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Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disorder with an important inflam-
matory component in joints. Neutrophils are the most abundant leukocytes in inflamed 
joints, and play an essential role in the initiation and progression of RA. Neutrophil effec-
tor mechanisms include the release of proinflammatory cytokines, reactive oxygen and 
nitrogen species (ROS and RNS), and granules containing degradative enzymes, which 
can cause further damage to the tissue and amplify the neutrophil response. Therefore, 
the modulation of neutrophil migration and functions is a potential target for pharmaco-
logical intervention in arthritis. The pharmacologic treatment options for RA are diverse. 
The current treatments are mostly symptomatic and have side effects, high costs, and an 
increased risk of malignancies. Because of these limitations, there is a growing interest 
in the use of natural products as therapies or adjunct therapies. Herbal products have 
attracted considerable interest over the past decade because of their multiple beneficial 
effects such as their antioxidant, anti-inflammatory, antiproliferative, and immunomod-
ulatory properties. This chapter focuses on the role of neutrophils in the pathogenesis of 
arthritis and the action of substances from natural products as putative antirheumatic 
therapies.

Keywords: neutrophils, rheumatoid arthritis, herbal products, polyphenols, flavonoids, 
tetranortriterpenoids, inflammation

1. Introduction

Arthritis is an inflammatory joint disorder that can cause edema, pain, and loss of function. 
The most common types of arthritis are osteoarthritis, gout, and rheumatoid arthritis [1, 2]. 

Rheumatoid arthritis is a systemic, autoimmune disorder with an important inflammatory 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



component in which genetic and environmental risk factors contribute to disease develop-

ment. Its prevalence in the world population is between 0.3 and 1%, and it affects three times 
more women than men [3, 4].

The pathophysiology of RA is complex and appears to be initiated when the adaptive immune 
system (cellular or humoral) recognizes self-joint antigens as non-self, which triggers a variety 
of distinct inflammatory effector mechanisms, including the recruitment of leukocytes [5–8].

RA is characterized by intense inflammatory processes and joint damage that are mediated 
by the influx of immune system cells to the synovial space such as neutrophils, macrophages, 
and lymphocytes [1, 2]. A critical factor that contributes to tissue damage is the excessive pro-

duction of inflammatory mediators by resident and/or infiltrated cells. Among the primary 
mediators involved in joint damage are free radicals, enzymes that degrade the matrix, and 
pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and 
IL-1β, as well as chemokines such as CXCL-8, lipid mediators, such as leukotriene B

4
 (LTB

4
) 

[9, 10], and endothelin (ET) [11, 12]. Inflamed synovial tissue is invasive and called pannus, 
which can be formed by synovial cell proliferation, angiogenesis, and the accumulation of 
macrophages, lymphocytes, and neutrophils [13].

Neutrophils are crucial cells that have significant roles in diverse inflammatory diseases, includ-

ing acute, chronic, autoimmune, infectious, and non-infectious conditions [14]. The most well-

known effector function of neutrophils is their role in innate immunity. However, recent studies 
have identified neutrophils as active cells during adaptive immunity, facilitating the recruitment 
and activation of antigen-presenting cells or directly interacting with T cells. Neutrophils are the 
most abundant leukocytes in inflamed joints, and the importance of these cells in the initiation and 
progression of human RA as well as in murine models has been demonstrated [15–18]. Therefore, 

neutrophils play an essential role in joint inflammation, and the modulation of neutrophil func-

tions is considered a potential target for pharmacological intervention in arthritis [19–21].

The pharmacologic treatment options for arthritis are diverse. The current treatments are 
mostly symptomatic and include non-steroidal anti-inflammatory drugs (NSAIDs), corticoste-

roids, disease-modifying antirheumatic drugs (DMARDs), and biologic therapies. High costs 
and an increased risk of malignancies limit the use of these agents, in addition to the potential 

side effects that all therapies possess. Plant-derived products, such as polyphenols, sesquiter-

penes, flavonoids, and tetranortriterpenoids, which are herbal metabolites with anti-inflam-

matory activity, may provide new therapeutic agents and cost-effective treatments [22, 23]. 

This chapter focuses on the role of neutrophils in the pathogenesis of arthritis and the action of 

substances from natural products as putative antirheumatic therapies.

2. Role of neutrophils in rheumatoid arthritis

2.1. Neutrophil trafficking from blood to the synovial cavity

Neutrophil recruitment is an important stage in the inflammatory development process, includ-

ing autoimmune diseases such as RA. Among the circulating cells, neutrophils are the first ones 
to reach the synovium and are the most abundant cells in the synovial fluid [24]. In this section, 
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we discuss the cascade of events that culminates in neutrophil entry into inflamed joints. The 
leukocyte recruitment cascade involves the following commonly recognized steps: capture, roll-
ing, firm adhesion, and finally transendothelial migration.

