS. Let G be the

graph mentioned earlier and S its vertices. We assign a value s ∈ (�1, 1) to each vertex by

defining for all i ¼ 1, 2,…, N the piecewise linear function γ ¼ γi: R
2! (�1, 1) as follows

γiðqÞ ¼
βsðqkði,0Þ, qkði,1Þ, qkði,2Þ, qÞ, q∈Δi

0, otherwise
,

	

where βs is the barycentric interpolation function with the attribute s as coefficient

βsðqa, qb, qc, qÞ ¼
kðq� qaÞ � ðq� qbÞksc þ kðq� qbÞ � ðq� qcÞksa þ kðq� qcÞ � ðq� qaÞksb

kðqa � qbÞ � ðqc � qbÞk
:

Theorem 4.1.3. Consider the IFS {S; w1�N} and the corresponding graph G described above

that also fulfils the conditions mentioned in Theorem 4.1.2, except for the usage of identical

scaling factors over the whole surface. For each transformation wi, we substitute the scaling

factors si with the function γi described above, so the map Fi becomes for all i ¼ 1, 2,…, N

Fiðx, y, zÞ ¼ eixþ f iyþ γiðLiðx, yÞÞzþ gi:

Then, the unique attractor of the IFS mentioned previously is the graph of a continuous

function f that passes though the points ðqj, zjÞ, qj ∈ S, j ¼ 0, 1,…, m�1.

We call the unique attractor of the afore-mentioned IFS a self-similar fractal interpolation surface, or

SSFIS for short, with arbitrary boundary data and contractivity factors. The assignment of the scaling

factor value sj, j ¼ 0, 1,…, m�1 to each vertex can be done either during the parameter identifi-

cation process or can be inferred via a given set of vertical scaling factors {s1, s2,…, sN}, where each

si corresponds to Δi, i ¼ 1, 2, …, N. The technique is identical to the calculation of the vertex

normal vectors on the Gouraud and Phong shading models, where the facets of the mesh are the

sub-regions Δi, i ¼ 1, 2,…, N. Compare and contrast Figures 6 and 9 of Ref. [7] with Figure 8.

4.2. Recurrent affine fractal interpolation

Let D be a polygonal domain, Δif gNi¼1 a triangulation of D consisting of non-degenerate tri-

angles with non-intersecting interiors whose union is D and S ¼ {q0, q1,…, qm�1} be the set of

vertices of Δif gNi¼1. Let δkf gMk¼1 be M triangles each of which is a union of some subset of
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Figure 8. Two views of a SSFIS with arbitrary boundary data and contractivity factors.

Fractal Analysis - Applications in Health Sciences and Social Sciences200



Δif gNi¼1; see Figure 9. We order S so that the first n points {q0, q1,…, qn�1} ⊂ S are the vertices of

δkf gMk¼1.

4.2.1. Coplanar boundary data, arbitrary contractivity factors

We call l: {1, 2, …,N} ! {1, 2, …, M} a Δ-labelling which associates the vertices of Δi with the

vertices of some δk. If Pk are non-vertical planes in R
3, let Ĉ(D) denote the collection of

continuous functions fk = f jΔi
: δk! R such that (x, fk(x)) ∈ Pk for all x ∈ ∂δk.

Theorem 4.2.1. Suppose the points {(qj, zj) : qj ∈ ∂δk} are contained in the planes Pk ⊂ R
3 for

every k. Let Φ be defined by Eq. (5), where Li and Fi, i ¼ 1, 2, …, N are defined by Eqs. (6)–(8).

Then, Φ: Ĉ(D) ! Ĉ(D) is well defined and contractive in the sup-norm k�k∞. Furthermore, for

every j ¼ 0, 1, …, m�1 and f ∈ Ĉ(D), Φ(f)(qj) ¼ zj.

We call the unique attractor of the afore-mentioned RIFS a recurrent self-affine fractal interpola-

tion surface, or RSAFIS for short, with coplanar boundary data and arbitrary contractivity factors.

4.2.2. Arbitrary boundary data, identical contractivity factors

We call l: {0, 1, …, m�1} ! {0, 1, …, n�1} a Δ-labelling associated with δkf gMk¼1 and Δif gNi¼1 if

{ql(j), ql(j'), ql(j”)} are the vertices of some δk whenever {qj, qj', qj”} are the vertices of some Δi; see

Figure 10.

