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Abstract

Regeneration, revitalizing and reversal (RRR) are the primordial functions of the stem 
cells in the field of regenerative medicine. Though there are several cases of successful 
stem cell transplantation the reversal of metabolic diseases and the acquired secondary 
complications like chronic renal failure, neuropathy, stroke or vascular diseases are not 
well studied. The transplanted cells in many cases failed to home or graft in the host with 
no reason to attribute for such failures. Therefore, it becomes necessary to address these 
secondary complications with cellular therapy. The oxidative stress of the cells and tis-
sues are attributed to the hostile microenvironment, not suitable for the survival of newly 
recruited cells. From our few animal studies and published literatures sources elsewhere, 
we foresee a huge potential for using mesenchymal stem cells (MSCs) to initially com-
bat the secondary cardiovascular and neuronal complications in the management of the 
metabolic diseases. However, not all the stem cells have been tested in these lines, and 
further we do not know, whether all the progenitor cells from various sources and origin 
will behave like MSCs, which needs to be studied extensively. 

Keywords: mesenchymal stem cells (MSCs), secondary complications, metabolic 
diseases, microenvironment

1. Introduction

In the past 4 decades of cell therapy, many hematological diseases, both malignant and  

non-malignant origin, have been treated with wide success, prominently with hematopoi-

etic stem cells (HSCs) [1]. With the growth of regenerative medicine and stem cell research, 
various other sources of the progenitor stem cells have been identified at different niches 
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of the organs, and few of them are well characterized and tested for its ability to be better 
performing than HSCs in general. Mesenchymal stem cells (MSCs) are one such progeni-
tor population identified and well characterized for their ability to differentiate in a rigid 
stress environment like oxidative stress or reperfusion injury, which would usually kill the 
cells or tissues [2]. There has not been enough investigation on the response of stem cells or 
progenitor cells in general to the stimuli of biological or mechanical origin in-vivo. Some of 
our experiences and literature evidences [3] have shown [Ca2+]

i
 playing a major role in the 

death or survival of the stem cells through oxidative stress observed at the site of pathologi-
cal manifestations [4, 5]. Recent studies have shown the involvement of the mitochondria 
by its Ca2+-buffering homeostatic mechanisms to be largely playing a role in cell sustenance 
toward survival and differentiation [6]. Much was taught on the stem cells regenerative 
capacity by grafting, homing and repairing by differentiation of the transplanted stem cells. 
However, for many years, there was no mechanistic definition for the failure of the stem cells 
other than physiological parameters like viability of the cells or volume of the cells used in 

the transplantation [7–9]. The microenvironment which largely supports repair by mobiliza-

tion of the MSCs or in general the progenitor stem cells required experimental evidence on 
the survival time, dose, frequency and preconditioning of the repair area. In many cases, the 
stress is characterized by the irregular Ca2+ homeostasis resulting in triggering of destruc-

tive signals like oxidants and transcription factors responsible for the eventual cell death 
[10]. Further physiologically normal Ca2+ signaling is an essential part of the cell growth and 

differentiation, and when the homeostasis is challenged, the Ca2+ acts as a trigger of self-

destruction in the matured cells [11, 12]. The role of Ca2+ in the progenitor cells may induce 

signals of survival as observed in the tumor microenvironment, which might result in the 

destruction by the host cells. Table 1 gives Ca2+ channels associated with the MSCs. It can 
be noted that MSCs offer a good threshold to these cellular factors resulting in the sustained 
survival. However, these Ca2+ thresholds are broken when the disturbance of the cellular Ca2+ 

is transferred to mitochondria, resulting in the loss of the mitochondrial membrane potential 

(Δψ
m

) and leading cellular ROS (cROS) mediated to mitochondrial ROS (mROS) and thereby 

apoptotic signals skewing the cells toward death phenotype [3, 5]. Cellular mechanisms 
like survival, death or differentiation require a clear understanding on the normal calcium 
homeostasis, thereby equilibrium between [Ca2+]

c 
and [Ca2+]

m
 existing within the cells [13]. 