Neutrophil release from the bone marrow to the circulating blood occurs immediately after 

the first signal of inflammation, serving to increase the number of neutrophils available 
for recruitment into the tissue in response to inflammation [25]. The mobilization of neu-

trophils from the bone marrow is orchestrated by the hematopoietic cytokine granulocyte 

colony-stimulating factor (G-CSF). G-CSF mobilizes neutrophils indirectly by shifting the 
balance between CXCR4 and CXCR2 ligands [26]. In response to the release of inflamma-

tory mediators such as TNF-α and IL-17, the adjacent vascular endothelium becomes acti-
vated. Cell surface proteins of the selectin family termed E- and P-selectin and their ligands 
(L-selectin) mediate this initial neutrophil capture. Neutrophil rolling through the endothe-

lium facilitates their contact with chemotactic factors that promotes neutrophil activation 
[27]. Chemokines (CXCR-1 or 2 ligands, such as IL-8), the C5a fragment of the complement 
system, and leukotriene B

4
 (LTB

4
) are responsible for neutrophil mobilization to the synovial 

fluid [28–30].

Firm adhesion is mediated by interactions between β
2
 integrins (LFA-1, CD11a/CD18, and 

MAC-1, CD11b/CD18) and their ligand (ICAM-1). Integrins are usually in an inactive state 
on neutrophil and become activated after the triggering of G protein-coupled receptors 
such as chemokine receptors [31]. The binding of integrins to their ligands activates signal-
ing pathways in neutrophils stabilizing adhesion and initiating cell motility [32, 33]. This 

signaling also regulates actin polymerization, which controls the direction of neutrophil 
movement [34, 35]. The final stage in the adhesion cascade is the ultimate migration of the 
neutrophil from the vasculature into the inflamed tissue. Passage through the endothe-

lial cell layer occurs both paracellularly (between endothelial cells) and by a transcellular 

route (over the endothelial cell). Paracellular migration of neutrophils is mediated by bind-

ing to endothelial proteins that target neutrophils to intercellular junctions and facilitate 

their passage through them. To reach the inflamed joint, neutrophils must pass over the 
basal membrane, which occurs through the degradation of extracellular matrix molecules 
by proteases stored inside the cells, such as matrix metalloproteinases (MMPs) and serine 
proteases [14].

In inflammatory foci, neutrophils find immune complexes on the synovium that bind to Fcγ 
receptors on the neutrophil membrane, triggering their degranulation and reactive oxygen 
species (ROS) production [36]. In RA pathology, oxidative stress is a result of inadequate 
ROS release by neutrophils [37]. Oxygen radicals cause DNA damage and oxidation of lip-

ids, proteins, and lipoproteins and may be involved in immunoglobulin mutations that lead 
to rheumatoid factor (RF) formation [38, 39]. Moreover, proteins from neutrophil degranu-

lation are found at high concentrations in the RA synovial fluid and could be responsible 
for cartilage and tissue damage, activation of cytokines and soluble receptors, inhibition of 
chondrocyte proliferation and activation of synoviocytes proliferation and invasion [40–43]. 

In addition, activated neutrophils also generate chemoattractants (such as IL-8 and LTB
4
) 

that promote further neutrophil recruitment and amplify the inflammatory response (see 
Figure 1).
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2.2. Neutrophil action in rheumatoid arthritis

Neutrophils are key cells in articular inflammation that are abundant in the synovial fluid 
and pannus of patients with active RA [44], a typical knee joint may have 2 × 109 cells, of 

which 90% are neutrophils [24]. These cells are mobilized to synovial tissue by chemoattrac-

tant mediators, such as CXCL1, CXCL2, endothelin (ET)-1, and leukotriene B
4
, a process in 

which resident macrophages play a central role [11, 45, 46].

For many years, the major contribution of neutrophils to the pathology of RA was thought to 
be their cytotoxic potential, since neutrophils participate in the pathogenesis of arthritis by 
promoting the inflammatory process and cartilage degradation, as well as bone resorption. 
However, neutrophils are now recognized to have an active role in orchestrating the progres-

sion of inflammation through regulating the functions of other immune cells [47, 48], and 

current research has shown that these cells are involved in RA onset [49, 50].

In the synovial cavity, activated neutrophils exhibit an increased expression of plasma mem-

brane receptors such as major histocompatibility complex (MHC) class II molecules and pres-

ent antigens to T lymphocytes, an immune function that they share with macrophages and 

dendritic cells (DCs) [51]. In addition, the interaction of neutrophils with other cells induces 

the secretion of MMP-8 and MMP-9, and a repertoire of cytokines (IL-1β, IL-12, IL-18, IL-23, 

Figure 1. Overview of the role of neutrophils in arthritis. Neutrophils leave blood vessels after chemotactic signals from 
inflamed tissues that promote the firm adhesion of neutrophils to endothelial cells mediated by adhesion molecules, 
which induce neutrophil activation and actin filament formation followed by transendothelial migration toward the 
inflammatory foci. Immune complexes and proinflammatory molecules activate neutrophils, which then produce 
ROS and release enzymes responsible for cartilage destruction. Activated neutrophils communicate with other cells 
of the immune system through the secretion of cytokines and chemokines and by antigen presentation in conjunction 

with MHC class II. Neutrophils can undergo a special form of cell death called NETosis. This results in the release of 
a complex of nuclear and granule molecules called NETs contributing to tissue damage. Activated neutrophils also 
generate chemoattractants (such as IL-8 and LTB

4
), forming a positive-feedback loop that promotes further neutrophil 

recruitment and amplifies the acute inflammatory response. Finally, effective neutrophil apoptosis is required for 
the resolution of inflammation. However, delayed neutrophil apoptosis occurs in the inflamed joint, which results in 
persistent inflammation and tissue damage due to the continued release of ROS, granule enzymes, and cytokines.
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and TNF-α) and chemokines (CCL-2, CCL-4, CCL-5, and CXCL-8), including TNF ligand 
superfamily member (RANKL) [52, 53] and TNFSF13B (also known as BLyS or BAFF) [54], 

which are implicated in the activation of osteoclasts and B lymphocytes, respectively, regulate 
the function of other immune cells [48, 55–57].

