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Abstract

Representative examples concerning the Pudovik and Kabachnik‐Fields reactions as the 
main strategies for the stereoselective synthesis of α‐aminophosphonic acids are dis‐
cussed, classifying these reactions according to the chiral auxiliary and chiral catalyst.

Keywords: α‐aminophosphonic acids, α‐aminophosphonates, stereoselective synthesis, 
Pudovik and Kabachnik‐Fields

1. Introduction

Optically active α‐aminophosphonic acids are the most important analogs of α‐amino acids, 
which are obtained by isosteric substitution of the planar and less bulky carboxylic acid (CO

2
H) 

by a sterically more demanding tetrahedral phosphonic acid functionality (PO
3
H

2
). Several α‐

aminophosphonic acids have been isolated from natural sources, either as free amino acids or as 

constituents of more complex molecules [1], such as the phosphonotripeptide K‐26 (Figure 1) [2].

The α‐aminophosphonic acids, α‐aminophosphonates, and phosphonopeptides are currently 
receiving significant attention in organic synthesis and medicinal chemistry as well as in 
agriculture, due to their biological and pharmacological properties. Additionally, the α‐ami‐
nophosphonic acids are used as key synthetic intermediates in the synthesis of phosphonic 

acids, phosphonamides, and phosphinates, which not only play an important role as protease 

inhibitors but also in the wide range of biochemical pathways (Scheme 1) [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The inhibitory activity of the α‐aminophosphonic acids and their derivatives has been attributed 
to the tetrahedral geometry of the substituents around the phosphonic moiety mimicking the 

tetrahedral high‐energy transition state of the peptide bond hydrolysis, favoring the inhibition 

of a broad spectrum of proteases and ligases (Scheme 2) [4].

Furthermore, it is well known that the biological activity of the α‐aminophosphonic acids and 
derivatives depends on the absolute configuration of the stereogenic α‐carbon to phosphorous 
[5]. For example, (R)‐phospholeucine is a more potent inhibitor of leucine aminopeptidase 

than the (S)‐phospholeucine [6], and (S,R)‐alaphosphalin shows higher antibacterial activity 

against both Gram‐positive and Gram‐negative microorganisms than the other three diaste‐

reoisomers [7]. Additionally, the L‐Pro‐L‐Leu‐L‐TrpP tripeptide acts as an MMP‐8 enzyme 

inhibitor, wherein the peptide responsible for the biological activity is that in which the three 

amino acids have L configuration (Figure 2) [8].

Scheme 2. 

Scheme 1. 

Figure 1. α‐Aminophosphonic acid analogs of α‐amino acids.
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In view of the different biological and chemical applications of the α‐aminophosphonic acids, 
nowadays the development of suitable synthetic methodologies for their preparation in opti‐

cally pure form is a topic of great interest and many reviews have been recently published 

concerning their stereoselective synthesis [9]. In this context, Pudovik and Kabachnik‐Fields 

reactions the main synthetic strategies for the stereoselective synthesis of α‐aminophosphonic 
acids will be described in this chapter.

2. Stereoselective C‐P bond formation (Pudovik methodology)

The diastereoselective and enantioselective hydrophosphonylation of aldimines and keti‐

mines, called as the Pudovik reaction, involves the addition of a phosphorus nucleophile 

agent over the corresponding imine, in such a way that one or both of the reactants can incor‐

porate a chiral auxiliary or nonchiral reagents may be reacted in the presence of a chiral cata‐

lyst (Scheme 3).

Figure 2. Importance of the chirality of the α‐aminophosphonic acids.

Scheme 3. Diastereo‐ and enantio‐selective synthesis of α‐aminophosphonic acids by Pudovik methodology.
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2.1. Chiral phosphorus compounds

One of the general methods for the synthesis of α‐aminophosphonic acids involves the dia‐

stereoselective hydrophosphonylation of achiral imines with chiral phosphites to introduce 

the phosphonate function, which by hydrolysis afforded the optically enriched α‐aminophos‐

phonic acids. For example, the nucleophilic addition of chiral C
3
‐symmetric trialkyl phosphite 2, 

obtained from the naturally occurring (1R,2S,5R)‐(–)‐menthol to the aldimine 1 in the presence 

of trimethylsilyl chloride (TMSCl) as an activator, provided the α‐aminophosphonate 3 in 60% 

yield and moderate induction at the α‐carbon atom (50% diastereoisomeric excess), which by 
hydrolysis with HCl in dioxane, followed by catalytic hydrogenolysis using Pd/C, produced the 

(R)‐phosphophenyl glycine 4 in 70% yield and with 95% enantiomeric excess (Scheme 4) [10].