Cells of different tissue origins and physiological functions differ in their ability to respond 
to these stress signals while general speculation is that progenitor cells, either resident at 

the niche or mobilized to the site of damage, usually have higher threshold which makes 

its activity of regeneration successful [14]. There are studies which indicate the dose depen-

dency of the MSCs for successful regeneration, and we speculate that the ability of the MSCs 

to tolerate the stress at the pathological site is the mechanism behind the dose dependency 

[15, 16]. However, another dimension of MSC’s potential is in the therapeutic modulation 
of the given disease conditions or at least in animal models, through release of inducible 

factors without direct involvement of the MSCs by division or differentiation [17, 18]. In 
such cases, the tissue revival post MSC treatment shows no trace of the transplanted cells by 

the common tracking methods like 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester 

(CFSE) chase or Green Fluorescent Protein (GFP). Additionally, MSCs are known for their 
immunomodulation capability and stromal character in the regeneration of the organs and 
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Channel/receptor Type of MSCs Species Differentiation Functional expression

Voltage-gated Ca2+ channels (VGCC)

VGCC:LT AMSCs Human Undifferentiated No

VGCC:LT AMSCs Human Undifferentiated 
neuronal

No

VGCC:LP/QN AMSCs Rat Undifferentiated 
neuronal

No/yes

VGCC:LT BMSCs Human Undifferentiated Yes

VGCC:LT BMSCs Human Undifferentiated Yes

VGCC:LP/QTNR BMSCs Human Undifferentiated Yes

VGCC:LP/QN BMSCs Murine Neuronal Yes

VGCC:LT BMSCs Rat Undifferentiated Yes

VGCC:L BMSCs Rat Osteogenic Yes

VGCC:LP/QN BMSCs Rat Undifferentiated 
neuronal

No/yes

Intracellular Ca2+ stores

InsP3 R RyR AMSCs Human Undifferentiated Yes

InsP3 AMSCs Human Adipocyte Yes

InsP3 AMSCs Human Adipocyte Yes

InsP3 R1-3 RyR 1-3 BMSCs Murine Neuronal Yes

InsP3RyR BMSCs Human Undifferentiated Yes

InsP3 BMSCs Human Adipocytes Yes

P2 purinergic receptors

P2X, P2Y1 AMSCs Human Adipogenic osteogenic Yes

P2XP2Y AMSCs Rat Undifferentiated 
neuronal

Yes

P2Y2 BMSCs Rat Undifferentiated Yes

P2XP2Y BMSCs Rat Undifferentiated 
neuronal

Yes

P2Y1P2X BMSCs Human Undifferentiated Yes

P2Y1 BMSCs Human Adipogenic Yes

Oxytocin (OT) and vasopressin (AVP) receptors

AVP V1a, AVP V1b AVP 
V2

AMSCs Human Adipogenic Yes

OT R AMSCs Mouse Neuronal –

OT R AVP-V1a AVP  
V2

BMSCs Rat Undifferentiated Yes
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structural elements in the organ or tissue [19]. There are few reports and studies on the scope 
and wide use of MSCs in cellular therapy either individually or combined with HSCs, creat-
ing a microenvironment for better homing, grafting and differentiation for HSCs [20, 21]. 
From the above observations, it is clear that alterations in the microenvironment are crucial 
for MSC’s behavior toward differentiation or other modulation properties. Not only changes 
associated with Ca2+ but also changes in the oxygen concentration can alter the MSCs behav-

ior drastically. There is no clear-cut explanation on what makes MSCs unique though it has 
been well studied for its in-vitro and in-vivo differentiation as well as therapeutic ability 
without integration or differentiation at the site of transplantation [22]. Few observations 
like loss of differentiation capacity at higher passages can be dubbed to senescence observed 
in vivo or in many failure models of MSC cell therapy [23]. Thus, the cellular senescence 
can be attributed as the MSCs respond to prolonged or higher oxidative stress encountered 
at the affected tissues [24–26]. But still the promising aspect of MSCs is from their anatomi-
cal locations like  Bone Marrow (BM), where these cells are at a constant interaction with 

the immune cells. We do not know whether this aspect of the BM MSCs is responsible of 
enhanced expression for the cytokine receptors or its functional expression of the inducible 
soluble factors or its immunomodulatory properties.

However, the scope of the current topic is to check how far the MSCs without any subsect dif-
ference are useful as a promising allogeneic source for the functional restoration of the organ 

or tissues. Addressing  the issue of higher threshold for the MSCs to counteract the oxidative 
stress, It is well known that MSC’s  immunomodulate the host immune responses and secrete 

factors for therapeutic amelioration of the disease complications. We do have substantial data 
to directly relate the ability of secretome for the therapeutic activities with controlled release 

ex-vivo in regulated bioreactors. In all these aspects, the reactivity of the MSCs in the micro-

environment toward various signals decides the survival, differentiation, modulation or the 
reactivity toward the repair signals.

