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Abstract

Many female reproductive disorders observed during adulthood originate from the 
neonatal period, which is a critical stage toward the reproductive potency. Human and 
animal fertility are determined by the pool of primordial follicles that are established 
during fetal or neonatal life. The earliest stages of follicle development are under con-
trol of a variety of factors, including sex steroids. Neonatal period is a “critical devel-
opmental window” in which organisms are susceptible to the environmental chemicals 
that may affect the reproductive health. Endocrine active compounds (EACs) are found 
abundantly in the environment and interfere with sex steroids (predominantly andro-
gens and estrogens) by either mimicking or blocking their functions. This review covers 
the current knowledge about the effects of selected EACs with androgenic (testoster-
one propionate), anti-androgenic (flutamide), estrogenic (diethylstilbestrol, bisphenol A, 
4-tert-octylphenol, phtalates and genistein), anti-estrogenic (ICI 182,780 and parabens), 
or mixed activity (methoxychlor) on the ovary of neonates, focusing on their effects on 
the early stages of folliculogenesis. These chemicals have been shown to affect oocyte 
survival, follicle formation, and growth, as well as steroidogenic functions. The better 
cognition of mechanisms underlying the long-term consequences of the neonatal EACs 
exposure may in future lead to an understanding of human health risks and developing 
prevention strategies.
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1. Introduction

Considerable evidence demonstrates that inappropriate steroid exposure during pre- and 
postnatal developmental periods may have long-term effects on the adult reproductive func-

tions [1]. Female fertility is determined by the pool of primordial follicles within the ovary 

that is established during fetal or neonatal life. The earliest stages of follicle development 

are tightly coordinated by numerous factors, including steroids. Importantly, these fetal/
neonatal periods are “critical developmental windows” in which organisms are susceptible 

to the environmental chemicals that may affect ovarian formation and disturb reproduc-

tive functions during adulthood, including conception rates, maintenance of pregnancy, and 

reproductive disorders [2]. Endocrine active compounds (EACs) comprise a wide variety of 
synthetic or natural chemicals found in the environment arising from anthropogenic, indus-

trial, agricultural, and domestic sources. EACs may interfere with the natural regulation of 
endocrine system by either mimicking or blocking the function of endogenous hormones 
and also they may act directly on gene expression by means of epigenetic modifications [3]. 

This is of concern because women are exposed to EACs on a daily basis, and some EACs are 
known to target the ovary and cause reproductive health problems. However, the harmful 
effects of EACs during neonatal period may occur with exposure to much lower doses than 
those considered harmful to adults [4]. Although many disrupting chemicals are excluded 
from the everyday use since their dangerous properties have been described, they may per-

sist in the environment for long periods of time. Furthermore, new products with similar 

properties are still introduced to the market. Therefore, these compounds have currently 
been one of the greatest concerns all over the world. To assess the effect of EACs on human 
ovarian and consequently reproductive functions, the animal models are extensively used in 

experimental studies.

In this chapter, we aim to point out a possible impact of androgens/estrogens excess or defi-

ciency on neonatal ovary following EACs action. The effect of EACs with androgenic (tes-

tosterone propionate), anti-androgenic (flutamide), estrogenic (diethylstilbestrol, bisphenol 
A, 4-tert-octylphenol, phtalates and genistein), anti-estrogenic (ICI 182,780 and parabens), or 
mixed activity (methoxychlor) will be discussed.

2. Mechanism of steroids action

The action of androgens/estrogens, and their agonists or antagonists, depends on the pres-

ence of specific receptors in target cells. The types of receptors that are involved in the sig-

nal transduction decide on the signaling pathway. The effect of sex steroid hormones action 
within the cell may be genomic or nongenomic. A genomic response is usually induced by 
nuclear/cytoplasmic receptors, while nongenomic pathway is activated by membrane recep-

tors, mostly G-protein-coupled receptor. It is now evident that there is crosstalk between non-

genomic and genomic signaling pathways [5].
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Steroid hormone receptors, which belong to the superfamily of nuclear receptors, are hor-

mone-activated transcriptional factors. They are modular proteins consisting of C-terminal 
ligand-binding domain (LBD), highly conserved DNA-binding domain (DBD) with centrally 
located zinc fingers, and N-terminal domain [6]. Activation of these receptors is mediated by 
two transcriptional activating domains, AF-1 and AF-2. AF-1, characterized by a ligand-inde-

pendent transcriptional activation, is localized in the N-terminal region of the receptor, while 