Neutrophils from patients with RA are functionally very different from those isolated from 
healthy individuals. RA blood neutrophils are already primed for ROS production [58] and 

striking differences in gene and protein expression exist between peripheral blood neutrophils 
from patients with RA and their healthy counterparts [18], including higher levels of mem-

brane-expressed TNF and myeloblastin (also known as PR-3 or cANCA antigen) in RA [59].

In RA patients, neutrophils can be activated by immune complexes, such as RF or anti-citrul-
linated protein antibodies (ACPAs), both within the synovial fluid and deposited on the 
articular cartilage surface [60]. These complexes engage Fcγ receptors and thereby trigger 
neutrophil activation, which release ROS and RNS [61, 62], collagenases, gelatinases, neutro-

phil myeloperoxidase (MPO), elastase, and cathepsin G into the synovial fluid and joints [14, 

55, 56, 63] due to frustrated phagocytosis [60].

2.2.1. Pain in rheumatoid arthritis and neutrophils

One of the most prevalent symptoms of RA is the increase in sensitivity to joint pain (hyper-

algesia), which causes movement limitations. Despite its clinical relevance, strategies for the 
treatment of arthralgia remain limited. In animal models, hyperalgesia (inflammatory pain) 
is defined as hypernociception (a decreased nociceptive threshold) [64]. It is broadly accepted 

that articular hypernociception results mainly from the direct and indirect effects of inflam-

matory mediators on the sensitization (increased excitability) of primary nociceptive fibers 
that innervate the inflamed joints [65–67]. Prostaglandins and sympathetic amines are the key 
mediators of this process. Furthermore, other mediators, such as the cytokines TNF-α, IL-1β, 
IL-6, and IL-17 play a crucial role in the pathogenesis of arthritis, increasing the recruitment 
of neutrophils into the joint and driving the enhanced production of chemokines and deg-

radative enzymes [68–70]. In addition, endothelin-1 (ET-1), acting directly or indirectly, also 

sensitizes primary nociceptive neurons [71–74].

During the inflammatory process, the migrating neutrophils participate in the cascade of 
events leading to mechanical hypernociception, by mediating the release of hyperalgesic mol-
ecules (such as MPO, MMPs, hypochlorite, superoxide anion, and PGE

2
) capable of activating 

nociceptive neurons and causing pain [17, 75–78].

Indeed, decreased inflammation and joint destruction have been directly correlated with 
reduced neutrophil influx into the joints, as observed in mouse models by means of antibody 
blockade or the gene deletion of chemoattractant receptors such as CXCR1, CXCR2, and BLT1 
(LTB

4
 receptor) [15, 79]. Therefore, the blockade of neutrophil migration could be a target in 

the development of new analgesic drugs [77].

2.2.2. Citrullinated autoantigens and NETs in rheumatoid arthritis

Citrullination is the natural posttranslational conversion of arginine to citrulline mediated by 
peptidyl arginine deiminases (PADs), enzymes present in macrophages, dendritic cells, and 
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neutrophils. Experimental evidence indicates that citrullination is involved in the breakdown 
of immune tolerance and may generate neoantigens (neoAgs) that become additional targets 

during epitope spreading [80]. Citrullinated residues stimulate the production of anti-citrul-
linated protein antibodies (ACPAs) in predisposed individuals. It has been observed that 
ACPAs can be present for several years before any clinical signs of arthritis appear [81–83]. 

A substantial increase in the number and titer of many antibodies against posttranslationally 
modified proteins is also seen shortly before the onset of arthritis. Citrullinated Ags have 
increased immunogenicity and arthritogenicity, and their presence in arthritic joints corre-

lates with disease severity [80, 84–86].

Osteoclasts are dependent on citrullinating enzymes for their normal maturation and display 
citrullinated antigens on their cell surface in a non-inflamed state. In humans, the binding 
of ACPAs to osteoclasts in the bone compartment induces IL-8 secretion. In turn, IL-8 sensi-
tizes and/or activates sensory neurons by binding to CXC chemokine receptor (CXCR) 1 and 
CXCR2 on peripheral nociceptors [87–90], producing IL 8 dependent joint pain that is associ-
ated with ACPA-mediated bone loss.