2. Mesenchymal stem cells react differently to stress pathology

Cellular stress is mostly mechanosensitive or chemosensitive in nature. Many studies have 
shown that intracellular Ca2+ signaling is closely interconnected with mechanical properties 

of a cell. The flow of calcium from the extracellular matrix (ECM) through mechanosensitive 

Channel/receptor Type of MSCs Species Differentiation Functional expression

OT R AVP-V1 BMSCs Rat Undifferentiated 
neuronal

Yes

OT R AMSCsBMSCs Human Adipogenic osteogenic Yes

Abbreviations: AMSCs, adipose tissue derived mesenchymal stromal cells; AVP, vasopressin; BMSCs, bone marrow 
mesenchymal stromal cells; InsP

3
, inositol 1,4,5-trisphosphate receptor; LVA, low voltage activated Ca2+ channels; OT, 

oxytocin; OT R, oxytocin receptor; and RyR, ryanodine receptor. Table 1 is modified and reproduced from the original 
Table 1 with written permission from Forostyak et al. [27].

Table 1. Expression of the Ca2+ channels in the MSCs.
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calcium channels like transient receptor potential (TRP) or Stromal Interaction Molecule  

(STIM), Ca2+ release-activated Ca2+ (CRAC) channels is closely interconnected to the spa-

tiotemporal intracellular Ca2+ signaling (Figure 1). Adult differentiated cells exhibit varied 
calcium dynamics depending on their anatomical location, tissue origins and physiological 

functions [27]. Cells of cardiac and vascular tissues, for example, withstand more stress, and 
their Ca2+ buffering ability is higher than other cells [28, 29]. There are many studies in vari-
ous matured cells on the patterns of the Ca2+ oscillations regulated by signaling proteomes 

[30].

Largely, current understanding of mitochondrial Ca2+ homeostasis and regulation by the mito-

chondrial uniporter (MCU), a Ca2+ transmembrane protein identified in recent years, have made 
it more easier in understanding the cell reactivity to the external stress [5, 13]. When the thresh-

old of the cells to withstand the Ca2+ oscillations is exceeding the buffering limits, the cells are 
skewed to death phenotype by oxidative mechanisms [31]. The threshold of the progenitor cells 
like MSCs makes it unique in understanding the Ca2+ homeostasis, for example, human MSCs 
(hMSCs) exhibit spontaneous Ca2+ oscillations, a phenomenon not routine in other matured 

cells and progenitors with a few exceptions [32] though like other cell types in MSCs Ca2+ oscil-

lations are triggered by influx of extracellular Ca2+ and release from endoplasmic reticulum 

(ER) via inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors by calcium-
induced calcium release [27]. There are studies that suggest mesenchymal stem cells respond 
to the extracellular Ca2+ levels sensed by calcium sensing receptor (CaSR) in the cell membrane 

for its proliferation and differentiation [33]. Though low Ca2+ levels are favorable for all cells 

in general, higher Ca2+ levels beyond the threshold are detrimental to MSCs. In general, the 
physiological role of the Ca2+ homeostasis largely regulates differentiation, proliferation and 
cell survival at the site of repair [30]. Studies have revealed the Ca2+ handling properties of the 

precursors are similar to the adult differentiated cells as observed in the neuronal precursors 
compared with differentiated neuronal cells. There are reports of enhanced Ca2+ accumulation 

in the precursors or embryonic cell types; however, the success of the differentiation largely 
depends on the microenvironment of the tissue where the progenitors are deployed [34–37]. 
Further the intracellular compartmentalization and capacity of the various organelles response 
to heavy [Ca2+]

i 
is another factor, which might be a factor for sustained survival of the trans-

planted MSCs. The apparent Ca2+ threshold of cells [Ca2+]
i 
per say basal or resting is ~50–100 

nM. These physiological levels of the [Ca2+]
i 
can rapidly rise to ~1–10 μM on stimulation with 

mechano or chemosensitive factors [5]. The regulation and balance of Ca2+
 
homeostasis do not 

stop here when these signals can activate the ER to release the stored intracellular Ca2+ which 

thereby promotes the stress inside cell. The role of the mitochondria and its ability to buffer 
[Ca2+]

i 
are several folds higher than the cytoplasmic threshold, and thereby the role of mitochon-

dria cannot be undermined in the survival of the progenitor cells, especially stromal origin cells 

like MSCs [38]. Hence, the pathological fate of the transplanted or mobilized MSCs does not 
only depend on the homeostasis of [Ca2+]

i 
but also on the [Ca2+]

m
 in evading the stress phenotype 

for better differentiation and repair [39, 40]. Many studies on the isolated mitochondria suggest 
that the Ca2+ buffering capacity of mitochondria is 100-fold higher than the basal or resting 
[Ca2+]

i 
or intracellular release on the stimulation of Ca2+ release in the cytoplasm [41–43]. This 

phenomenon is observed during the physiological stress arising due to ischemia or reperfusion 

and can be experimentally induced with a known Ca2+ agonist like histamine or thapsigargin.
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3. Mechanism behind the mesenchymal stem cell repair

