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Abstract

A multifunctional titanium dioxide (TiO
2
) coating was used to provide anticorrosive, 

antimicrobial, and bioactive properties for the surface modification of biomedical materi‐
als because TiO

2
 has a stable bonding structure, photocatalytic characteristics, and nega‐

tively charged surfaces in nature. For successful deposition, an arc ion plating technique 
was adopted to deposit the TiO

2
 coating. The antimicrobial activity values of anatase‐

TiO
2
‐coated stainless steel specimens against Staphylococcus aureus and Escherichia coli 

were 3.0 and 2.5, respectively, which are far beyond the value designated in JIS Z2801:2000 
industrial standard. TiO

2
 coatings on stainless steel also generate an increased (i.e., less 

negative) corrosion potential and decreased corrosion current in a sodium chloride solu‐
tion, showing a reduced tendency and rate of substrate dissolution as well as a reduced 
coating of species into the electrolyte. In addition, TiO

2
 coatings, especially with rutile 

phase, satisfied the requirements for activating the biological property of a polymeric 
polyetheretherketone surface. Therefore, TiO

2
 is a promising surface modification for the 

biomedical materials used in surgical instruments and implants.

Keywords: anticorrosive, antimicrobial, bioactive, titanium dioxide, biomedical material

1. Introduction

Biomedical material is any substance that has been engineered to interact with biological sys‐

tems for a medical purpose, which may be therapeutic (i.e., to treat, augment, repair, or replace 

malfunctioning tissue in the body) or diagnostic. Among the various types of  biomedical 

materials, metallic materials are the most widely used because of their high load‐supporting 

capacity, desirable qualities of wear and friction, and acceptable biocompatibility. Stainless 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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steel, titanium, and their alloys are considered especially promising materials for surgical 

instruments and implants of many types and sizes. Polymeric materials have also garnered 

considerable interest in research and development as soft‐ and hard‐tissue replacements, on 

the basis of the ease of manufacturing and modifying such materials, and their appropriate 

physical, chemical, and mechanical properties.

When biomedical materials come in contact with physiological tissue and body fluids, vari‐
ous interactions, such as corrosive reaction, inflammation, and host response, are triggered. 
For this reason, knowing and understanding the surface properties of biomedical materials 

are crucial. Unfortunately, metallic materials are easily influenced by corrosion damage due 
to electrochemical reactions; additionally, the bioinertness and hydrophobic surface prop‐

erties render polymeric materials unfavorable for cell adhesion. Long‐term clinical experi‐

ments have also indicated that the primary causes of implant failure include not only unstable 

implant fixation to bone tissue, but also bacterial infection.

To overcome the aforementioned problems, a surface modification technique that uses a mul‐
tifunctional titanium dioxide (TiO

2
) coating is introduced to provide anticorrosive, antimicro‐

bial, and bioactive properties for the underlying biomaterial. These versatile natural features of 

TiO
2
 are attributed to its stable bonding structure, photocatalytic characteristics, and negatively 

charged surfaces. In this paper, a brief overview of TiO
2
 coating modification in the field of bio‐

medical material is provided. The two main topics discussed in the next section are as follows:

• Antimicrobial and anticorrosive titanium dioxide coating on stainless steel to reduce hos‐

pital‐acquired infection.

• Bioactive titanium dioxide coating on polyetheretherketone for spinal implant application.

2. Antimicrobial and anticorrosive titanium dioxide coating on stainless 

steel to reduce hospital‐acquired infection

2.1. Background

The increasing incidence and host risk of device‐related infections that result in morbidity and 

even mortality have been noted for some time, particularly regarding the spread of antibiotic‐

resistant bacteria, such as methicillin‐resistant Staphylococcus aureus and bursting Clostridium 

difficile. These hospital‐acquired infections are a worldwide problem [1]. The outbreaks of 

SARS and avian influenza have also drawn attention to novel preventative measures, includ‐

ing the development and application of antimicrobial materials, to enhance the conventional 

disinfection concept. This movement compelled us to develop an antimicrobial technique for 

medical implements in clinical use.