Palacios et al. [11] proposed also the chiral cyclic (R,R)‐ α,α,α’,α’‐tetraphenyl‐2,2‐disubstituted 

1,3‐dioxolane‐4,5‐dimethanol (TADDOL) phosphite 5, derived from natural tartaric acid, as a 

suitable phosphorus nucleophile in the stereoselective synthesis of α‐aminophosphonic acids. 
In this context, the diastereoselective hydrophosphonylation reaction of N‐diphenylphosphi‐

noyl aldimines 6a,b with (R,R)‐TADDOL‐derived phosphite 5 in the presence of ZnEt
2
 and 

N,N,N’,N’‐tetramethylethylenediamine (TMEDA) in tetrahydrofuran (THF) at −80°C afforded 

the α‐aminophosphonates 7a,b in good yields and diastereoselectivities. Finally, the simultane‐

ous hydrolysis of (R,R)‐TADDOL phosphonate and diphenylphosphinoyl groups in the diaste‐

reoisomerically pure 7a,b with 4 N HCl, led to the optically pure (R)‐α‐aminophosphonic acids 
hydrochlorides (R)‐8a,b in 77 and 82% yield, respectively (Scheme 5).

Additionally, the (R,R)‐TADDOL framework has also proved its usefulness as a chiral auxil‐

iary in the diastereoselective addition of Grignard reagents to chiral α‐aminophosphonates. 
Thus, nucleophilic addition of chiral phosphite (R,R)‐5 to N‐tosylbenzaldimine 9 in the pres‐

ence of Et
3
N in toluene, afforded the α‐aminophosphonate 10 in 93% and 77:23 diastereoiso‐

meric ratio, which by oxidation and by treatment with trichloroisocyanuric acid (TCCA) and 

poly(4‐vinylpyridine), gave the α‐ketiminophoshonate 11 in 82% yield. Addition of methyl‐

magnesium bromide to 11, furnished the quaternary α‐aminophoshonate 12 in good yield 

and 94:6 diastereoisomeric ratio, which by hydrolysis with 10 M HCl, produced the optically 

enriched (S)‐α‐aminophosphonic acid 13 in 80% yield (Scheme 6) [12].

The Pudovik reaction has also been reported incorporating the chiral auxiliary attached not only 
to the phosphite residue, but also to the imine fragment. As a proof of concept, Olszewski and 

Scheme 4. 
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Majewski [13] reported the hydrophosphonylation reaction of (S)‐N‐tert‐butylsulfinylaldimines 
14a‐d with readily available chiral (R,R)‐TADDOL phosphite 5 in the presence of potassium 

carbonate in CH
2
Cl

2
 at room temperature, obtaining the α‐aminophosphonates 15a‐d in 80–87% 

yield and diastereoisomeric ratio (>95:5 d.r.). Simultaneous removal of both chiral auxiliaries in 

15a‐d by hydrolysis with 4 M HCl at 100°C, produced the (R)‐α‐aminophosphonic acids 4, 16a‐c 

in 78–92% yield (Scheme 7).

2.2. Imines from chiral carbonyl compounds

The hydrophosphonylation of chiral Schiff bases is another general method for the synthesis of 
optically enriched α‐aminophosphonates, which can be performed by addition of alkyl phos‐

phites to chiral imines readily obtained by condensation of chiral aldehydes with nonchiral 

Scheme 5. 

Scheme 6. 

Scheme 7. 
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amines. In this context, Bongini et al. [14] carried out the synthesis of (S,S)‐phosphothreonine 

19 through nucleophilic addition of trimethylsilyl diethyl phosphite to the chiral imine (S)‐17, 

obtained by condensation of (S)‐2‐triisopropylsilyloxy lactaldehyde and N‐trimethylsilyl amine. 

