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Abstract

An electric power system is a network of electrical components used to supply, transmit,
and use electric power. An example of an electric power system is the network that
supplies a region’s homes and industry with power. Due to the complexity and
nonlinearity of the power system, hand calculations may be very complicated in some
cases, especially when the number of buses or inputs is very large. Here comes the role
of software for convergence, time saving, and accuracy. The “Electric Power System
Simulator” focuses on three main concepts in power system analysis, the “Power Flow
Calculation,” “Faults Calculation,” and “Economic Dispatch Calculation.”
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1. Introduction

There are two classes of power system simulation tools analysis: commercial and educational

programs. Several commercial programs are available in the market (Power World Simulator,

Power System Simulator …). These tools present efficient computational programs for analy-

sis. However, they are inadequate for research and education intentions. This drawback is

present because they do not authorize the modification of algorithms or adding new models.

For research and education goals, flexibility, and simplicity are more important than computa-

tion. Due to several educational and research features, MATLAB becomes one of the efficient

and adequate programs in many scientific domains and especially in power systems.

This chapter describes a new MATLAB power system analysis toolbox that uses capabilities of

MATLAB in numeric computations to investigate fault calculation, power flow, and economic

dispatch of a given power systems. This tool is developed to help students in their education

and research studies. In addition, it was included in the curriculum for the graduate electrical

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



engineering students in the Lebanese International University. Since its adoption, students

show better understanding of these concepts. In addition, they were able to enhance their basic

knowledge and improve their way of thinking.

2. Power system analysis methods

An electric power system is sometimes very complex to analyze using hand calculations espe-

cially, if there are nonlinear equations, and a high number of buses. Human can deal with little

number of buses, and if the number of buses is high, the hand calculations are very complex. In

the Newton-Raphson method, computer software may solve up to 100,000 or 150,000 buses in

very short time, and more accurate when converging to the final solution obeying a specified

level of tolerance. For the unbalanced faults, one must calculate the sequence and phase of

voltages and currents depending on the type of fault, but computer software will calculate these

values within few milliseconds and very accurately. Finally, for the economic dispatch, the value

of the incremental cost and the generated powers will change as the value of the demand

changes. Thus, the software performs several calculations as the load changes.

The MATLAB tool we are preparing performs several objectives through many power systems

methods including: (i) the unsymmetrical faults analysis including line-to-ground fault, line-

to-line fault, and double line-to-ground fault, (ii) the Newton-Raphson method, and (iii) the

economic dispatch.

2.1. Unsymmetrical faults analysis

Short circuits occur in three-phase power systems as follows, in order of frequency of occur-

rence: single line-to-ground, double line-to-ground, and balanced three-phase faults. The path

of the fault current may have either zero impedance, which is called bolted short circuit, or

nonzero impedance.

When an unbalanced fault occurs in an otherwise balanced system, the sequence networks are

interconnected only at the fault location (Figure 1). As such, the computation of fault currents

is greatly simplified by the use of sequence networks.

Figure 1. Schematic representation of unsymmetrical fault.
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As in the case of balanced three-phase faults, unsymmetrical faults have two components

of fault current: an AC or symmetrical components including sub-transient, transient, and

steady-state currents, and a dc component [1, 2].

2.1.1. Unbalanced faults analysis

• Single line-ground (SLG) and line-line (LL) are the principle types of faults in a power

system. In addition, other types of faults, such as double line-ground (DLG), open con-

ductor, and balanced three phases, could be studied.

• The fault of an unbalanced system is estimated using the concept of symmetrical compo-

nents [3, 4].

2.1.2. Single line-to-ground (SLG) faults

Unbalanced faults will disturb the balancing of the network at the fault location. Therefore, the

sequence network should be combined together with respect to the type of fault. A detailed

derivation of these relationships will be discussed through this paragraph [3].

The terminal voltage at phase “a” can be transformed into its sequence components as:

Va ¼ V0
a þ Vþ

a þ V�
a ð1Þ

I0a ¼
Va

3Zf
¼

V0
a þ Vþ

a þ V�
a

3Zf
ð2Þ

The only way that these two constraints can be satisfied is by coupling the sequence networks

in series as shown in Figure 2.

2.1.3. Line-to-line (LL) faults

The second most common fault is line-to-line, which occurs when two of the conductors come

in contact with each other [3].

Figure 2. Coupling sequence network for line-to-ground fault.
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Vþ
a ¼ V�

a þ Iþa Zf ð3Þ

To satisfy: I�a ¼ �Iþa , V
þ
a ¼ V�

a þ Iþa Zf , I
0
a ¼ 0, the positive and negative sequence networks

must be connected in parallel (Figure 3).