AF-2, activated by ligands, is localized within the LBD. The LBD and DBD of nuclear recep-

tors are conserved regions, whereas the N-terminal domain is highly variable but important 

for full transcriptional activity [7]. The latter contains many sites for Ser/Thr phosphorylation, 
which may be involved in mediating cross-talk with other signaling pathways leading to 
modulation of AF-1 activity and interaction with coregulators [8].

Sex steroid hormones can freely diffuse across the plasma membrane and bind to their cog-

nate receptors inducing dissociation from the heat-shock proteins. Ligand binding to LBD 
region causes conformational changes followed by the dimerization of receptors and its trans-

location into the nucleus. The dimer binds to the hormone response elements (HREs) typically 
located in the promoter of the target gene and leads to the recruitment of coregulators, either 

coactivators or corepressors [9]. However, some nuclear receptors (i.e., estrogen receptors, 
and ERs) are capable of binding to DNA sequence, lacking the classic HRE sequence. Such 
receptors associate with the components of the AP-1 transcription factor complex (i.e., c-Jun 
and c-Fos). Additionally, in the low steroids concentration, the ligand-independent signaling 
pathway occurs allowing the activation of receptors. This process depends on the growth 

factor receptors and involves MAPK/ERKs pathway, which enhances transcriptional activ-

ity through direct phosphorylation of steroid receptors [10]. These pathways are known as 
“genomic pathway” and are characterized by the regulation of the expression of specific sex 
steroid receptor-regulated genes [11].

Although steroids exert most of their biologic activity through direct or indirect genomic effects, 
there are several examples that do not fit to this regulatory scheme. This pathway known as 
“nongenomic” is much more rapid and involves receptors localized in the plasma membrane 

or in “lipid rafts” [12]. All sex steroid hormones may stimulate rapid effects in signal transduc-

tion pathway through the production of second messengers, ion channels transport, and pro-

tein kinase cascades. Rapid effects of androgens and estrogens have been reported in many cell 
types [13, 14]. Conventional steroid receptors located in the membrane trigger the signal trans-

duction cascade by activation of the Src/Ras/Raf/MAPK/ERK1/2 pathway [15]. Furthermore, 

steroids may mediate rapid signaling by binding to transmembrane receptors unrelated to 

nuclear hormone receptors (usually, G protein-coupled receptor, GPCR) and to the modified 
forms of steroid receptor or to receptors for neurotransmitters. The involvement of the type of 
receptor may depend on the steroid and cell type [16]. GPCR activates a protein kinase cascade 
or acts at the level of secondary messengers such as PI3K/AKT/mTOR, PI3K/AKT/cAMP/Ca+2  

or ERK-mediated pathways like PI3K/AKT/MAPK-ERK/Elk1 [17]. Among GPCR, there are 
GPR30 for estradiol, mPR for progesterone, and GPRC6A and ZIP9 for androgens [18–21]. All 
the abovementioned mechanisms of steroid action are presented in Figure 1.
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3. The role of androgens and estrogens in the ovarian development

Primordial follicle assembly and the primordial-to-primary follicle transition are the major devel-
opmental events within the ovary [23]. The primordial follicle pool represents the total population 

of germ cells available during reproductive life and, therefore, determines the fertility potential 

of the female. In mammals, mitosis of oogonia and initiation of meiotic prophase I occur before 
birth, but the timing of oocyte meiotic arrest, follicle formation, and the initiation of follicle growth 

varies among species. During fetal ovarian development, primordial germ cells (PGSs) migrate 
from the endoderm of the yolk sac to the bipotential genital ridges. In mice (reviewed in Ref. [24]), 
which is a valuable animal model for studying embryogenesis, PGSs migrate into the undiffer-

entiated gonad from around 8.5 day post coitum (dpc) to 11.5 dpc. The genital ridge is identical in 
both males and females and remains bipotential until sex determination (12.5 dpc). PGSs continue 
to proliferate mitotically during the migration and after arrival in the genital ridge until 12.5–13.5 
dpc in mouse and 6th week of pregnancy in human. Then, at 13.5 dpc, in the mouse and between 8 
and 13 weeks of gestation in human, meiosis is initiated, allowing oogonia to develop into oocytes 
that are arrested at the early  diplotene phase of meiotic prophase I (reviewed in Ref. [25]). Oocytes 