Traditional understanding on therapeutic properties of the MSCs or any type of progenitor  
stem cells is by direct homing, differentiation and repopulation with the normal phenotype 
tissues at the site of pathology [1]. However, in some cases, the transplantation is not 
successful and does not have a clear-cut reason for such failure in spite of all favorable 

Figure 1. A schematic drawing showing the functional expression of Ca2+-sensitive channels and receptors in ESCs, 
AMSCs and BMSCs. In particular, VGCC, InsP3, inositol trisphosphate receptors (InsP3R), RyR, P2 purinergic, 
vasopressin and oxytocin receptors, as well as spontaneous Ca2+ oscillations and sarcoendoplasmic reticulum Ca2+ 

ATPase (SERCA pump), are shown. Reproduced with written permission from Forostyak et al. [27].
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pre- and pro-clinical parameters [44]. The current understanding on the mechanism of 
the MSC therapy, when supplied exogenously, is homing at the sites of injury and dif-
ferentiates into adult cell type. In few cases, though we do not know the fate of the MSCs 
post transplantation or do not follow the traditional understanding, however, the lesions 

are healed. These phenomena opened a new area of insightful research on what actually 
the MSCs do at the niche apart from proliferation and differentiation at the site of tissue 
damage. The term microenvironment simply implies on suitable or favorable conditions 
promoted by recruited progenitor MSCs at the site of pathology [45, 46]. Transplanted 
MSCs release soluble factors like cytokines, chemokines, interleukins, secondary messen-

ger molecules and insoluble or physical factors like biomechanical forces, ions and so on 

for the cell survival. The released factors not only modulate cell death but also induce pro-
survival mechanisms. These factors further enrich the tissue repair mechanisms reversing 
the pathology [18, 47]. The question of the resident stem cells and their failure to resolve 
the pathology is another important area which is unclear. In case, if the microenvironment 
is unfavorable for the resident or mobilized progenitor cells, how far can the transplanted 

cells create a conducive environment to sustain the hostile tissue for repair? There are 
few well-documented studies, which show the micro-physiology of the microenviron-

ment, like changes associated with oxygen concentration and physiological stress, which 
can strongly affect the behavior of the MSCs [48–50]. The other factors, which affect the 
microenvironment, are the immune cells and other soluble and insoluble factors. These 
altogether affect the desired outcome of the transplanted stem cells. The local immune 
response to the MSCs results in the induction of the inflammatory mediators, which are 
not favorable for the MSCs to divide or differentiate [51, 52]. Therefore, microenvironment 
plays a crucial role in the success of therapeutic MSCs.

Basically, for any cell to act or react, stimuli or cell-to-cell interactions are required [53]. There 
are many modes by which these interactions or signal transmissions can take place. Further, 
these signal transmissions are different with the normal or pathological scenario. One expla-

nation is that the release of the cytokines like IL-6 and Vascular Endothelial Growth Factor 

(VEGF) can induce pro-survival and oppose apoptosis as observed in the tumor microen-

vironment [54]. The best-explained mechanism is inter- and intra-cellular transmission of 
the mechanical stimuli, which affect the gene expression of the pro-survival factors [55]. It 
is unclear how the mechanical forces are tuned into biological signals of life and destruc-

tion. Further, these mechanostatic forces are responsible for large number of transcriptional 
gene regulations affecting the progression or repair of the tissue pathology. Many studies 
have explained the link between the mechanical stimuli and the Ca2+ homeostasis [56, 57]. 
Mechanical stimuli activate the Ca2+ from the ER within the cells or potentiate the entry of 
extracellular Ca2+ which further triggers the transcriptional regulation of the pro-survival 

cellular factors [58].