IL-8 release contributes to the chemoattraction of neutrophils [49], which play critical roles in 

initiating and maintaining joint-inflammatory processes that have been described in experi-
mental arthritis [36, 91]. However, the exact roles that neutrophils play in the posttransla-

tional modification of proteins and disease initiation and progression in RA remain unclear. 
Recent evidence suggests that, among the various mechanisms by which neutrophils cause 
tissue damage and promote autoimmunity, aberrant formation of neutrophil extracellular 
traps (NETs) could play important roles in the pathogenesis of RA [50].

NETs are released during a process of cellular death named NETosis. NETosis occurs with 

neutrophils upon contact with bacteria, fungi [92], or under several inflammatory stimuli. 
This process is associated with changes in the morphology of the cells, which eventually 
lead to cell death with extrusion of NETs [93, 94]. This process requires calcium mobilization, 
reactive oxygen species (ROS) produced by NADPH oxidase, neutrophil chromatin decon-

densation mediated by neutrophil elastase (NE) and myeloperoxidase (MPO), and chroma-

tin modification via the citrullination of histones by peptidyl arginine deiminase 4 (PAD4) 
[95–99]. NETs are a network of extracellular fibers, which contain nuclear compounds as 
DNA and histones and that are covered with antimicrobial enzymes and granular compo-

nents, such as MPO, NE, cathepsin G, and other microbicidal peptides [93, 94]. In the extra-

cellular environment, NET fibers entrap microorganisms, and their enzymes and granular 
substances reach locally high concentrations and are thus able to cleave virulence factors and 
kill microorganisms [95, 100, 101].

Although NETs play a key role in the defense against pathogens, they may cause undesirable 

effects to the host, which has increased the interest in the role of neutrophils and NETs in autoim-

munity. Augmented NET formation was first described in preeclampsia and ANCA-associated 
vasculitis and followed by the description in a series of autoimmune conditions, including pso-

riasis, systemic lupus erythematosus (SLE), antiphospholipid antibody syndrome (APS), and 
RA [50, 100, 102–105]. Neutrophil extracellular traps are an obvious source of nuclear material. 
Among these are a range of cytoplasmic and extracellular citrullinated antigens, well-established 
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targets of the ACPAs found in RA [50, 100]. The protein contents of NETs not only serve as tar-

gets for autoantibody and immune complex formation but also induce further NETosis, result-
ing in a harmful positive-feedback loop. These factors form an inflammatory microenvironment 
that may trigger a strong autoimmune response in individuals with the corresponding suscepti-
bility [106, 107]. Pro-inflammatory cytokines, such as TNF-α and IL-17, as well as autoantibodies 
stimulate the formation of NETs and affect their protein composition [50]. Additionally, NETs 

have been shown to stimulate autoimmunity via the production of interferons and activation 
of the complement cascade. Interferons activate both the innate and adaptive immune systems, 
inducing a Th1 immune response and stimulating B cells toward the generation of autoantibod-

ies [108]. The deposition of NETs observed in various inflammatory pathologies is associated 
with the circulating cell-free DNA (cfDNA) levels in biological fluids, such as plasma and serum, 
from patients [100, 101, 109]. Therefore, circulatory cfDNA could eventually be utilized as a 
marker of NETs in these pathologies, while the determination of the DNA levels might facilitate 
the monitoring of disease activity and assessment of the effectiveness of a selected therapeutic 
strategy.

Neutrophils have been traditionally viewed as short-lived cells that die at sites of inflammation; 
however, some evidence suggests that they can prolong their life span upon specific stimuli and 
transmigrate away from inflammatory loci [48, 110, 111]. Conditions within the synovial joint, 
such as hypoxia [112] and the presence of antiapoptotic cytokines (including TNF, granulocyte-
macrophage colony-stimulating factor (GM CSF), and IL 8) [113, 114], can increase neutrophil 

survival for up to several days [115, 116], which contributes to enhanced tissue damage.

As described above, neutrophils play an essential role on innate and adaptive immunity in 
RA physiopathology, contributing to tissue lesions in RA, and therefore represent a promis-

ing pharmacological target in RA. Pharmacological strategies that inhibit or reduce neutro-

phil mobilization or activation could be successful in RA treatment.

3. Neutrophils as therapeutic targets

Animal models have been extensively used in studies of RA pathogenesis. Despite the inher-

ent limitations of all animal models, several rodent models have greatly contributed to the 
overall knowledge of important processes/mediators in the generation of inflammation, car-

tilage destruction, and bone resorption. In addition, the pharmaceutical industry has used 

these models for testing potential anti-arthritic agents, leading to important advances in 
therapeutic interventions for this destructive disease [117]. Such models include collagen-

induced arthritis, collagen antibody-induced arthritis, zymosan-induced arthritis, the meth-

ylated BSA model, and genetically manipulated or spontaneous arthritis models such as the 

TNF-α-transgenic mouse, K/BxN mouse, and Skg mouse [118]. Many of these models show 
that neutrophils are the first immune cells to enter the arthritic joint, and that early measures 
of joint inflammation correlate with neutrophil infiltration [45, 119, 120]. In this section, we 

highlight pharmacological approaches targeting neutrophil recruitment and activity, which 
present a therapeutic benefit to patients with RA.