2.1.4. Double line-to-ground (DLG) faults

With a double line-to-ground (DLG) fault, two line conductors come in contact both with each

other and ground [3] as shown in Figure 4.

V0
a � Vþ

a ¼ 3I0aZf ð4Þ

To satisfy: Ia ¼ I0a þ Iþa þ I�a ¼ 0, and Vþ
a ¼ V�

a , the three symmetrical circuits during a double

line-to-ground fault are connected as follows:

2.2. Power flow problem

The estimation of the power flow problem can be expressed using an adequate series of nonlinear

equations. These equations represent both Kirchhoff’s Voltage Law and network operation limits.

The assessment of the power flow problem is based on four variables for each “i” bus (network

node) [4]:

• V i: voltage magnitude

• δi: voltage angle

• Pi: net active power

• Qi: net reactive power

Figure 3. Coupling sequence network for line-to-line fault.

Figure 4. Coupling sequence network for a double line-to-ground fault.
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Depending on which of the above four variables are known (given) and which ones are

unknown (to be calculated), two basic types of buses can be defined:

• PQ bus: Pi and Qi are specified; V i and δi are calculated.

• PV bus: Pi and V i are specified; Qi and δi are calculated.

PQ buses are normally used to represent load buses without voltage control, and PV buses are

used to represent generation buses with voltage control in power flow calculations. A third

bus is also needed:

• Vδ bus: V i and δi are specified; Pi and Qi are calculated.

The Vδ bus, also called reference bus or slack bus, has double functions in the basic formula-

tion of the power flow problem:

• It serves as the voltage angle reference.

• Since the active power losses are unknown in advance, the active power generation of Vδ

bus is used to balance generation, load, and losses [5, 6].

The polar form of the power flow equations is given by:

Pi ¼
XN

n¼1

jYinV iVnj cos ðθin þ δn � δiÞ ð5Þ

Qi ¼ �
XN

n¼1

jYinV iVnj sin ðθin þ δn � δiÞ ð6Þ

For each line, numerical values for the series impedance Z and the total line-charging admit-

tance Y are necessary so that the computer can determine all the elements of the N � N bus

admittance matrix of which the typical element Yij is:

Yij ¼ jYijjθij ¼ jYijj cosθij þ jjYijj sinθij ¼ Gij þ jBij ð7Þ

The voltage at any bus of the system is given by:

jV ij ¼ jV ijδi ¼ jV ijð cos δi þ j sin δiÞ ð8Þ

The net current injected to bus i is given by:

Ii ¼ Yi1V1 þ Yi2V2 þ…þ YiNVN ¼
XN

n¼1

YinVn ð9Þ

The net scheduled power being injected into the network at bus i is:

Pi, sched ¼ Pgi � Pdi ð10Þ

where Pgi is the scheduled power being generated at bus i, and Pdi is the scheduled power

demand.
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The mismatch value of the power is given by:

ΔPi ¼ Pi, sched � Pi, calc: ð11Þ

Similarly, for the reactive power at bus i:

ΔQi ¼ Qi, sched �Qi,calc: ð12Þ

Table 1 lists the general number of equations and the state variables in function of the number

of buses.

2.2.1. Newton-Raphson method applied to power flow study

In all realistic cases, the power flow problem cannot be solved analytically, and hence iterative

solutions implemented in computers must be used. Here, we are going to discuss the Newton-

Raphson method.

To apply the Newton-Raphson method to the solution of the power flow equations, we express

bus voltages and line admittances in polar form as follows:

Pi ¼ jV ij
2Gii þ

X

N

n ¼ 1
n 6¼ i

jV iVnYinj cos ðθin þ δn � δiÞ ð13Þ

Qi ¼ �jV ij
2Bii þ

X

N

n ¼ 1
n 6¼ i

jV iVnYinj sin ðθin þ δn � δiÞ ð14Þ

Collecting all the mismatch equations into vector-matrix form yields:

∂P2

∂δ2
⋯

∂P2

∂δn

⋮ J11 ⋮

∂Pn

∂δ2
⋯

∂Pn

∂δn

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C
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jV2j
∂P2

∂jV2j
⋯ jVnj

∂P2

∂jVnj

⋮ J12 ⋮

jV2j
∂Pn

∂jV2j
⋯ jVnj

∂Pn

∂jVnj

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C
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∂Q2

∂δ2
⋯

∂Q2
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⋮ J21 ⋮
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B

B

B

B

B

B

@

1

C

C

C

C

C

C

C
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⋯ jVnj
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∂jVnj

⋮ J22 ⋮

jV2j
∂Qn

∂jV2j
⋯ jVnj
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0
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B
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Jacobian

Δδ2

⋮

⋮

Δδn

ΔjV2j

jV2j

⋮

ΔjVnj

jVnj

2

6

6

6

6

6
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6
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6
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Corrections

¼

ΔP2

⋮

⋮

ΔPn

ΔQ2

⋮

⋮

ΔQn

2

6

6

6

6

6

6

6

6

6

6

6
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6

6
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6

6

6
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Mismatches

ð15Þ
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The solution of the above equation is found by an iterative method as follows [4–6]:

• Estimate values δ
0ð Þ

i and jV ij
0ð Þ for the state variables.