Figure 1. Molecular mechanism of the action of sex steroid hormone receptors. (A) Direct genomic effects. (B) Indirect 
genomic effects. (C) TF activation triggered by membrane receptor. (D) Nongenomic effects triggered by G-protein–
coupled receptor. (E) Ligand-independent effects. TF, transcription factor; cAMP, cyclic AMP; PKA, protein kinase 
A; PLC, phospholipase C; IP3, inositol 1,4,5-triphosphate; DAG, diacylglycerol; PKC, protein kinase C. Based on 
Laurentino et al. [22].
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initially develop as large, interconnected clusters of cells called oocytes nests. They are organized 

into long ovigerous cords surrounded by somatic or pregranulosa cells [24]. In rodents, oocyte 
nests break down in neonatal ovary that leads to the formation of primordial follicle. This is medi-
ated by oocyte apoptosis starting at 16.5 dpc in mice. In addition, somatic cells can mediate nest 
breakdown by moving into the nest and intersperse between the remaining oocytes to form pri-
mordial follicles [26]. In the mouse ovary, the primordial follicles consist of an oocyte surrounded 
by a single layer of squamous pregranulosa cells that are formed fairly synchronously between 

17.5 dpc and 4 postnatal day. Once assembled, some of the primordial follicles are immediately 
stimulated to growth, but most of them remain quiescent until selected follicles are gradually 

recruited into a growing follicle pool throughout reproductive life [27]. The recruitment of pri-

mordial follicles into growth (primordial-to-primary follicle transition) involves a change in the 
shape of the granulosa cells from squamous to cuboidal and the initiation of oocyte growth. The 

primordial-to-primary follicle transition is an irreversible process. Most of the growing follicles 

(99.9%) are destined to become atretic, and the rest will ovulate [28]. Around the end of the first 
postantal week, some secondary follicles are present in the mice ovary [29].

In contrast, in humans, ruminants, and pigs, follicle formation and the initiation of follicular 
growth are much less synchronous than in rodents and take place during fetal life. Although 
cattle and human have similar gestation lengths, follicle assembly in cattle was observed ear-

lier (around 80 dpc) than in human (112–133 dpc). Besides, in bovine ovaries, the first primary 
and secondary follicles were observed around 140 and 210 dpc, respectively. No secondary 
follicles were observed in the fetal human ovary [30]. In pig, primordial follicle formation was 
observed between 70 and 90 dpc, while primordial to primary follicle transition was between 
90 dpc and postnatal day 1 [31]. Interestingly, even antral follicles were present before birth 
in the sheep ovaries [32].

The early stages of folliculogenesis are believed to be gonadotropins-independent. All 
events related to early follicular development during fetal/neonatal period are mostly regu-

lated by paracrine growth factors originating from the growing oocyte itself and from the 

somatic cells that surround it [33], and also by ovarian steroid hormones (i.e., progesterone, 
androgens, and estrogens). Although the pivotal role of androgens in the development 
of male reproductive organs is well understood, growing evidence supports the direct 

involvement of these hormones in female reproduction, including early follicular devel-

opment [34]. The androgen receptor (AR) role in the female is implicated from the stud-

ies of various global and tissue-specific AR knockout (ARKO) mouse models. Granulosa 
cell-specific ARKO (GCARKO) mouse models have demonstrated that granulosa cells 
are important sites for androgen action and strongly suggested that the AR in these cells 
is an important regulator of androgen-mediated follicular growth and development. On 
the other hand, AR inactivation in the oocyte, as shown in the OoARKO female mouse 
model, appears to have no major overall effect on female fertility [35]. Fowler et al. [36] 

reported that the oocyte of the primordial follicles was able to synthesize androgens and 

that pregranulosa cells expressed AR in human fetal ovaries. Initiation of primordial follicle 
growth was stimulated in mouse, bovine, and primates ovaries by testosterone and dihy-

drotestosterone [37–39], while in sheep by dehydroepiandrosterone [40]. In general, andro-

gens stimulate the primordial-to-primary follicle transition but impede the later stages of 

follicle development.
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Studies using ERα knockout (αERKO) mice have demonstrated that the lack of ERα does 
not appear to affect folliculogenesis until the preantral stage of follicle development [41]. 