The reaction proceed in excellent way to give the β‐silyloxy‐α‐aminophosphonate (1S,2S)‐18 in 

85% yield and >98:2 syn/anti diastereoisomeric ratio. Cleavage of the O‐SiMe
3
 bond and hydro‐

lysis of the diethyl phosphonate in (S,S)‐18 with 6 N HCl provided the (1S,2S)‐phosphothreo‐

nine 19 in quantitative yield. Under identical conditions, the (1R,2R)‐phosphothreonine 19 was 

obtained starting from the enantiopure aldimine (R)‐17 (Scheme 8).

2.3. Imines from chiral amino compounds

On the other hand, the stereoselective hydrophosphonylation of chiral Schiff bases can also 
be conducted by addition of alkyl phosphites to chiral imines readily obtained by condensa‐

tion of nonchiral aldehydes with chiral amines. For example, the nucleophilic addition of 

dimethyl phosphite to the imine (S)‐20, readily obtained from the condensation of isobutyr‐

aldehyde and (S)‐α‐methylbenzylamine at 140°C, under solvent‐free conditions, afforded the 
α‐aminophosphonates (R,S)‐21 and (S,S)‐22 with a 85:15 diastereoisomeric ratio. Hydrolysis 

of the phosphonates in (R,S)‐21 and (S,S)‐22 followed by separation and hydrogenolysis using 

Pd(OH)
2
/C afforded the (R)‐ValP 16a in 65–70% yield. The (S)‐ValP 16a was obtained also from 

(R)‐α‐methylbenzylamine‐derived imine (Scheme 9) [15].

On the other hand, Vovk et al. [16] carried out the addition of sodium diethyl phosphite to the 

imine (S)‐23, obtaining the α‐aminophosphonate (S,R)‐24 in 98% yield and 95% diastereoiso‐

meric excess. Hydrogenolysis of the chiral auxiliary in (S,R)‐24 and hydrolysis of the diethyl 

phosphonate with trimethylsilyl bromide (TMSBr) in chloroform followed by the treatment 

with methanol gave the enantiomerically pure (R)‐α‐aminophosphonic acid 25 (Scheme 10).

Nucleophilic addition of triethyl phosphite to the chiral base imines (S)‐26a‐c bearing (S)‐1‐

(α‐aminobenzyl)‐2‐naphthol, promoted by trifluoroacetic acid (TFA) in toluene at room 

Scheme 9. 

Scheme 8. 
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temperature and subsequent crystallization, provided the α‐aminophosphonates (S,S)‐27a‐c 

in 44–57% yield and with excellent diastereoisomeric excess (>98%), which by cleavage of 

the chiral auxiliary and hydrolysis of the diethyl phosphonate with HCl in 1,4‐dioxane at 

80°C, afforded the (S)‐α‐aminophosphonic acids 4, 28a,b in 76–88% yield (Scheme 11) [17]. 

Additionally, the (R)‐α‐aminophosphonic acid 4 was obtained also starting from the aldi‐

mine (R)‐26c.

Smith et al. explored the generality of the diastereoselective addition of the lithium salt of 

diethyl phosphite to a variety of imines. Thus, addition of LiPO
3
Et

2
 to aldimines (R)‐29a‐c 

bearing the methyl ether of (R)‐phenylglycinol as chiral auxiliary, furnished the α‐amino‐

phosphonates (R,R)‐30a‐c in 37–81% yield and 96 to >99% diastereoisomeric excess. Cleavage 

of the chiral fragment in (R,R)‐30a‐c by hydrogenolysis using Pd(OH)
2
/C followed by hydro‐

lysis of the diethyl phosphonate with concentrated HCl at 100°C gave the enantiomerically 
pure (R)‐GluP 31a, (R)‐LeuP 31b, and (R)‐MetP31c in 55–74% yield (Scheme 12) [18].

The readily available chiral sulfinimides [19] containing an aryl‐ or tert‐butylsulfinyl moiety 
represent valuable chiral auxiliaries in stereoselective synthesis [20]. In this regard [21], the 

nucleophilic addition of the lithium salt of the diethyl phosphite to the enantiopure imine 

Scheme 10. 

Scheme 11. 