• Use the estimates to calculate: P
0ð Þ

i, calc: and Q
0ð Þ

i, calc:, from (5) and (6).

• Mismatches ΔP
0ð Þ

i and ΔQ
0ð Þ

i from (11) and (12).

• Partial derivatives elements of the Jacobian matrix.

• Solve the above equation of the Jacobian matrix, the corrections, and the mismatches to

find the initial corrections δ
0ð Þ

i and ΔjV ij
ð0Þ=jV ij

ð0Þ.

• Add the solved corrections to the initial estimates to obtain:

δ
1ð Þ

i ¼ δ
0ð Þ

i þ Δδ
0ð Þ

i ð16Þ

jV ij
1ð Þ ¼ jV ij

0ð Þ þ ΔjV ij
0ð Þ ¼ jV ij

0ð Þ 1þ
ΔjV ij

0ð Þ

jV ij
0ð Þ

 !

ð17Þ

Use the new values δ
1ð Þ

i and jV ij
1ð Þ as starting values for iteration and then continue.

In more general terms, the updated formulas for starting values of the state variables are:

δ
kþ 1ð Þ

i ¼ δ
kð Þ

i þ Δδ
kð Þ

i ð18Þ

jV ij
kþ 1ð Þ ¼ jV ij

kð Þ þ ΔjV ij
kð Þ ¼ jV ij

kð Þ 1þ
ΔjV ij

kð Þ

jV ij
kð Þ

 !

ð19Þ

2.3. Economic dispatch

This section is dedicated to study the economic dispatch concept. For this reason, we consider

the system configuration shown is Figure 5. This configuration based on N thermal units

serving as a source of generation that would deliver the suitable electric power to the load.

Bus type Number of buses Quantities specified Number of available equations Number of δi, |Vi|

state variables

Slack (i ¼ 1) 1 δi, |Vi| 0 0

PV (i ¼ 2,…, Ng þ 1) Ng Pi, |Vi| Ng Ng

PQ (i ¼ Ng þ 2,…,N) N-Ng-1 Pi, Qi 2(N-Ng-1) 2(N-Ng-1)

Totals N 2N 2N-Ng-2 2N-Ng-2

Table 1. The number of equations and state variables of power flow problem.

Electric Power System Simulator Tool in MATLAB
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Each unit has the cost rate F as an input and its electrical power generated as an output.

Therefore, the total system cost is represented by FT, which is the sum of each unit cost rate.

The fundamental condition of this system considers that the total output powers should be

equal to total power demand.

The main objective from the economic dispatch concept is to minimize FTwith respect to the

considered constraints. Note that any transmission losses are neglected and any operating

limits are not explicitly stated when formulating this problem [7, 8]. That is,

FT ¼ F1 þ F2 þ F3 þ…þ FN ð20Þ

FT ¼
XNgen

i¼1

FiðPiÞ ð21Þ

∅ ¼ 0 ¼ Pload �
XNgen

i¼1

Pi ð22Þ

This type of optimization system is solved using the Lagrange concept. The extreme value

condition of the objective function is determined using the multiplication of the constraint by a

constant and adding this factor to the objective function as shown below:

L ¼ FT þ λ∅ ð23Þ

The paramount conditions needed to determine the highest value of the objective function are

based on the derivative of the Lagrange function with respect to the independent variables of

each unit. These derivatives should be equal to 0. Consequently, there will be N þ l variables

Figure 5. Thermal units committed to serve electrical load.
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(value of Pi for each N units and λ). In addition, the constraint equation is obtained by the

derivative of the Lagrange function by Pi with respect to λ [9–11]:

∂L

∂Pi
¼

dFiðPiÞ

dPi
� λ ¼ 0 ð24Þ

or

0 ¼
dFi
dPi

� λ ð25Þ

With respect to the above-mentioned condition, the minimum operating cost is established

when all incremental unit cost are equal to λ. The final step for this procedure is pointed out by

the addition of the power demand constraint and the limitation value (minimum and maxi-

mum) of each power output unit (inequality constraint) [12].