Similarly, in ERβ knockout (βERKO) mice, 17β-estradiol (E2) does not appear to be essential 
for the establishment of germ cell number or ovarian development [42]. However, Kezele 
and Skinner [43] have shown that both progesterone (P4) and E2 inhibit oocyte nest break-

down. It has been shown that fetal ovarian P4 and E2 concentrations decreased during the 
time as follicle assembly was initiated in the bovine ovary, while the maternal blood P4 and 
E2 levels were stable [44]. Recent work by Dutta et al. [45] also revealed that fetal mice pro-

duce their own steroid hormones to coordinate primordial follicle development. Notably, 

E2 promotes primordial follicle formation in hamster [46]. These data indicate that both P4 
and E2 are important regulators of ovarian follicle assembly. Furthermore, E2 is likely to 
inhibit primordial-to-primary follicle transition, which was revealed in neonatal rat ovaries 

[43, 47]. In contrast, the lack of E2 in aromatase knockout (ArKO) mice was associated with 
decreased numbers of primordial and primary follicles [48]. Similarly, the primordial follicles 

number was reduced in estrogen-depleted fetal baboon ovaries [49]. These results indicate 

that although E2 is needed for early events in folliculogenesis, its excessive level inhibits these 
events. Abnormal control of primordial follicle assembly may affect the reproductive poten-

tial of the female and can lead to pathological conditions such as premature ovarian failure.

4. Effects of endocrine active compounds within the neonatal ovary

Many female reproductive disorders observed during adulthood originate from the neonatal 

period, which is a critical stage toward the reproductive potency. Consequently, it is impor-

tant to study the effects of neonatal exposure to chemicals that mimic or antagonize the effects 
of estrogens and androgens to establish their role in ovarian function. Recent attention has 
been especially focused on environmental factors interfering with endogenous steroids action. 

There are synthetic and natural environmental compounds such as pesticides (i.e., dichloro-

diphenyltrichloroethane (DDT); methoxychlor (MXC), vinclozolin, and atrazine); detergents 
and surfactants (4-tert-octylphenol, nonylphenol, and bisphenol A); plastics (phtalates); indus-

trial compounds (polychlorinated biphenyl, PCB; 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD); 
and fitoestrogens (genistein and coumestol) [4]. In the light of growing body of evidence that 
demonstrates the presence of EACs in the environment, understanding the mechanism of 
selected EACs action within neonatal ovaries provides a basic data for further research of 
the female reproductive potency. The susceptibility of target tissues is related to the stage 

of development, the exposure dose, and the individual immune status. Mammals are more 

sensitive to EACs during fetal and postnatal life than in adulthood. However, environmental 
influence during fetal and neonatal development may lead to adult onset pathology.

4.1. EACs with androgenic and anti-androgenic properties

Previous data on primates clearly showed the essential role of androgens in promoting early 
follicular growth [50]. These results were confirmed by in vitro study on bovine ovarian fol-

licles, indicating that testosterone stimulated the primary-to-secondary follicle transition 
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[38]. Importantly, testosterone increased the number of secondary follicles with no impact 
of estradiol that suggested the direct effect of androgens without conversion to estrogens. 
Testosterone promotes the growth of bovine follicles in vitro, and its stimulatory effect was 
mediated through ARs in the follicular cells [38]. Thus, reprogramming of early folliculogen-

esis by androgens excess or deficiency seems to be crucial for understanding their adverse 
effects on female fertility.