Scheme 12. 
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(S)‐32a [22, 23], readily obtained by condensation of (S)‐p‐toluenesulfinamide with benzalde‐

hyde gave the α‐aminophosphonate (S
S
,R

C
)‐33a in 85% yield and 92:08 diastereoisomeric ratio. 

When the lithium salt of bis(diethylamido) phosphite was reacted with (S)‐32a, the α‐amino‐

phosphonate (S
S
,S

C
)‐33b was obtained in good yield and diastereoselectivity [24]. Cleavage 

of the chiral auxiliary and hydrolysis of the diethyl phosphonate and diamidophosphite in 

(S
S
,R

C
)‐33a and (S

S
,S

C
)‐33b with hydrochloric acid in acetic acid at 100°C led to the enantio‐

merically pure (R)‐ and (S)‐phosphophenyl glycine 4 (Scheme 13).

Mikolajczyk et al. [25] reported the addition of the lithium salt of the bis(diethylamido)phos‐

phine borane complex to the p‐toluenesulfinyl imines (S)‐32a‐e in THF at −78°C, obtaining 
mainly the (S

S
,S

C
)‐34a‐e diastereoisomers in 72–100% yield. Finally, cleavage of the N‐sulfi‐

nyl auxiliary and hydrolysis of the bis(diethylamido)phosphine borane function with hydro‐

chloric acid in acetic acid at reflux gave the (S)‐α‐aminophosphonic acids 4, 16b,c, 28b, 35 in 

75–93% yield and 76 to >98% enantiomeric excess. Under identical conditions, the (R)‐α‐ami‐
nophosphonic acids (R)‐4, 16b,c, 28b, 35 were obtained from the imines (R)‐32a‐e (Scheme 14).

On the other hand, the addition of the lithium salt of diethyl phosphite to the enantiopure 

p‐toluenesulfinyl imines (S)‐36a‐c, readily obtained by the Ti(OEt)
4
 catalyzed condensation 

of (S)‐p‐toluenesulfinamide with the corresponding ketones [26], furnished the α‐amino‐

phosphonates (S
S
,R

C
)‐37a‐c in 73–97% yield and excellent diastereoisomeric ratio (>99:1 d.r.). 

Cleavage of the chiral auxiliary and hydrolysis of the diethyl phosphonate in (S
S
,R

C
)‐37a‐c 

with 10 N HCl at reflux followed by the treatment with propylene oxide led to the (R)‐α‐ami‐
nophosphonic acids 38a‐c in 68–84% yield (Scheme 15) [23].

With the aim of obtaining the phosphonic analog of aspartic acid (R)‐42, Mikołajczyk et al. [27] 

reported the nucleophilic addition of the lithium salt of diethyl phosphite to the enantiopure 

sulfinylaldimine (S)‐39 at −78°C in THF, obtaining the α‐aminophosphonate (R
C
,S

S
)‐40 in 62% 

Scheme 13. 

Scheme 14. 
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yield and 16:1 diastereoisomeric ratio. Ozonolysis of diastereoisomerically pure (R
C
,S

S
)‐40 fol‐

lowed by NaBH
4
 reduction, provided the α‐aminophosphonate (R

C
,S

S
)‐41 in 99% yield, which 

under Mitsunobu reaction conditions led to the cyanide, that by hydrolysis with HCl in AcOH 

gave the phosphoaspartic acid (R)‐42 in 53% yield (Scheme 16).

The N‐tert‐butylsulfinyl group activates the imines for the nucleophilic addition, serves as a 
powerful chiral directing group and after the addition reaction is readily cleaved upon treat‐

ment of the product with acid. Competitive nucleophilic attack at the sulfur atom is mini‐
mized in the addition to N‐tert‐butylsulfinyl imines versus N‐p‐tolylsulfinyl imines, due to 
the greater steric hindrance and reduced electronegativity of the tert‐butyl group relative to 

the p‐tolyl moiety [28]. Under this context, reaction of the chiral N‐tert‐butylsulfinyl imines 
(S)‐43a‐e with dimethyl phosphite in the presence of K

2
CO

3
 in Et

2
O at room temperature gave 

the α‐aminophosphonates (S
S
,R

C
)‐44a‐e in 80–85% yield and with >95% diastereoisomeric 

excess, which by simultaneous cleavage of the sulfinyl group and hydrolysis of the diethyl 
phosphonate with 10 N HCl at reflux, followed by treatment with propylene oxide, produced 
the (R)‐α‐aminophosphonic acids 13, 38a, 45a‐c in 83–88% yield (Scheme 17) [29].