Antimicrobial or antibacterial refers to the inhibition of bacterial growth and reproduction [2]. 

Antimicrobial functions can be performed by essential materials themselves or through the 

use of coating materials. One example of an essential antimicrobial alloy material is stainless 

steel that has been doped with copper. This material forms when ε‐copper precipitates in a 
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steel matrix; specifically, copper ions can be dissolved into a surface‐passivated chromium 
oxide film. Such creates an antimicrobial effect on the stainless steel surface, resulting in the 
inhibition of bacterial growth [3]. The similar antimicrobial metal alloys, such as copper‐con‐

taining ferritic stainless steel [4], martensitic stainless steel [5], and austenitic stainless steel 

[6], were also developed. On the other hand, for the antimicrobial purpose on coating materi‐

als, the idea of coatings containing with copper, silver, zinc, and other antimicrobial active 

metals was considered [7]. Unfortunately, such substance may induce the corrosion reaction 

because of the undesired Galvanic effect between two metals, which may be unsustainable 
during service. In this regard, TiO

2
 with anatase (A‐TiO

2
) phase may be the promising candi‐

dates for antimicrobial purposes.

The antimicrobial effects of TiO
2
 are attributed to its photocatalytic characteristics, as discov‐

ered by Fujishima and Honda [8]. The photocatalytic process of TiO
2
 involves the generation 

of electron‐hole pairs when the material is exposed to light that emits energy exceeding the 

band gap energy of TiO
2
. The aggressive superoxide ions (O2−) are generated by the elec‐

tron attack, and the holes accelerate hydroxyl radical (•OH) formation on the material surface 

[9, 10]. These active radicals subsequently inhibit the growth of germs and bacteria that are 

known to be antimicrobially active through the direct oxidation of intracellular coenzyme, 

reducing the respiratory activity and thereby causing cell death [11].

In the present study, arc ion plating (AIP) was used to deposit a TiO
2
 coating on common med‐

ical‐grade AISI 304 stainless steel. The antimicrobial efficacy of the TiO
2
‐coated stainless steel 

specimens was then evaluated according to the JIS standard. The corrosion resistance of the 

TiO
2
 coating was also examined to determine whether such films can be stable in a physiologi‐

cal environment. The results suggest that this modification may be effective as an antimicro‐

bial surface coating for medical implements to reduce the risk of hospital‐acquired infections.

2.2. Preparation of antimicrobial and anticorrosive TiO
2
 films

TiO
2
 deposition was conducted using a typical AIP technique and involved three steps: argon 

ion bombardment, bottom titanium layer deposition, and TiO
2
 coating deposition. The ion bom‐

bardment was performed to clean and mildly preheat the substrate, followed by the bottom tita‐

nium layer deposition, which enhanced the adhesion between the substrate and TiO
2
 coating.

The wide acceptance indicates that an A‐TiO
2
 phase structure is the key factor for maximizing 

the antimicrobial efficiency of TiO
2
. This corresponds to a specific condition with 100% oxy‐

gen pressure at 0.5 Pa by using the AIP technique with a cathode target voltage of 20 V and 
a cathode target current of 90 A. Under this optimized deposition condition, the proportion 
of A‐TiO

2
 in the TiO

2
 coating has been reported to be 76.8% [12–14].

2.3. Antimicrobial characteristics of TiO
2
‐coated stainless steel

The JIS Z2801:2000 [15] was employed as a standard to test the antimicrobial efficacy of 
TiO

2
‐coated stainless steel specimens. The bacterial strains used in this test were Gram‐posi‐

tive Staphylococcus aureus (S. aureus, ATCC 6538P) and Gram‐positive Escherichia coli (E. coli, 
ATCC 8739) with an initial concentration of 4.0 × 105 bacteria/mL. In the antimicrobial test, 
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the specimens were divided into three groups: group A and group B consisted of uncoated 

stainless steel specimens, and group C consisted of TiO
2
‐coated stainless steel specimens. 