Studies on sheep [51, 52] and primates [53] have shown that excess of androgens in fetal life 

resulted in reduced ovarian functions in adult life and may provide models for polycystic 

ovary syndrome (PCOS) in women. Research by Tyndall et al. [54] was undertaken to inves-

tigate the effects of different windows of testosterone propionate treatment during fetal or 
neonatal life in female rats to determine whether and when excess androgen exposure would 

cause disruption of adult reproductive functions. The findings from fetal exposure to testos-

terone propionate suggested the possibility of reducing the sensitivity threshold to neonatal 

androgens exposure in female animals. The results support the concept that androgen pro-

gramming of adult female reproductive function occurs only during specific time windows in 
fetal and neonatal life with implications for the development of PCOS in women.

Neonatal androgenization by testosterone propionate induced early misprogramming of 

ovarian functions in the female rats [55]. The obtained results strongly suggested that tran-

sient neonatal hyperandrogenemia led to ovarian dysfunctions marked by altered steroido-

genesis and folliculogenesis. Exposure to testosterone propionate resulted in the increase of 
primary and the decrease of antral follicle frequencies. Moreover, the higher proportion of 

atretic follicles and the lack of corpora lutea within the ovaries from testosterone propionate-
treated rats were observed. Another research on rats revealed that exposure to excess of tes-

tosterone in neonatal period increased the LH and testosterone serum levels, the LH/FSH 
ratio, ovarian theca-interstitial area and expression of steroidogenesis-involved genes, and 

Lhr and Cyp17a1 in ovaries of adult animals [56]. These results provide some insight into the 

role of androgens on reproductive development and on the manifestations of clinical disor-

ders such as PCOS.

Among EACs, there is a large group of chemicals exerting anti-androgenic effects and blocking 
endogenous androgens action. In our previous experiments, the androgen involvement in early 
stages of folliculogenesis was confirmed using in vivo animal model generated for studying 

androgen deficiency. We have utilized flutamide (2-methyl-N-[4-nitro-30-(trifluoromethyl)-
phenyl] propamide), which is a nonsteroidal anti-androgen acting at the AR level and blocking 
androgen action. Flutamide promotes AR translocation to the nucleus and DNA binding, but 
nevertheless fails to initiate transcription, inhibiting the AR signaling pathway [57]. Although 
this is a pharmaceutical compound, it is regarded as a model anti-androgen in experimental 

studies [58].

In our recent research, flutamide (50 mg/kg body weight) was injected into pregnant gilts 
during gestational days 20–28 and 80–88 and into female piglets on postnatal days 2–10. We 
have found ovarian morphological changes indicating delayed folliculogenesis in neona-

tal pigs exposed in utero to flutamide [59]. Abnormal folliculogenesis was also seen in pre-

pubertal pigs, following prenatal period of anti-androgen exposure [60], whereas in adult 
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animals, only neonatal time of flutamide treatment exerted disturbances marked by altered 
luteinization and corpus luteum cyst formation [61]. Apart from morphological disturbances, 
the altered follicular functioning in adulthood was manifested by changes in production of 

steroids (estradiol and androgens) and gonadotropins (FSH and LH), as well as in expres-

sion of genes involved in proper ovarian functioning, including AR, FSHR, aromatase, con-

nexin 43, β-catenin, and aquaporin 5 [61–63]. Furthermore, gestational or neonatal exposure 

to flutamide affected proliferation and apoptosis rates in large antral follicles of adult porcine 
ovary, which might influence the normal development of the follicles and pigs fertility as a 
consequence [64].

It seems that disturbed androgen action during gestational and neonatal periods by using 
flutamide led to reprogramming of the trajectory of ovarian development in pigs; however, 
neonatal window of exposure leads to long-term effects observed in adulthood.

4.2. EACs with estrogenic and anti-estrogenic properties

Compounds that mimic estrogens action through an interaction with ERs continue to receive 
considerable attention. One of them is 4-tert-octylphenol, which belongs to alkylphenol polye-

thoxylates derivative, which is a nonionic surfactant widely used in a variety of industrial 

applications [65]. It was demonstrated that pre- or postnatal exposure to 4-tert-octylphenol 
can advance the onset of puberty in rats [66] and pigs [67]. In addition, in a three-generation 
study, 4-tert-octylphenol given prenatally to sows induced some effects, including reduction 
in litter size, observed in the next generations [67]. Furthermore, 4-tert-octylphenol exposure 

during fetal and postnatal life accelerated the onset of puberty but did not disrupt FSH con-

centration and the dynamic of ovarian follicular growth in ewes [68]. On the other hand, 
research on rats revealed that neonatal administration to 4-tert-octylphenol altered hypothal-

amo-pituitary-ovarian axis resulting in atrophic and polycystic ovaries without corpora lutea 

[66]. In our most recent experiments using neonatal pigs treated with 4-tert-octylphenol, the 
advanced folliculogenesis has been shown. We assumed that these specific effects on follicu-

logenesis in neonatal pigs were characterized by changes in proliferation and apoptosis rates 

during initial follicular recruitment [69].