On the other hand, the addition of diethyl trimethylsilyl phosphite to chiral N‐tert‐butyl‐sulfinyl‐
aldimine (S)‐46 afforded the α‐aminophosphonate (S

C
,S

S
)‐47 in 69% yield and 84% diastereoiso‐

meric excess. Cleavage of the N‐tert‐butylsulfinyl group in (S
C
,S

S
)‐47 with 4 N HCl in methanol, 

produced the α‐aminophosphonate (S)‐48 in 89% yield. Finally, the hydrolysis of the diethyl 

phosphonate in (S)‐48 with 10N HCl at reflux followed by the treatment with propylene oxide 
gave the enantiomerically pure (S)‐phosphonotrifluoroalanine 49 in 96% yield (Scheme 18) [30].

Scheme 15. 

Scheme 16. 
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Lu et al. [31] reported the addition of diethyl phosphite to the enantiopure sulfinylketimines 
(R)‐50a‐c, to obtain the quaternary α‐aminophosphonates (S

C
,R

S
)‐51a‐c in 73–84% yield and 

8:1–43:1 diastereoisomeric ratio. Cleavage of the N‐tert‐butylsulfinyl group and hydrolysis of 
the diethyl phosphonate in (S

C
,R

S
)‐51a‐c with 6 N HCl at reflux, led to the enantiomerically 

pure α‐aminophosphonic acids (S)‐52a‐c in excellent yield (Scheme 19).

On the other hand, the sugar‐derived nitrones have also emerged as valuable synthetic 

intermediates in the stereoselective synthesis of α‐aminophosphonic acids. For example, 
the hydrophosphonylation reaction of the nitrones 53a‐c with the lithium salt of diethyl or 

dibenzyl phosphite, provided the N‐glycosyl‐α‐aminophosphonates 54a‐c in 41–63% yield 

and 90–98.7% diastereoisomeric excess, which by hydrolysis of the sugar fragment and the 

phosphonate with concentrated HCl and subsequent cleavage of the N‐OH bond by hydro‐

genation using Pd/C, afforded the optically enriched α‐aminophosphonic acids (S)‐16a, 55a,b 

in 36–80% yield. Additionally, the nucleophilic addition of tris(trimethylsilyl) phosphite to 

the enantiomerically pure nitrone 53c in the presence of HClO
4
 followed by hydrolysis of 

the sugar fragment and the phosphonate, led to the N‐hydroxyphosphovaline (R)‐56 in 78% 

Scheme 18. 

Scheme 19. 

Scheme 17. 
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yield, which by hydrogenation of the N–OH bond and treatment with 1 N HCl, gave the (R)‐

ValP 16a in 71% yield and 95.4% enantiomeric excess (Scheme 20) [32].

Huber and Vasella [33] reported the synthesis of optically enriched (S)‐ValP 16a and (S)‐SerP 

55b from the enantiopure nitrones 53a,b with a slight modification of the reaction conditions. 
Thus, the nucleophilic addition of tris(trimethylsilyl) phosphite to the sugar‐derived nitrones 

53a,b catalyzed by ZnCl
2
/HCl afforded directly the corresponding α‐aminophosphonic 

acids (S)‐16a, 55b in good yield and with 43.8 and 87.7% enantiomeric excess, respectively 

(Scheme 21).

Similarly, the addition of tris(trimethylsilyl) phosphite to the enantiopure nitrone 57 in the 

presence of Zn(OTf)
2
 at −40°C and subsequent treatment with 1 N HCl in MeOH, led to the 

N‐hydroxy‐α‐aminophosphonic acid (R)‐58 in 71% yield, which by cleavage of the N‐OH 

bond by hydrogenation using Pd(OH)
2
/C, provided the (R)‐MetP 31c in 88% yield and 76.8% 

enantiomeric excess (Scheme 22) [33].

Scheme 20. 

Scheme 21. 