The specimens in group A immediately underwent serial dilution and plate culture after 

inoculation, while the specimens of groups B and C were incubated with exposure to fluo‐

rescent lighting for 24 h. The fluorescent lamp used was a regular daily‐living light source 
that emitted mainly visible light and had a weak emission of 365 nm. Antimicrobial activity 
(R) of the specimens in all three groups was then calculated.

As revealed in Figure 1 [13], the petri dishes corresponding to groups A and B (the uncoated 

stainless steel specimens) presented significant numbers of S. aureus and E. coli bacterial colo‐

nies, respectively; by contrast, the TiO
2
‐coated stainless steel specimens in group C did not 

show a significant amount of bacterial colonies. This qualitatively describes the antimicrobial 
ability of the TiO

2
 coating. Although only one out of the three petri dishes corresponding to 

each group is pictured in Figure 1, those not shown revealed a similar situation; this confirms 
the statistical accuracy of the antimicrobial test.

For both S. aureus and E. coli, the numbers of viable bacteria for groups A, B, and C are com‐

pared in Figure 2 [13]. The group A specimens showed 2.85 × 105 and 1.06 × 105 viable bacteria 

cells, respectively, for S. aureus and E. coli, whereas the group B specimens showed 1.04 × 104 

and 1.36 × 104 viable bacteria cells, respectively, for S. aureus and E. coli. By contrast, the group 

C specimens showed no bacterial colonies (10 bacteria cells) for S. aureus and 4.30 × 101 viable 

bacteria cells for E. coli. Based on these results, the TiO
2
‐coated stainless steel specimens pre‐

sented R values of 3.0 and 2.5, respectively, for S. aureus and E. coli. Such values are far beyond 

the index of 2 stipulated for the JIS test standard.

Figure 1. S. aureus and E. coli colonies formed on petri dishes after 24 h on the (a) group A stainless steel specimens, (b) 
group B stainless steel specimens, and (c) TiO

2
‐coated stainless steel specimens [13].
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To further investigate the antimicrobial mechanism of a TiO
2
 coating, the bacterial micro‐

structure was observed using transmission electron microscopy (TEM; JEOL JEM‐1230). This 

closer examination revealed that most of the S. aureus cells were retained their integrity as 

the cells were inoculated on bare stainless steel with the exposure to fluorescent light for 
24 h; moreover, the complete cell structure, including the cell wall, cytoplasmic membrane, 
cytoplasma, and nucleoid, was observed. The cells were undergoing mitosis, as presented in 

Figure 3(a) [14], was also found. These results indicate that the inoculated S. aureus cells on 

bare stainless steel were not deactivated by the fluorescent light. However, for the S. aureus 

cells on the TiO
2
‐coated stainless steel specimens, detachment of the cell wall from the cell 

membrane was frequently observed in the microscopic field (Figure 3(b) [14]). As has been 

noted elsewhere [16–18], the cell walls in these specimens are attacked by superoxide ions and 

Figure 2. Viable bacteria numbers of S. aureus and E. coli for (a) group A stainless steel specimens, (b) group B stainless 

steel specimens, and (c) TiO
2
‐coated stainless steel specimens [13].
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hydroxyl radicals, and lipid peroxidation caused polyunsaturated phospholipids in the cell 

membrane to be destroyed; similarly, the degeneration of the membranes in the present study 

caused the detachment of the cell walls from the cell membranes.

A high percentage of the E. coli cells inoculated on bare stainless steel and exposed to fluo‐

rescent light for 24 h also retained their integrity, as depicted in Figure 4(a) [14]. By contrast, 

a large amount of E. coli cell fragments were observed following inoculation on TiO
2
‐coated 

stainless steel specimens and exposure to fluorescent light for 24 h, as presented in Figure 4(b) 

[14]. This occurred because E. coli cell walls are too thin to protect against attack by superox‐

ide ions and hydroxyl radicals, resulting in massive death. A closer examination of the E. coli 
cells reveals that the nucleoid structures in the cytoplasma tend to give way to features of 

condensation, as indicated by the arrow in Figure 4(b) The degeneration of E. coli in response 

to photocatalysis found in the present study is similar to the degeneration that was observed 

in response to the antimicrobial effects of silver ions [16].