These constraints are summarized below:

dFi
dPi

¼ λ …Ngen equations ð26Þ

Pi,min ≤Pi ≤Pi,max …2Ngen equations ð27Þ

XN

i¼1

Pi ¼ Pload 1 constraint ð28Þ

When we recognize the inequality constraints, then the necessary conditions may be expanded

slightly as shown in the set of equations:

dFi
dPi

¼ λ for Pi,min ≤Pi ≤Pi,max ð29Þ

dFi
dPi

≤λ for Pi ¼ Pi,max ð30Þ

dFi
dPi

≥λ for Pi ¼ Pi,min ð31Þ

3. Flow chart

3.1. Unsymmetrical faults case

The implementation of the unsymmetrical faults analysis in MATLAB is based on the follow-

ing flow chart (Figure 6):

• Define the zero, positive, and negative impedance matrices.

• Define the pre-fault voltage and the faulted impedance.

Electric Power System Simulator Tool in MATLAB
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• Select the type of fault.

• Calculate the admittance and impedance matrices of the power system.

• Calculate the sequence current and voltage for the selected fault.

• Calculate the phase voltages and currents for all buses or the faulted buses.

• Save all results in a text file.

3.2. Power flow case

Power flow solution is estimated using the Newton-Raphson method. The fulfillment of this

method is achieved using an adequate flowchart (Figure 7):

• Define the number of buses.

Figure 6. Flow chart for the unsymmetrical faults.
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Figure 7. Flow chart for the power flow calculation.
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Figure 8. Flow chart for the economic dispatch.
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• Determine the resistance, admittance, and the power specification of each bus.

• Assign the initial values of the variables.

• Find the mismatches and Jacobian matrix.

• Find the unknown variables.

• Verify the accuracy of the calculation.

• Calculate the real and imaginary power in each bus and line.

• Calculate the real and imaginary power losses in each bus and line.

• Save the power flow solution report in a text file.

3.3. Economic dispatch case

The execution of economic dispatch procedure depends on several parameters. Figure 8 shows

the flow chart of this phenomenon.

• Define the number of units ðP1, P2, P3…PnÞ.

• Precise the lower and upper bounds of each unit.

• Determine the total demand load and the fuel cost ($/MBtu).

• Introduce the cost function ($/h) or heat rate function (MBtu/h).

• Calculate the incremental cost rate λ ($/MWhr).

• Estimate the cost function ($/h) or heat rate function (MBtu/h).

• Compute the economic operating point using Lagrange and the efficiency.

4. MATLAB implementation

4.1. Main display page

The main display page of the MATLAB tool gives the choice for the user to choose between one

of the three methods as shown in Figure 9 [13].

4.2. Unsymmetrical fault analysis implementation

As the user chooses the first method, which is the “Fault Calculation,” the interface shown in

Figure 10 appears [13].

The principle of unsymmetrical faults method throughout the “Power System Simulator”

software can be made through two modes:

Electric Power System Simulator Tool in MATLAB
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• Mode 1: The user enters all the data manually.

• Mode 2: The user loads the data from a specified file.

Results will show the following: The Ybus and Zbus, the figure of the faults, and the output

data (current and voltage) in sequence and phase domain as shown in Figure 11.

Figure 10. Unsymmetrical faults interface.

Figure 9. Main display page of the electric power simulator tool.
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Finally, each result (Ybus, Zbus, Vbus, and Ibus) for both sequence and phase configuration is

saved in a separated text file.

4.3. Power flow implementation

As the user chooses the first method, which is the “Power Flow Calculation,” Figure 12

appears [13].

The principle of the Newton-Raphson method throughout the “Power System Simulator”

software can be made through two modes:

• Mode 1: The user enters all the data manually.

• Mode 2: The user loads the data from a specified file.

Two table results are now filled, the first one is the load flow analysis, and the second is the line

flow and losses as shown in Figure 13.

4.4. Economic dispatch implementation

As the user chooses the first method, which is the “Power Flow Calculation,” Figure 14 will

appear [13].

Figure 11. Unsymmetrical faults output interface.
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The principle of the economic and optimal dispatch method throughout the “Power System

Simulator” software can be made through two modes:

• Mode 1: The user enters all the data manually.

• Mode 2: The user loads the data from a specified data.

Figure 13. Power flow solution output interface.

Figure 12. Power flow solution interface.
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In case of over or under limit estimation, the tool will provide a notification and the number or

this unit to the user as shown in Figure 15.

Figure 14. Economic dispatch interface.

Figure 15. Economic dispatch output interface.
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5. Conclusions

This chapter considers an appropriate guide for electrical engineers students who specialized

in power systems analysis and design. The above-mentioned paragraphs give to them an

adequate MATLAB tool in order to facilitate the comprehension of some concept.

These concepts can solve a lot of problems such as power flow solution, unsymmetrical faults

analysis, and economic dispatch with or without constraints.

They could also be adopting this tool for their practical studies without any complexity

because it is related with their own theoretical knowledge.
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