Stereoselective Synthesis of α‐Aminophosphonic Acids through Pudovik and Kabachnik‐Fields Reaction
http://dx.doi.org/10.5772/intechopen.68707

137



2.4. Chiral catalyst

Catalytic asymmetric synthesis is one of the most important topics in modern synthetic 

chemistry and is considered the most efficient methodology to bring about the synthesis of 
enantiomerically pure compounds [34]. For example, the hydrophosphonylation reaction 

of N‐sulfonylaldimine 59 with diphenyl phosphite in the presence of catalytic amounts of 

hydroquinine gave the (S)‐α‐aminophosphonate 60 in quantitative yield and excellent enan‐

tiomeric excess (>99%). Cleavage of the N‐sulfonyl group in (S)‐60 by treatment with Mg in 

AcOH/AcONa and N,N‐dimethylformamide (DMF) afforded the (S)‐α‐aminophosphonate 61 

in 86% yield, which by hydrolysis of the diphenyl phosphonate with HBr in acetic acid fol‐

lowed by treatment with propylene oxide, produced the (S)‐phosphophenyl glycine 4 in 83% 

yield and 98% enantiomeric excess (Scheme 23) [35].

In order to obtain the optically enriched (R)‐phosphophenyl glycine 4, Wang et al. [36] carried 

out the nucleophilic addition of diethyl phosphite to the N‐benzoylimine 62 in the presence 

of catalytic amounts of (S,S)‐63 and ZnMe
2
, obtaining the (R)‐α‐aminophosphonate 64 in 91% 

yield and >99% enantiomeric excess. Simultaneous hydrolysis of the diethyl phosphonate and 

N‐benzoyl group in (R)‐64 with concentrated HCl at reflux, produced the optically enriched 
(R)‐phosphophenyl glycine 4 in 96% yield (Scheme 24).

On the other hand, Joly and Jacobsen [37] reported that the addition of di(o‐nitrobenzyl) phos‐

phite to the achiral N‐benzyl aldimines 1, 65a,b in the presence of catalytic amounts of the 

chiral urea 66, produced the (R)‐α‐aminophosphonates 67a‐c in 87–93% yield and 90–98% 

enantiomeric excess. Finally, the simultaneous cleavage of the di(o‐nitrobenzyl) phosphonate 

Scheme 22. 

Scheme 23. 
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and N‐Bn bond by hydrogenolysis in (R)‐67a‐c using Pd/C in MeOH afforded the enantio‐

merically enriched (R)‐α‐aminophosphonic acids 4, 31b, 68 in 87–96% yield and excellent 

enantioselectivity (Scheme 25).

Another exceptional example of the chiral catalyst approach is reported by Shibasaki et al. 

[38] who found that the catalytic hydrophosphonylation of the aldimine 69 in the presence of 

the lanthanoid‐potassium‐1,1’‐bi‐2‐naphthol (BINOL) complex [(R)‐LPB] afforded the (R)‐α‐
aminophosphonate 70 in 70% yield and 96% enantiomeric excess. Cleavage of p‐anisylmethyl 

fragment and simultaneous hydrolysis of the dimethyl phosphonate in (R)‐70 with concen‐

trated HCl at reflux, produced the enantiomerically enriched (R)‐ValP 16a (Scheme 26).

Scheme 24. 

Scheme 25. 

Scheme 26. 
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3. Stereoselective C‐P bond formation (Kabachnik‐Fields methodology)

Another important method for the stereoselective synthesis of α‐aminophosphonic acids is 
the “one‐pot” three‐component reaction, known as the Kabachnik‐Fields reaction. In this 

process, the reactants (carbonyl compound, amine and the phosphorus nucleophile agent) 

are placed all together to give the diastereo or enantiomerically pure α‐aminophosphonates, 
which are easily transformed into the corresponding α‐aminophosphonic acids. To induce 
the stereochemistry in the α‐aminophosphonates, the chirality inducer may be at the source of 
phosphorus, in the amine, in the aldehyde or ketone, or in a chiral catalyst. Additionally, the 

reactions are carried out in solvent or under solvent free conditions (Scheme 27).