2.4. Anticorrosive characteristics of TiO
2
‐coated stainless steel

A potentiodynamic polarization test was carried out in a potentiostat (EG&G 263 A) accord‐

ing to the ASTM G44–99 standard [19] to evaluate the corrosion resistance of a TiO
2
 coating in 

a 3.5 wt.% sodium chloride electrolyte. A saturated silver/silver chloride electrode was used 
as the reference, with a platinum counter electrode; a TiO

2
‐coated stainless steel specimen was 

inserted as the working electrode.

Figure 5 illustrates the potentiodynamic polarization curves of bare stainless steel 

and TiO
2
‐coated stainless steel specimens [20]. The corrosive potential (E

corr
) and corro‐

sive current (I
corr

) were −0.54 V and 6.0 × 10−8 A/cm2, respectively, for the bare stainless steel 

Figure 3. Cell structures of S. aureus inoculated on (a) bare stainless steel and (b) TiO
2
‐coated stainless steel specimens, 

following continuous exposure to a fluorescent lamp for 24 h. (The arrow indicates detachment of cell wall from the cell 
membrane.) [14].
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Figure 5. Polarization curves of bare stainless steel and TiO
2
‐coated stainless steel specimens in a 3.5 wt.% sodium 

chloride solution [20].

Figure 4. Cell structures of E. coli inoculated on (a) bare stainless steel and (b) TiO
2
‐coated stainless steel specimens, following 

continuous exposure to a fluorescent lamp for 24 h. (The arrows indicate the condensation features of the nucleoid) [14].
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 specimens. Once the specimens had been coated with TiO
2
, the E

corr
 and I

corr
 of the specimens 

were −0.42 V and 1.0 × 10−8 A/cm2, respectively. Notably, TiO
2
 is an inorganic compound, 

and its inertness in corrosive environments (e.g., a sodium chloride solution) helps reduce 

the tendency and rate of substrate dissolution and species coating in an electrolyte. This 

increases the corrosive potential and decreases the corrosive current, as noted herein.

In summary, the research results show that A‐TiO
2
 adds effective antimicrobial characteristics 

to stainless steel. The key to providing efficient antimicrobial efficacy lies in the photocatalytic 
performance of the coating, which originates from the anatase phase. Furthermore, based on 

the TEM observation results, the antimicrobial mechanisms that inhibit S. aureus and E. coli 
bacteria under the photocatalytic action of A‐TiO

2
 are different; specifically, the antimicrobial 

efficacy of A‐TiO
2
 against E. coli is more thorough. The A‐TiO

2
 coating also reduces the over‐

all rate of corrosion and increases the corrosion barrier, compared with the features of bare 

stainless steel.

3. Bioactive titanium dioxide coating on polyetheretherketone for spinal 

implant application

3.1. Background

Orthopedic implants have become one of the most highly developed fields in hard‐tissue 
replacement. Polyetheretherketone (PEEK) polymer, with its high chemical resistance, radio‐

lucency to X‐ray scanning, and low elastic modulus similar to human cancellous bone, has 

become a highly preferred biomaterial, providing a promising alternative to metallic implants 

[21]. In particular, the elastic modulus can avoid the stress shielding effect, and prevent com‐

pression fractures and osteopenia syndrome; the X‐ray radiolucency characteristic does 

not present a medical image shielding problem. PEEK can also be sterilized and shaped by 

machining to fit the contour of bones [22]. Consequently, PEEK has been widely used for 

load‐bearing orthopedic applications, including dental implants, screws, and spinal inter‐

body fusion cages [23, 24].