Both bisphenol A and diethylstilbestrol are another of the extensively studied EACs with 
estrogenic activity. Bisphenol A is a plasticizer used commonly in a wide range of consumer 
products such as food and drink containers, epoxy resins, plastics, baby bottles, thermal 
receipts, and dental sealants (reviewed in Ref. [70]). Zhou et al. [71] revealed that bisphenol A 
exposure significantly inhibited germ cell nests breakdown by altering the expression of key 
ovarian apoptotic genes in cultured neonatal mouse ovaries. Interestingly, exposure of neo-

nates to estrogenic compounds like bisphenol A significantly increases the number of mul-
tiple oocyte follicles (MOFs) in adult mice ovaries. It was proposed that neonatal exposure to 
exogenous estrogens blocked cysts breakdown resulting in oocytes survival [72]. Apart from 
abovementioned influence of bisphenol A on oocyte nests, additional effects on the follicle 
development were found. Bisphenol A may interact with multiple factors produced by oocyte 
and granulosa cells to alter neonatal follicular dynamics. [73, 74]. It was shown that this com-

pound reduced the primordial follicle pool by stimulating the initial recruitment in neonatal 
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rats associated with an increased proliferation rate, which is likely mediated by an estrogenic 
pathway [75]. It could also decrease follicle activation in neonatal mice [76]. Additionally, the 
effect of neonatal exposure to bisphenol A on the reproductive axis was observed in adult rats, 
which may lead to the development of PCOS [77].

Diethylstilbestrol is a synthetic nonsteroidal estrogen. Studies on neonatal rodents injected 
with diethylstilbestrol demonstrated results similar to those of bisphenol A. Neonatal expo-

sure to diethylstilbestrol of mice and hamster inhibited germ cell nest breakdown and induced 
MOFs formation, likely by interfering with the ERβ pathway and inhibiting programmed 
oocyte death and germ cell loss [78, 79]. Rodríguez et al. [75] used a relatively low concentra-

tion of diethylstilbestrol (20 μg/kg body weight) in the rat and found that primordial follicle 
activation was increased compared to studies of Karavan et al. [80] on mice, where the higher 

diethylstilbestrol concentration (100 μg/kg body weight) decreased the follicle activation. 
Both diethylstilbestrol and bisphenol A reduced follicle growth and development, resulting 
in the presence of more primordial follicles and fewer primary and secondary follicles in 

mouse neonatal ovary [80]. In prepubertal lambs treated with bisphenol A or diethylstilbes-

trol during neonatal period, the reduction of the primordial follicle pool and increased atresia 

was observed. That was surprising since nest breakdown in sheep is completed before birth. 
However, it seems that the reduction of the primordial follicle pool is due to stimulation 

of their initial recruitment and subsequent development until antral stage. These alterations 

may affect the ovarian function in the adulthood [81].

Genistein is a natural phytoestrogen with estrogenic activity found in soy products. The belief 

that estrogens can regulate nest breakdown is supported by a study of Jefferson et al. [82]. 

They have demonstrated exposure of neonatal mice to genistein, which inhibited the oocyte 

nests breakdown and increased oocyte survival. Moreover, ovaries from adult mice treated as 
neonates with genistein have an increased occurrence of MOFs, suggesting incomplete nests 
breakdown [83]. This indicates that cell survival/death pathways are altered following neo-

natal genistein treatment. The inhibition of oogonia/oocyte nests breakdown by EACs action 
was shown in the Figure 2.