3.1. Chiral phosphorus compounds

The “one‐pot” three‐component reaction of benzyl carbamate, benzaldehyde, and diethyl 

(R,R)‐2‐chloro‐1,3,2‐dioxaphospholane‐4,5‐dicarboxylate 71, readily obtained from the reac‐

tion of diethyl L‐tartrate with phosphorous trichloride, followed by dioxaphospholane ring 

opening with H
2
O, led to the α‐aminophosphonates (R,R,R)‐72 and (S,R,R)‐73 in 40% yield 

and 1.9:1.0 diastereoisomeric ratio. Saponification of diastereoisomer (R,R,R)‐72 gave the 

(R)‐N‐Cbz‐phosphophenyl glycine 74 in 53% yield (Scheme 28) [39].

On the other hand, Xu and Gao [40] carried out the stereoselective synthesis of the depsiphos‐

phonopeptides 76 and 77, as key intermediates in the synthesis of α‐aminophosphonic acids. 
Thus, the three‐component reaction of (R)‐1‐carboethoxy phosphorodichloridite 75 with ben‐

zyl carbamate and benzaldehyde in benzene at room temperature and subsequent treatment 

with H
2
O, produced the depsiphosphonopeptides (S,R)‐76 and (R,R)‐77 in 86% yield and 

Scheme 27. Diastereo and enantioselective synthesis of α‐aminophosphonic acids by Kabachnik‐Fields methodology.
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85:15 diastereoisomeric ratio. Saponification of the phosphonic ester in the diastereoisomeri‐
cally pure (S,R)‐76 followed by hydrogenolysis of N‐Cbz bond using Pd/C in AcOH gave the 

enantiomerically pure (S)‐phosphophenyl glycine 4 in 57% yield (Scheme 29).

3.2. Chiral carbonyl compounds

In order to prepare conformationally restricted α‐aminophosphonic acids, Fadel et al. [41] 

carried out the TMSCl promoted three‐component reaction of the chiral ketal (2S)‐78 with 

(S)‐α‐methylbenzylamine hydrochloride and triethyl phosphite in EtOH at 55°C, obtaining 
the α‐aminophosphonates (1S,2S)‐79 and (1R,2S)‐80 in 80% yield and 87:13 diastereoisomeric 

ratio. Cleavage of the methylbenzyl fragment by hydrogenolysis in the major diastereoisomer 

(1S,2S)‐79 using Pd(OH)
2
/C in EtOH at room temperature, provided the α‐aminophospho‐

nate (1S,2S)‐81 in 82% yield, which by hydrolysis of the diethyl phosphonate with trimethylsi‐

lyl iodide (TMSI) followed by treatment with propylene oxide, produced the enantiomerically 

pure (1S,2S)‐1‐amino‐2‐methylcyclopropane phosphonic acid 82 in 86% yield (Scheme 30).

Similarly, the one‐pot reaction of chiral ketal (2S)‐78, (R)‐phenylglycinol and triethyl phos‐

phite catalyzed by TMSCl in ethanol at 55°C, led to the α‐aminophosphonates (1S,2S)‐83 and 

(1R,2S)‐84 in 71% yield and 89:11 diastereoisomeric ratio. Hydrogenolysis of diastereoisomeri‐

cally pure (1S,2S)‐83 over Pearlman’s catalyst in EtOH, provided the α‐aminophosphonate 

Scheme 28. 

Scheme 29. 
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monoester (1S,2S)‐85 in 79% yield. Finally, hydrolysis of (1S,2S)‐85 with TMSI followed by 

treatment with propylene oxide afforded the enantiomerically pure α‐aminophosphonic acid 
(1S,2S)‐82 in 87% yield. In a similar way, the α‐aminophosphonate (1R,2S)‐84 was transformed 

into α‐aminophosphonic acid (1R,2S)‐86 (Scheme 31) [42].

3.3. Chiral amino compounds

The “one‐pot” three‐component reaction of (S)‐α‐methylbenzylamine, anhydrous hypo‐
phosphorous acid and different aldehydes in EtOH at reflux, furnished the corresponding 
α‐aminophosphonous acids (S,R)‐88a‐e as a single diastereoisomers in 19–50% yield, which 

by treatment with bromine water solution at 70°C and subsequent treatment with propyl‐
ene oxide, gave the enantiomerically pure (R)‐α‐aminophosphonic acids 4, 16a, 31b, 89a,b in 

65–88% yield (Scheme 32). Using (R)‐α‐methylbenzylamine as starting material, the (S)‐α‐
aminophosphonic acids 4, 16a, 31b, 89a,b were obtained in good yields [43].