Neutrophils in Rheumatoid Arthritis: A Target for Discovering New Therapies Based on Natural Products
http://dx.doi.org/10.5772/intechopen.68617

95



The current treatments available to RA patients include glucocorticoids, non-steroidal anti-
inflammatory drugs, and disease-modifying antirheumatic drugs. Only disease-modifying 
agents—and to some extent glucocorticoids—can impede or halt the inflammatory and 
destructive disease processes [121]. With a more complete understanding of the immune-

inflammatory events that occur in the pathogenesis of RA, scientists have developed thera-

peutic strategies that include monoclonal antibodies and receptor constructs, which target 

specific soluble or cell-surface molecules of interest. Biological agents such as monoclonal anti-
bodies and recombinant proteins that target TNF-α, CD20, CTLA-4 (cytotoxic T-lymphocyte-
associated protein 4), and the IL-1 receptor as well as therapies based on the blockade of T-cell 
and B-cell functions have shown efficacy in controlling the physical signs and pain associated 
with RA [122, 123].

Many interventions used to treat RA exert inhibitory effects on neutrophil responses in inflam-

mation. However, non-steroid anti-inflammatory drugs (NSAIDS), DMARDs, and biologics 
do not specifically target neutrophil function [124].

Most NSAIDs inhibit the action of the cyclo-oxygenase-1 and -2 (COX-1 and -2) enzymes, 
which metabolize arachidonic acid into inflammatory mediators of the prostaglandin fam-

ily. NSAIDs have been shown to inhibit neutrophil adherence, decrease degranulation and 
oxidant production, inhibit neutrophil elastase activity, and induce neutrophil apoptosis 
[125–127]. Corticosteroids induce anti-inflammatory signals by several mechanisms; a major 
one may be to reduce the expression of cytokine-induced genes. They enter all cells and bind 
to the cytoplasmic steroid receptor, and then this complex translocates to the nucleus where it 
is recognized by specific DNA sequences. The major effect of binding to DNA is the suppres-

sion of transcription by opposing the activation of the transcription factors AP-1 and NF-κB 
[128]. Corticosteroids have been shown to inhibit neutrophil degranulation and ROS produc-

tion, decrease production of inflammatory mediators, and prevent neutrophil adhesion and 
migration into RA joints [44, 129–131]. The most widely used DMARD in clinic settings is 
methotrexate, a compound that blocks folic acid metabolism. Its benefits in RA include the 
stimulation of neutrophil apoptosis [116], inhibition of the NF-κB pathway [132], and reduced 

adhesion molecule expression and LTB
4
 production [133], consequently decreasing neutro-

phil recruitment and ROS production [134].

Anti-TNF-α therapies are also widely used for the treatment of RA patients. TNF primes 
the neutrophil respiratory burst, upregulates the expression of adhesion molecules, cyto-

kines and chemokines, and at high local concentrations can stimulate ROS production in 

adherent neutrophils [135–138]. Three different TNF inhibitors are available for RA patients 
who fail to respond adequately to standard DMARD therapy. Infliximab and adalimumab 
are monoclonal antibodies against TNF, whereas etanercept is a TNFRII fusion protein. All 
three drugs sequester soluble TNF [139]. Reports regarding the direct effect of anti-TNF 
agents on neutrophils have been published, and these drugs have been shown to decrease 
the mobilization of neutrophils from the peripheral blood to inflamed joints [140], decrease 

ex vivo neutrophil ROS production [20], and reduce neutrophil chemotactic and adhesive 
properties [141].
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Tocilizumab, a monoclonal antibody that blocks the soluble and tissue-expressed IL-6 receptor, 
is also proving to be a highly effective biologic agent in RA treatment [142]. Neutrophils are a 

major source of soluble IL-6 receptors, which they shed in large quantities when activated, and 
their accumulation in high numbers within the synovial joint could contribute significantly to 
IL-6 signaling within the synovium through trans-signaling [143]. In vivo therapeutic blockade 

of IL-6 with tocilizumab induces transient neutropenia caused by apoptosis or phagocytosis of 
apoptotic neutrophils but does not impair antibacterial neutrophil functions [144].

Despite the clinical efficacy of these therapies, many patients do not exhibit significant responses 
or discontinue treatment because of adverse effects. In addition, the limited availability of bio-

logical agents in developing countries, the need for parenteral administration of these prod-

ucts, and the high cost restrict access to such therapies for many RA patients worldwide, and 

this promotes a continuous search for new therapeutic targets and the development of new 
drugs [145]. Due to these limitations, interest has grown in the use of alternative treatments 
and herbal therapies for arthritis patients [146, 147] (Table 1).