Figure 2. Schematic model of oogonia/oocyte nests breakdown and its inhibition by endocrine active compounds (EACs) 
with estrogenic activity (bisphenol A, diethylstilbestrol, and genistein).
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Phthalates are commonly used as plasticizers in the manufacturing of flexible polyvinyl chlo-

ride products. Little information is available on the effects of phthalates on neonatal ovary. 
These compounds have been actually shown to affect germ cell nest breakdown and primor-

dial follicle assembly in cultured newborn mouse ovaries [84]. In addition, early postnatal 
treatment with diethylhexyl phthalate accelerated folliculogenesis by decreasing the number 

of primordial follicles and increasing the number preantral and antral follicles in mice [85]. 

The decrease in primordial follicle pool indicated estrogenic action of these compounds.

ICI 182,780 is a widely used anti-estrogen that can bind to both ERα and ERβ with very high 
affinity and completely antagonize the effect of estrogens [86]. It was found that ICI 182,780 in 
combination with estradiol allowed oocytes cyst breakdown neonatal rat ovaries [87]. On the 
other hand, Wang and Roy [46] revealed that ICI 182,780 significantly increased apoptosis and 
caused a modest reduction in primordial follicle formation in neonatal hamster ovary. Likewise, 
ICI 182,780 accelerated primordial follicles formation from oocyte nests in the neonatal pig. 
However, the initial follicle recruitment marked by the number of growing was delayed [69].

The compounds that exert both estrogenic and anti-estrogenic properties are parabens, which 

are widely used as anti-microbial agents in the cosmetic and pharmaceutical industries. 

Parabens inhibited the early phase of folliculogenesis and steroidogenesis in the ovaries of 
neonatal rats [88]. Moreover, it appears that parabens through inhibition of transcriptional 

repressor Foxl2, regulated the levels of steroidogenic enzymes [88].

4.3. EACs with mixed properties

Methoxychlor (MXC) is an organochlorine pesticide metabolized predominantly to 1,1,1-tri-
chloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl) ethane (MOH) and the bisphenolic com-

pound 1,1,1-trichloro-2,2-bis(4-hydroxyphenyl) ethane (HPTE) in the organism [89]. MXC 
along with its metabolites acts through ERs and possesses estrogenic, anti-estrogenic, and 
anti-androgenic activities depending on the receptor subtype [90]. In a variety of experimental 
studies, MXC administration in early pregnancy or during the prenatal and neonatal periods 
has been shown to cause adverse abnormalities in adulthood of female rats, such as reduced 

ovarian functions and ovulatory rates, as well as pregnancy outcome [1]. Uzumcu et al. [91] 

demonstrated that MXC administration during the primordial-to-primary follicle transition 
period in mice (postnatal days 3–10) inhibited follicular development and reduced antral fol-
licle numbers. In addition, MXC treatment increased the level of AMH protein production, 
which in turn inhibited folliculogenesis within the ovary. Another research suggested that 
exposure to MXC during fetal and neonatal ovarian development led to adult ovarian dys-

function, including an increase in the number of preantral and early antral follicles and a 

reduced number of corpora lutea and female infertility in rats [92]. Furthermore, there are 

several reports suggesting the role of MXC in the induction of epigenetic modifications within 
the ovary. Rats exposed to MXC (20 or 100 μg/kg body weight) between embryonic day 19 
and postnatal day 7 revealed altered methylation pattern in the promoter region of ERα that 
suppressed the ERα expression and caused ovarian dysfunction. Developmental exposure 
to MXC led to significant hypermethylation in the ERβ promoter regions, whereas the ERα 
promoter was unaffected [93].
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5. Summary

The plausible link between EACs exposure during critical periods of early development and 
risk of chronic diseases in adulthood, including premature ovarian failure and PCOS, has 
been reported. The harmful effects of compounds with androgenic, anti-androgenic, estro-

genic, and anti-estrogenic activities during neonatal window may occur with exposure to 

lower doses than those harmful for adults. These chemicals have been shown to target the 

ovary of neonates and adversely affect oocyte survival, follicle formation, and growth, as well 
as steroidogenic functions. There is a concern over EACs due to their common use and persis-

tence within the modern living environment. The better cognition of mechanisms underlying 
the long-term consequences of the neonatal EACs exposure may in future lead to an under-

standing of human health risks and developing prevention strategies.
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