Despite these excellent properties, PEEK is still categorized as a bioinert material because of its 

hydrophobic feature and inertness with the surrounding tissue [21]. To overcome this problem, 

two primary strategies, bulk modification and surface modification, have been proposed to 
enhance the bone fusion ability of the PEEK. Bulk modification incorporates various bioactive 
materials, such as hydroxyapatite (HA) [25], strontium‐containing hydroxyapatite [26], β‐tri‐
calcium phosphate [27], or TiO

2
 [28], into the PEEK matrix to form PEEK‐based biocomposites. 

However, their tensile strength and toughness decrease as more of the bioactive materials are 

added, resulting in a substantial increase in the elastic modulus of these biomedical compos‐

ites; the biomechanical property of these PEEK‐based biocomposites is therefore no longer 

similar to that of human cancellous bone [21]. Conversely, surface modification only alters the 
surface properties of a material, without adversely affecting its bulk properties. In other words, 
surface modification is a more suitable approach for adapting PEEK to be used as implant. 
Consequently, various surface modification approaches have been developed to promote the 
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hydrophilic and biological characteristics of PEEK, such as using plasma treatment to change 

the surface chemistry [29], using chemical treatment to graft functional groups [30], and using 

laser treatment to roughen the surface [31]. Moreover, adding a functional coating to PEEK to 

create a bioactive surface is a more effective method for enhancing osseointegration perfor‐

mance [32–38]. Functional coating materials include HA [32], titanium [33, 34], TiO
2
 [35–37], 

and diamond‐like carbon [38]. To date, by taking the advantage of good biocompatibility of 

titanium with human body, very thick titanium produced over PEEK surface via vacuum 

plasma spray for spinal implant has been clinically available.

It has been well established that under humid conditions, the surface of TiO
2
 generates 

hydroxyl groups (─OH−), followed by the conjunction with calcium ions (Ca2+) and phos‐

phate groups (PO
4
3−) from physiological fluid. Therefore, bone‐like apatite compounds can 

be formed on the TiO
2
 surface to induce osteoblast cell adhesion and proliferation [39, 40]. 

Based on the results, TiO
2
 has been reported to exhibit excellent biocompatibility and further 

classified as a bioactive material [39, 40]. Furthermore, TiO
2
 demonstrated excellent osseointe‐

gration ability, according to the animal experiment study [41]. These biological characteristics 

render TiO
2
 film an even more promising material for the successful modification of PEEK 

surfaces, in comparison with regular titanium film.

In this research, the AIP technique was used to deposit TiO
2
 films with controllable A‐TiO

2
 

and rutile (R‐TiO
2
) phases onto PEEK substrates. The investigation focused on determining 

the effects of introducing a TiO
2
 coating on the in vitro and in vivo characteristics of TiO

2
‐coated 

PEEK specimens, and evaluating the ability of the modified PEEK in a clinical application to 
shorten the osseointegration period for spinal implants and bone tissues.

3.2. Preparation of biocompatible TiO
2
 films

The detailed AIP‐TiO
2
 deposition work is described in Section 2.2. The deposition conditions 

used in this section are listed in Table 1; target current and substrate bias were systematically 

manipulated to achieve specific ratios of A‐TiO
2
 and R‐TiO

2
 in the deposited films, character‐

ized by a fixed 100% oxygen pressure of 0.5 Pa and a cathode target voltage of 20 V.

Based on the microstructure characteristics results [12], the AIP process can successfully fabricate 

TiO
2
 films of varying A‐TiO

2
 and R‐TiO

2
 composition when appropriate coating parameters are 

used. Specifically, the A‐TiO
2
 phase in the deposited films ranged from 9.1% to 92.7% (Table 1). 