Therapy Effect on neutrophil response Reference

Non-steroidal anti-inflammatory 
drugs (NSAIDS)

Inhibit neutrophil adherence, 

decrease neutrophil degranulation 

and ROS production, inhibit 

neutrophil elastase activity, and 
induce neutrophil apoptosis

[125–127]

Corticosteroids Inhibit neutrophil degranulation 

and ROS production, decrease 

the production of inflammatory 
mediators, and prevent neutrophil 
adhesion and migration into RA 

joints

[44, 129–131]

Disease-modifying antirheumatic 
drugs (DMARDs)

Stimulate neutrophil apoptosis, 

inhibit the NF-κB pathway, 
and reduce adhesion molecule 

expression, LTB
4
 production, 

neutrophil recruitment, and ROS 

production

[116, 132–134]

TNF-α inhibitors Decrease neutrophil mobilization 
from the peripheral blood to 

inflamed joints and reduce ex vivo 

neutrophil ROS production and 

neutrophil chemotactic and adhesive 
properties

[20, 140, 141]

IL-6 inhibitor Induce transient neutropenia caused 

by apoptosis or phagocytosis of 

apoptotic neutrophils but not impair 

antibacterial neutrophil functions

[144]

Table 1. Current therapeutic targets for arthritis and their effect on neutrophils.
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4. Plant-derived molecules as emerging therapies for arthritis

Current arthritis treatments result in unwanted side effects and tend to be expensive, and 
natural products devoid of such disadvantages offer a novel opportunity. The use of natural 
products represents a promising alternative to treat rheumatic diseases, in particular by act-
ing as therapeutic adjuvants to reduce the daily doses of conventional drugs that RA patients 
administer [148–150]. In this section, we highlight future perspectives in the treatment of RA 
with natural compounds, mainly herbal compounds, to minimize the harmful effects of the 
over-activation of neutrophils.

Decreased inflammation and joint destruction have been directly correlated with reduced 
neutrophil influx into the joints, as observed in mouse models by means of antibody blockade 
or the gene deletion of chemoattractant receptors such as CXCR1, CXCR2, and BLT1 (LTB

4
 

receptor) [15, 79]. The prospect of new drugs obtained from herbal products (or from struc-

tures of herbal products) plays a compelling role in drug discovery and development [151].

As previously mentioned, pharmacologic treatment options for arthritis are diverse and pres-

ent several side effects. Furthermore, the high costs and increased risk of malignancies limit 
the use of such agents. Because of these limitations, there is a growing interest in the use of 

natural products as therapies or adjunct therapies [22]. Plant-derived products such as poly-

phenols, sesquiterpenes, flavonoids, and tetranortriterpenoids, which are herbal metabolites, 
are considered to have potential activity to block inflammation, and they may provide new 
therapeutic agents and cost-effective treatments [22, 23]. These natural products have attracted 
considerable interest over the past decade because of their multiple beneficial effects, such as 
their antioxidant, anti-inflammatory, antiproliferative, and immunomodulatory properties. 
In this section, we discuss the plant-derived products that have been most studied in RA 
experimental models and/or clinical trials (Table 2).

4.1. Quercetin

Quercetin (Figure 2a) is the major dietary flavonol found in fruits, vegetables, and bever-

ages, such as tea and red wine [152]. Several epidemiological and experimental studies sup-

port the antioxidant, anti-inflammatory, antiangiogenic, antiproliferative, and proapoptotic 
effects of this molecule [153–155]. Preclinical studies on primary cells and animal models, as 

Compound Chemical class Arthritis experimental 

model

Reference

Quercetin Flavonoid Adjuvant-induced arthritis [156]

Methyl gallate Polyphenol Zymosan-induced arthritis [171]

Gedunin Tetranortriterpenoid Zymosan-induced arthritis [176]

Epigallocatechin gallate Polyphenol Collagen-induced arthritis [179]

Curcumin Polyphenol Collagen-induced arthritis [191]

Table 2. Herbal products that exhibit anti-arthritic potential in animal models.
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well as clinical studies, suggest an inhibitory action of quercetin in RA. Quercetin has been 
reported to lower the levels of IL-1β, C-reactive protein, and monocyte chemotactic protein-1 
(MCP-1), and restore plasma antioxidant capacity. In addition, quercetin increased the expres-

sion of hemeoxygenase-1 in the joints of arthritic rats. Finally, quercetin inhibited the twofold 
increase in NF-κB activity observed in joints after arthritis induction [156].

There are divergent data on the effect of quercetin in neutrophils. For instance, in vitro, querce-

tin inhibited myeloperoxidase activity [157] but had no effect on lipopolysaccharide-induced 
neutrophil surface expression of the adhesion molecules L-selectin (CD62L) and β2 integrin 
(CD11b/Mac1), [158] which are related to rolling and firm adhesion, respectively [159]. In paw 

edema induced by carrageen, quercetin did not inhibit the increase in myeloperoxidase, which 
is used as a marker of neutrophil recruitment [160]. Therefore, it seems unlikely that quercetin 
would inhibit neutrophil recruitment [158]. On the other hand, quercetin inhibits the fMLP-
induced increase in intracellular calcium, [158] which is necessary for actin polymerization and 
consequently neutrophil migration [159]. In addition, in vitro, quercetin blocked human neutro-

phil mobilization through the inhibition of the cellular signaling responsible for actin polym-

erization in association with the down-regulation of adhesion molecules [161], indicating that 

treatment with this flavonoid is a conceivable approach to control excessive neutrophil recruit-
ment during inflammation and to prevent neutrophil-mediated tissue lesions [162] (Table 3).