The repairing capabilities of MSCs have been reported in various tissues, including the brain, 
heart, kidney, pancreas and skin [59–62]. The mechanism through which the MSC-mediated 
tissue regeneration may vary from type of injury or tissues involved. For an instance, the 
increased expression of stromal cell-derived factor 1 (SDF-1) at the site of injury can attract 
the MSCs to the injured tissue [63, 64]. The expression of C-X-C chemokine receptor type 4 
(CXCR4) by MSCs regulates the adhesion of MSCs to endothelial cells. This has been shown 
to be a critical step for MSCs to migrate to the target tissue. Thus, the expression of the CD184 
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(Fusin) is important to expedite the interaction between SDF-1 and CXCR4 system, which 
play an important role in the survival and migration of bone marrow stromal cells after trans-

plantation into mice cerebral infarct [64]. MSCs can enhance the angiogenesis at the injured 
tissue, where the level of TGF-β1 is dramatically increased. TGF-β1 is known to stimulate the 
synthesis of VEGF in MSCs in order to promote the angiogenesis [65] which may augment 

the endothelial progenitor functions. Formation of new tissues and organs in the embryo 
requires the transitions from mesenchyme into epithelium that is the mesenchymal-epithelial 

transition [66]. We cannot speculate whether such a property of the mesenchymal-epithelial 
transition is observed at late progenitor stages of the MSCs. Further, such activity needs to be 
clearly elucidated.

Capabilities of MSCs to differentiate into hepatocytes, insulin-producing cells, neural cells, 
osteoblasts, chondrocytes, adipocytes, fibroblasts and so on are well documented and repro-

ducible by many studies [67]. These properties are not only observed in in-vitro conditions 
but also in some in-vivo small animal studies, which have revealed the transformation (dif-

ferentiation) of the MSCs into adult lineages [68]. These are further explained with the pres-

ence of the tracker-like GFP [69], indicating the newly formed cells with the presence of the 

GFP. In human studies, many types of the MSCs expressing pancreatic duodenal homeobox 
1 (Pdx1) gene have been shown to differentiate into insulin-producing cells or functions of 
pancreatic β cells [70]. There are many studies showing successful regeneration of skeletal 
tissues such as bone, cartilage, tendon and intervertebral discs from various sources of MSCs, 

including MSCs from the foreskin and dental pulp [71–74]. In some preclinical studies, a set of 
MSCs expressing exogenous glial cell-derived neurotrophic factor (GDNF) and brain-derived 
neurotrophic factor (BDNF) have shown to reduce stroke-induced lesion volume and further 
improve neovascularization [75, 76].

There are undoubtedly many in-vitro and in-vivo studies addressing the direct repair poten-

tial and the uses of providing conducive environment for the repair by the MSCs. What needs 
to be addressed here is whether all the subsets of the MSCs located at various anatomical 

niches are capable of performing the repair irrespective of their small deviations in the surface 

marker expression. Looking at the other functions of the MSCs, such as immune suppressive 
or modulatory effects, the therapeutic infusions of MSCs in experimental models of autoim-

mune encephalomyelitis showed reduced infiltration of T cells and macrophages followed by 
a reduction of demyelination in the brain and in the spinal cord [77–80]. Repeated adminis-

tration of MSCs derived from a patient’s mother completely cured a young patient suffering 
from severe grade IV graft-versus-host disease (GVHD); this is another observation, which 
clearly showed modulation of the properties of the infused MSCs paving a way for another 

dimension of the MSCs repairing property [21].

4. Mesenchymal stem cells: A tailor-made therapeutic approach in the 

future of medicine

Today, there is a growing need for novel technologies to restore, maintain and enhance 
organ function. Since the 1990s, stem cells have originated as a novel therapeutic option for 
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regenerative medicine. Human embryonic stem (ES) cells, mesenchymal stem cells (MSCs) 
and induced pluripotent stem cells (iPSC) have appeared as potential sources for therapeutic 
intervention for future.

There has long been a need for unique approaches to challenge the world of diseases and 
disorders. The skeletal tissue damage is one such clinical condition which requires restora-

tion, maintenance and enhanced organ function. The use of skeletal-derived stromal cells 
(MSCs) is a better option and an attractive choice. Though human ES cells, MSCs and iPSCs 
are regarded as potential sources for regenerative medicine and tissue engineering applica-

tions [81], they remained predominantly in the realm of laboratory-based in vitro investiga-

tion and in vivo animal modeling; however, more recently, a number of research centers have 
bridged the translational gap, from bench to clinic with few successes. Although the potential 
of MSCs to regenerate various tissues is known, it is increasingly renowned that the MSCs can 

exert immune and inflammation modulatory effects [82] through a large number of secreted 

bioactive factors including anti-scarring, angiogenic, anti-apoptotic as well as factors enhanc-

ing tissue remodeling [83, 84]. This mechanism may elucidate the interesting observation of 
the presence of therapeutically relevant outcomes of MSCs after systemic or local transplanta-

tion in a number of tissue injury models, for example, ischemic brain injury and myocardial 
infarction in the presence of low tissue engraftment of MSCs [85]. Though we do not know the 
success of these cases in humans, it is still promising unless trials are initiated in these areas 

of translational research.