Sample code Target current (A) Substrate bias (V) A‐TiO
2
 content (%)

60A0V 60 0 92.7

90A0V 90 0 76.8

90A20V 90 –20 46.6

90A25V 90 –25 21.5

90A30V 90 –30 9.1

Table 1. Deposition conditions and the proportions of A‐TiO
2
 phases for TiO

2
 coatings.
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A low target current promotes the growth of A‐TiO
2
, whereas a high substrate bias induces the 

formation of R‐TiO
2
. The mechanism behind this outcome was previously investigated [12].

3.3. In vitro characteristics of TiO
2
‐coated PEEK

First, the MC3T3‐E1 osteoblast cell line was used in the osteoblast compatibility test to assess 

the cell adhesion test, cell proliferation test, cell differentiation test, and osteogenesis perfor‐

mance [namely quantification of osteopontin (OPN), osteocalcin (OCN), and calcium content]. 
Next, the cell morphology that had attached to the PEEK and TiO

2
‐coated PEEK specimens 

was observed using field emission scanning electron microscopy (FESEM; Hitachi S‐4800).

Figure 6 shows the osteoblast cell adhesion ability, cell proliferation ability, cell differentiation 
ability, and osteogenesis performance on the PEEK and TiO

2
‐coated PEEK specimens at various 

deposition conditions [36]. Notably, the osteoblast cell adhesion, proliferation, and differentia‐

tion abilities on TiO
2
‐coated PEEK specimens were superior to the bare PEEK specimens for 

all of the deposition conditions. This indicates that all of the obtained TiO
2
 coatings possessed 

cell induction capabilities, which led to accelerated cell adhesion and growth and increased 

cell proliferation and maturity. These three indicators confirmed the osteoblast compatibility of 
the TiO

2
‐coatings deposited on PEEK. Furthermore, the osteogenesis performance (revealed by 

OPN, OCN, and calcium content as shown in Figure 6(d)–(f) [36], respectively) demonstrated 

that TiO
2
 coatings also significantly increased the osteogenesis performance. This suggests that 

TiO
2
 coatings enhance extracellular bone matrix growth. Figure 6 [36] also shows that the speci‐

men 90A30V, which was the richest in R‐TiO
2
 phase, exhibited the most osteoblast compatibility.

Figure 7 shows the morphologies of the osteoblast cells after they were cultured for 0.5 and 

48 h on PEEK and TiO
2
‐coated PEEK specimens at different deposition conditions [36]. 

Figure 6. (a) Cell adhesion ability, (b) cell proliferation ability, (c) cell differentiation ability, (d) OPN, (e) OCN, and (f) 
calcium content of the osteoblast inoculated on bare PEEK and TiO

2
‐coated PEEK specimens with various deposition 

conditions [36].

Application of Titanium Dioxide112



Figure 7. Morphologies of the osteoblasts cultured for 0.5 and 48 h on (a) the bare PEEK specimens, and the TiO
2
‐coated 

PEEK specimens at different deposition conditions: (b) 60A0V, (c) 90A0V, (d) 90A20V, (e) 90A25V, and (f) 90A30V [36].
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Specifically, the morphology of osteoblast cells on the bare PEEK specimens remained spheri‐
cal without the appearance of filopodium, suggesting the poor adhesion to the specimen. By 
comparison, osteoblasts on the TiO

2
‐coated PEEK specimens with the culturing time of 0.5 h 

showed a very comfortable adhesion features, that is, the filopodia extension and well‐devel‐
oped lamellipodia on the cells; this was particularly notable on the films with high ratios of 
R‐TiO

2
 to A‐TiO

2
. Similar results were observed in the cells cultured for 48 h. Overall, these 

results further confirm that a deposited film with high R‐TiO
2
 content has superior osteoblast 

growth.

Furthermore, bare PEEK, and TiO
2
‐coated PEEK specimens were then immersed in a simu‐

lated body fluid (SBF) for 1, 3, 7, 14, and 28 days, to investigate the effect of TiO
2
 coating on the 

ability to induce HA formation. The TiO
2
 coatings that possessed A‐TiO

2
 and R‐TiO

2
 under 

the deposition conditions of 60A0V and 90A30V, respectively, were examined. This biomi‐
metic immersion test is a valuable approach for evaluating bioactivity of a candidate bone 

implant material prior to an in vivo test [42].