4.2. Schinus terebinthifolius and methyl gallate

S. terebinthifolius Raddi (Anacardiaceae) is a native plant from South America. It has been used 
in folk medicine as teas, infusions, or tinctures, as an anti-inflammatory, febrifuge, analgesic, 

Figure 2. Chemical structure of (a) quercetin, (b) methyl gallate, (c) gedunin, (d) epigallocatechin gallate, and (e) curcumin.
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and depurative agent and to treat urogenital system illnesses [163]. Scientific reports demon-

strated that S. terebinthifolius extracts and fractions are rich in polyphenols and display anti-
oxidant, antibacterial, and antiallergic properties in different experimental models [164–166]. 

The HPLH chromatograms of hydroalcoholic extracts from S. terebinthifolius leaves (ST-70) 
reveal that methyl gallate (MG, Figure 2b) is one of the major polyphenol components of the 

ST-70 extract [167]. Methyl gallate has been extensively studied because of its antioxidant, 
antitumor, and antimicrobial activities [168–170]. Pharmacological studies have shown that 
ST-70 and MG also have an anti-inflammatory effect and may have potential activity against 
arthritis. Pretreatment with ST-70 or MG markedly reduced knee-joint thickness, total leu-

kocyte (mainly neutrophil) infiltration, and reduced the production of inflammatory media-

tors associated with arthritis such as CXCL-1/KC, IL-6, TNF-α, IL-1β, LTB
4,
 and PGE

2
. ST-70 

and MG also inhibited murine neutrophil chemotaxis induced by CXCL-1/KC in vitro, and 

Compound Molecular targets/mechanisms Reference

Quercetin Inhibits IL-1β, C-reactive protein, 
and MCP-1 levels. Restores plasma 
antioxidant capacity, increases HO-1 
expression, and inhibits NF-κB 
activity in joints
Inhibits myeloperoxidase activity in 
neutrophils and blocks neutrophil 

mobilization

[156, 157, 161]

Methyl gallate Reduces edema formation, total 

leukocyte accumulation, neutrophil 

migration and IL-6, TNF-α, CXCL-1, 
IL-1β, LTB

4,
 and PGE

2 
production in 

zymosan-induced arthritis. Impairs 
neutrophil chemotaxis and adhesion

[171]

Gedunin Attenuates zymosan-induced 
articular edema, neutrophil 

migration, hypernociception, and the 

production of IL-6, TNF-α, LTB
4,
 and 

PGE
2 
and prevents increases in lipid 

bodies. Decreases neutrophil shape 
changes, chemotaxis, and lipid body 
formation

[176]

Epigallocatechin gallate Ameliorates the severity of arthritis 
and regulates the expression of 
cytokines, chemokines, MMPs, 
ROS, NO, COX-2, and PGE

2
. Affects 

neutrophil functionality and inhibits 

IL-8 and MIP-3α expression

[179–184, 186–189]

Curcumin Suppresses collagen-induced arthritis 

by reducing cellular infiltration, 
synovial hyperplasia, cartilage 
destruction, and bone erosion. Blocks 

neutrophil recruitment

[191, 193]

Table 3. Major molecular targets and anti-arthritic mechanisms of herbal products.
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MG impaired the adhesion of these cells to TNF-α-primed endothelial cells [167, 171]. These 

results provide some evidence that MG inhibits neutrophil activation and adhesion molecules 
expression and consequently prevents the neutrophil entry into inflammatory sites (Table 3).

Moreover, unlike potassium diclofenac, the long-term oral administration of ST-70 does not 
induce lethality or gastric damage in mice, which suggests that ST-70 could be used to treat 
inflammatory conditions such as arthritis with less toxicity [167].

4.3. Carapa guianensis and gedunin

C. guianensis Aublet is a member of the Meliaceae family that is widely used in folk medicine 
in Brazil and other countries surrounding the Amazon rainforest [172]. Anti-inflammatory 
and analgesic activities are among the most remarkable properties attributed by ethnophar-

macological research to the oil extracted from C. guianensis seeds, mainly for rheumatic 

pain and arthritis [172, 173]. C. guianensis oil and six different tetranortriterpenoids (TNTP) 
isolated from the oil were able to significantly inhibit zymosan-induced knee joint edema 
formation and protein extravasation. TNTP pretreatment inhibited the increase in total leu-

kocyte and neutrophil numbers in the synovial fluid. TNTP also impaired the production of 
TNF-α, IL-1β, and CXCL-8/IL-8, and significantly inhibited the expression of the NF-κB p65 
subunit [174].

Gedunin (Figure 2c) is a natural tetranortriterpenoid isolated from vegetal species of the 
Meliaceae family and is known to inhibit the stress-induced chaperone heat shock protein 
(Hsp) 90 [175]. Mouse pretreatment and posttreatment with gedunin impaired zymosan-
induced edema formation and total leukocyte influx mainly due to the inhibition of neu-

trophil migration and reduced articular hypernociception. Gedunin also reduced the in situ 

expression of preproET-1 mRNA and IL-6, TNF-α, LTB
4
 and PGE

2
 production and prevented 

increases in the number of lipid bodies in synovial leukocytes [176]. Lipid bodies are impor-

tant sites for the synthesis and storage of lipid mediators and they increase in number during 

inflammatory responses [177]. In neutrophils, gedunin impaired ET-1-induced shape changes, 

blocked ET-1- and LTB
4
-induced chemotaxis, decreased ET-1-induced lipid body formation 

and impaired neutrophil adhesion to TNF-α-primed endothelial cells [176]. The combined in 

vitro and in vivo effects of gedunin reveal its potential as an anti-arthritic candidate, especially 
its direct effect on key cells involved in articular inflammation such as neutrophils (Table 3).