Scheme 30. 

Scheme 31. 
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On the other hand, Fadel et al. [44] carried out the “one‐pot” reaction of N‐Boc‐piperidin‐3‐

one, (S)‐α‐methylbenzylamine (X = H), triethyl phosphite and AcOH as catalyst in ethanol at 

50°C, to obtain the quaternary α‐aminophosphonates (3R,1ꞌS)‐90 and (3S,1ꞌS)‐91 in 75% yield 

and 60:40 diastereoisomeric ratio. The use of (S)‐α‐methoxymethylbenzylamine (X = OMe) as 

chiral amine in this three‐component reaction afforded the α‐aminophosphonates (3R,1ꞌR)‐92 

and (3S,1ꞌR)‐93 in 55% yield and with the same diastereoisomeric ratio (60:40). Cleavage of 

N‐Boc bond with TFA at room temperature, chromatographic separation, and removal of the 

chiral fragment by hydrogenolysis using Pd(OH)
2
/C in each pure diastereoisomer, furnished 

the quaternary (R)‐ and (S)‐α‐aminophosphonates 94 in good yield. Finally, the hydrolysis 

of diethyl phosphonate in (R)‐ and (S)‐94 with 6 M HCl at reflux followed by treatment with 
propylene oxide gave the enantiomerically pure α‐aminophosphonic acids (R)‐ and (S)‐95 in 

98% yield (Scheme 33).

Enantiomerically pure carbamates and urea have also shown a potential as chiral auxiliaries in 

the stereoselective synthesis of α‐aminophosphonic acids. For example, the “one‐pot” reaction 
of carbamate 96, readily obtained from naturally occurring (–)‐menthol or the urea 97 derived 

from (S)‐α‐methylbenzylamine, with acetaldehyde or propionaldehyde and triphenyl phos‐

phite in the presence of acetic acid as catalyst, provided the α‐aminophosphonates (R)‐98, which 

by hydrolysis with concentrated HCl followed by treatment with propylene oxide, afforded the 
(R)‐AlaP 55a and (R)‐ValP 16a in moderate yield but low enantiomeric excess (Scheme 34) [45].

Scheme 32. 

Scheme 33. 
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3.4. Chiral catalyst

The development of methodologies under chiral catalysis protocols has become one of the 

most relevant issues in the field of modern synthetic chemistry [46]. In this respect, List et al. 

[47] described the Kabachnik‐Fields reaction of 2‐cyclopentyl‐2‐phenylacetaldehyde, p‐anisi‐

dine and di‐(pent‐3‐yl) phosphite in the presence of catalytic amounts of the chiral phosphoric 

acid (S)‐99 in cyclohexane at 50°C, obtaining the (R,R)‐α‐aminophosphonate 100 in 86% yield 

with both high diastereoisomeric and enantiomeric ratio. Removal of p‐methoxyphenyl frag‐

ment with cerium ammonium nitrate (CAN) followed by the hydrolysis of the diethyl phos‐

phonate in (R,R)‐100 with TMSBr, produced the optically enriched (R,R)‐α‐aminophosphonic 
acid 101 in 54% yield (Scheme 35).

In another example, Shibata et al. [48] reported that the reaction of benzaldehyde, p‐anisidine, 

and di‐(o‐methoxyphenyl) phosphite in the presence of catalytic amounts of Zn(NTf
2
)

2
 and 

102 as chiral ligand in CH
2
Cl

2
 at −50°C gave the (S)‐α‐aminophosphonate 103 in 99% yield and 

90% enantiomeric excess. Removal of p‐methoxyphenyl group in (S)‐103 was accomplished 

Scheme 34. 

Scheme 35. 
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by treatment with N‐bromosuccinimide (NBS), obtaining the (S)‐α‐aminophosphonate 104 in 

55% yield without racemization, which by hydrolysis of the phosphonate with HBr/AcOH 

followed by treatment with propylene oxide, led to the optically enriched (S)‐phosphophenyl 

glycine 4 in 91% yield and 92% enantiomeric excess (Scheme 36).
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