The number of the clinical trials using MSCs till 2017 is furnished in Figure 2. Interestingly, 
both autologous and allogeneic MSCs have been employed in these studies as they are 

believed to be less immunogenic. According to National Institutes of Health (NIH) clinical 
trials database, predominantly bone and cartilage regeneration (23%), neuronal (21%), cardio-

vascular (16%) and autoimmune disorders [9] have been highly focused among other thera-

peutic approaches using MSCs.

The source and environmental niches are playing the critical role on MSCs; they have to be 
considered while studying their biological activity and clinical applications. Furthermore, the 
continuous search for novel and potent sources that might be suitable for specific regenera-

tive applications is needed. Recently, we compared the MSC-like cell populations obtained 
from alternative sources: the human adipose tissue, adult skin and newborn foreskin, with the 

standard phenotype of human bone marrow MSC. Our whole genome analysis has revealed 
a common MSC molecular signature composed of 33 CD markers including known MSC 
markers and several novel markers, for example CD165, CD276 and CD82. MSCs obtained 
from different sources exhibit significant differences in their proliferation, multipotency and 
molecular phenotype, which should be considered before applications in the clinical proto-

cols [86]. The skin-derived stromal cells have shown the endothelial lineage differentiation 
in-vitro, and the angiogenic role with potential contribution to blood vessel formation in ex-
vivo Chorioallantoic Membrane Assay (CAM) model is an excellent start for the pre-clinical 
considerations for the skin-derived MSCs. Therefore, human skin stromal cells are valuable 
resources that might be useful in applications requiring enhanced angiogenesis or in areas 

such as ischemic diseases [87–89]. Furthermore, these cells could be employed in tissue engi-
neering and cell-based therapy in which vascularization is an essential component.
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Currently, several MSC-based therapeutic protocols are being tested in an increasing num-

ber of clinical conditions in phase I/II and III clinical trials. At the website of the National 
Institutes of Health, the USA (http://clinicaltrials.gov), overall, till 2017, the status pertaining 
to hMSCs-based clinical trials shows 682 studies and in that 438 were closed (including com-

pleted, 168, and withdrawn 12), 134 are unknown and finally 244 are under recruiting condi-
tions. Results from these clinical trials are expected to have major impact on the treatment of 
several disease conditions.

Much progress has been made over the last decade in stem cell technology, and a steady 

stream of clinical applications and trials have followed on these advances. However, the 
approaches outlined above provide only limited evidence of current status [90, 91]. To date, 
there remains a paucity of randomized controlled trials to demonstrate the efficacy of many 
of these tissue-engineered/stem cell approaches. Thus, to date, it is difficult to recommend 
any of these strategies as standard therapy. Nevertheless, advances in basic research as well 
as from clinical trials of MSC-based therapy are expected to provide options for therapeutic 
interventions for tissue regeneration in multiple organs that will address the current unmet 

needs of an increasing number of patients suffering from age-related degenerative diseases.

5. Conclusion

Though MSCs have shown some promising therapeutic and transplantation potential, its use 
in regenerative medicine is primitive. In many aspects of the therapeutic approach, the results 

Figure 2. A pie chart showing the ongoing and/or completed clinical trials with MSCs (total of 682, 2017), adapted from 
http://clinicaltrials.gov.
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of the MSC applications are varied as well as affirmative, suggesting that more research needs 
to be carried out. The critical feature of the MSCs is their activation in the microenvironment 
or modulation of or by the host immune system, which makes it much more difficult to under-

stand and study the mechanism of regeneration. There are various opinions on the route of 
administration of MSCs like in vivo, or local transplantation on site of the organ on the tissue 

repair is still a subject of debate. Many studies cited in these chapters are individual observa-

tions at various centers and still need translation to bedside from the bench. The few clinical 
trials listed are at different phases and collectively may require more time for MSCs successful 
clinical applications.
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