Theorem 4.2.2. Let l be a Δ-labelling associated with the triangulations Δif gNi¼1 and δkf gMk¼1. Let

Li: R
2 ! R

2 and Fi: R
3!R be the unique affine maps satisfying (9) with si ¼ s (|s| < 1). Let Φ be

defined by Eq. (5). Then, Φ: Ĉ(D)!Ĉ(D) is well defined and contractive in the sup-norm k�k∞.

Furthermore, for every j ¼ 0, 1, …, m�1 and f ∈ Ĉ(D), Φ(f)(qj) ¼ zj.

Geronimo and Hardin in Ref. [4] have showcased a two-dimensional multi-resolution analysis.

Based on their work, we have created acceptable colourings of graphs with any desirable

density, by solving the problem on a small instance that we call pattern graph. If the solution

has the identity of self-similarity, the density of the graph is then enhanced by interpolating the

pattern with a RIFS defined on the metric space of the undirected graphs. With the help of a

geometric predicate, we unify the resulting points into a single graph that now has the desired

density. The results are illustrated in Figure 11.
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Figure 9. Domain for fractal interpolating surfaces over polygonal lattice and possible subdomains.
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We call the unique attractor of the afore-mentioned RIFS a recurrent self-affine fractal interpola-

tion surface, or RSAFIS for short, with arbitrary boundary data and identical contractivity factors.

Figure 12 illustrates Example 3 constructed in Ref. [4].

4.2.3. Arbitrary boundary data, arbitrary contractivity factors

The map Fi becomes for all i ¼ 1, 2,…, N, Fiðx, y, zÞ ¼ eixþ f iyþ γiðLiðx, yÞÞzþ gi:
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Figure 10. Domain for fractal interpolating surfaces over polygonal lattices and possible subdomains.

Figure 11. Examples of increasing the density of partially self-similar coloured graphs.

Figure 12. Two views of a RSAFIS over polygonal domain with arbitrary boundary data and identical contractivity

factors.
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Theorem 4.2.3. Suppose the graph associated with Δif gNi¼1 has chromatic number 3. Let Li and

Fi, i ¼ 1, 2,…, N are defined by Eqs. (6)–(8) and Φ be defined by Eq. (5). Then, Φ: Ĉ(D)!Ĉ(D) is

well defined and contractive in the sup-norm k�k
∞
. Furthermore, Φ(f)(qj) ¼ zj, j ¼ 0, 1, …, m�1

and f ∈ Ĉ(D).

We call the unique attractor of the afore-mentioned RIFS a recurrent self-similar fractal interpola-

tion surface, or RSSFIS for short, with arbitrary boundary data and contractivity factors. We illus-

trate this construction in Figure 13.

5. Conclusions, extensions and future work

We have presented an overview of affine interpolation as well as of recurrent affine interpola-

tion using fractal functions in one and two dimensions. The effectiveness of a self-affine fractal

model is limited to the types of data: only those data that are self-affine, or nearly so, are well

represented. Since most data are not self-affine, the piecewise or recurrent self-affine fractal

model may be a suitable alternative tool.

Nevertheless, our future work should focus on the parameter identification of fractal interpo-

lation surfaces. More methods must be explored, including the ones for self-affine FIS’s and the

vertex-based ones, while a better sampling technique for the heights is needed. For the recur-

rent FIS’s, it is utmost important to connect the domains with the subdomains that they

resemble the most instead of determining the connections through an arbitrary colouring
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Figure 13. Two levels of a RSSFIS over different polygonal domains with arbitrary boundary data and contractivity

factors.
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scheme. Therefore, a premise for future work is to find the optimal connections between

domains and subdomains through a statistical analysis and then, starting from a feasible

solution, to perform a heuristic local search with the intention to minimise the distance

between current connections, implied by the current colouring, and those of the optimal

solution. Moreover, methods to construct FIS, other than those based on the iterated function

systems, exist, including the ones that use wavelets and tensor products, in which they should

be also studied.

Many areas of fractal functions and their applications are yet to be explored, for instance,

calculating the Hausdorff dimension of a general FIF is a challenging open problem. By believing

that the field of fractal functions has bright future, the reader, in order to be able to contribute to

it, should leave the idea of staying in the comfort of well-known classical approximation theory

and start enjoying the benefits of the more versatile fractal approximants, to supplement the

former if not to replace it.
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