4.4. Epigallocatechin gallate

Epigallocatechin gallate (EGCG, Figure 2d) is one of the main components of green tea [178]. 

It has antioxidative, anti-inflammatory, antitumor, and chemopreventive properties. The 
potential disease-modifying effects of green tea on arthritis have been reported; for example, 
in a mouse model of RA, the induction and severity of arthritis was ameliorated by the pro-

phylactic administration of green tea polyphenols [179]. Subsequent studies suggested that 
EGCG possesses remarkable potential to prevent chronic diseases like OA and RA [180–184]. 

The anti-inflammatory and anti-arthritic effects of EGCG are supported by in vitro and in 

vivo data indicating that EGCG can regulate the expression of cytokines, chemokines, MMPs, 
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ROS, nitric oxide (NO), COX-2, and PGE
2
 in cell types relevant to the pathogenesis of RA 

[179–184]. In in vivo studies, EGCG was found to inhibit inflammation in mouse models 
by affecting the functioning of T cells and neutrophils [185, 186]. IL-8 is the most power-

ful chemo-attractant for neutrophils in the target tissue. EGCG is a very effective inhibi-
tor of IL-1β and of TNF-α-induced IL-8 and macrophage-inflammatory protein-3α (MIP-3α) 
expression in different cell types [187–189]. These in vitro and in vivo observations indicated 
the efficacy of EGCG and demonstrate that it can modulate multiple signal transduction 
pathways in a fashion that suppresses the expression of inflammatory mediators that play a 
role in the pathogenesis of arthritis (Table 3).

4.5. Curcumin

Curcumin (Figure 2e) is a yellow-colored polyphenol found in the rhizome of turmeric. It 
has antioxidant, anti-inflammatory, antiapoptotic, and anticarcinogenic properties [190]. Oral 

administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice by 
reducing cellular infiltration, synovial hyperplasia, cartilage destruction, and bone erosion. 
Moreover, the production of MMP-1 and MMP-3 was inhibited by curcumin in CIA and in 
TNF-α-stimulated RA fibroblast-like synoviocytes (RA-FLS) and chondrocytes [191].

In vitro, it has been reported that curcumin decreases IL-1β-induced expression of the 
pro-inflammatory cytokine IL-6 and vascular endothelial growth factor (VEGF) in RA-FLS 
[192]. In addition, curcumin blocks neutrophil recruitment through the inhibition of cellu-

lar signaling responsible for actin polymerization in association with the down-regulation 
of adhesion molecules [193]. It has also been shown to induce apoptosis of RA-FLS (which 
are resistant to apoptosis) by increasing the expression of the proapoptotic protein Bax 
and down-regulating the expression of the antiapoptotic protein Bcl-2 [190]. Some molecu-

lar mechanisms related to curcumin have been identified. In a human synovial fibroblast 
cell line (MH7A) stimulated with IL-1β, curcumin blocked the activation of the NF-κB 
pathway and induced deactivation of the ERK-1/2 pathway [192]. In addition, this poly-

phenol inhibited activating phosphorylation of protein kinase Cδ (PKCδ) in CIA, RA-FLS, 
and chondrocytes. Curcumin also suppressed JNK and c-Jun activation in those cells [191].

In a clinical trial with RA patients, curcumin reduced reported pain, tenderness, and swelling 

of joints [194]. A curcumin-based medicine, Meriva®, demonstrated efficacy in clinical trials 
with patients with osteoarthritis by reducing reported pain [195]. In another clinical trial, 

treatment with Meriva® reduced stiffness and physical signs of RA (treadmill test) along with 
IL-1, IL-6, and VCAM-1 production [196] (Table 3).

5. Conclusion

In RA, neutrophils are key cells that are recognized to play an active role in orchestrating 
the progress of inflammation, through the release of pro-inflammatory cytokines, ROS, RNS, 
and NETs, which potentially affect the activities of both neutrophils and other cell types, such 
as resident mononuclear cells and chondrocytes. In addition, neutrophils participate in the 
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cascade of events leading to mechanical hypernociception. Therefore, neutrophils participate 
in the pathogenesis of arthritis by promoting the inflammatory process, degradation of carti-
lage, and bone resorption. The modulation of neutrophil migration and functions in RA can be 

considered a potential target for pharmacological intervention in arthritis. The pharmacologic 
treatment options for arthritis are diverse. High costs and an increased risk of malignancies 
limit the use of these agents, in addition to the potential for side effects that all therapies pos-

sess. Nevertheless, herbal metabolites with anti-inflammatory activity and inhibitory action in 
neutrophils may provide new therapeutic agents and cost-effective treatments.
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