Figure 8 illustrates the X‐ray diffraction (XRD) patterns of bare PEEK, A‐TiO
2
‐coated PEEK, 

and R‐TiO
2
‐coated PEEK specimens after immersion in the SBF for a varying number of days 

[43]. During the early immersion period, the diffraction peaks that are ascribed to PEEK 
showed no observable change, indicating that the growing layer was undetectable in all of 

the specimens. After 28 days of immersion, weak and broadened diffraction peaks that are 
ascribed to HA were found, as shown in Figure 8(a) [43]. This implies that a very poor crys‐

talline or even amorphous calcium phosphate layer had formed on the PEEK specimens. By 

contrast, after only 7 days and 3 days of immersion in the SBF solution, diffraction peaks that 
are ascribed to HA could be observed in A‐TiO

2
‐ and R‐TiO

2
‐coated PEEK specimens, respec‐

tively. Over time, the intensity of these diffraction peaks increased significantly, as shown 
in Figure 8(b) and (c) [43], suggesting that additional crystalline HA was formed on them. 

Figure 8. XRD patterns of the (a) bare PEEK, (b) A‐TiO
2
‐coated PEEK, and (c) R‐TiO

2
‐coated PEEK specimens immersed 

in a SBF for 1, 3, 7, 14, and 28 days [43].
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Overall, these results suggest that HA growth in a SBF solution can be enhanced by adopting 

TiO
2
 coatings, and that the R‐TiO

2
 coating seems to exhibit a superior capability to induce HA 

formation. Therefore, the results of the biomimetic immersion tests agree well with the find‐

ing of in vitro characteristics from osteoblast compatibility tests.

3.4. In vivo characteristics of TiO
2
‐coated PEEK

Bullet‐shaped PEEK implants with a diameter of φ 4.0 mm × L 6.0 mm were used in an ani‐
mal experiment. Bare PEEK, A‐TiO

2
‐coated PEEK, and R‐TiO

2
‐coated PEEK implants were 

inserted into the femurs of New Zealand white male rabbits to evaluate the in vivo osseointe‐

gration capacity through the push‐out test and histological observation.

The push‐out test can precisely quantify the degree of fixation between an implant and bone 
tissues [44]. Figure 9 shows the push‐out test results for the three implants after 4, 8, and 

12 weeks [37]. Notably, the shear strength between the bone tissues and the implant increased 

as implantation time increased; at 12 weeks, the shear strength of the bare, A‐TiO
2
‐coated, 

and R‐TiO
2
‐coated PEEK implants was 2.54 MPa, 3.02 MPa, and 6.51 MPa, respectively. It was 

thus concluded that the bare PEEK implant had the poorest shear strength, but this could be 

enhanced by adding a TiO
2
 coating. Overall, the R‐TiO

2
 coating had the optimal fixation.

To identify the failure mode between the implant and bone tissues after the push‐out test, 

FESEM was adopted to observe the fracture morphology of the implant surface at 12 weeks, 
as shown in Figure 10 [37]. It was noted that new bone tissue had fully peeled off the surface 

Figure 9. Shear strength between bone tissues and mplant for the (a) bare PEEK implant, (b) A‐TiO
2
‐coated PEEK 

implant, and (c) R‐TiO
2
‐coated PEEK implant at 4, 8, and 12 weeks after implantation [37].
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of the bare PEEK implant (Figure 10(a) [37]), indicating that failure occurred at the bone/PEEK 

interface. Thus, the osseointegration capacity of a bare PEEK implant is poor. By contrast, when 

a TiO
2
 coating was applied to the implant, a large area of the residual bone tissue adhered to the 

surface of the implant (Figure 10(b) and (c) [37]). Additionally, a particularly large amount of 

residual bone tissue on the R‐TiO
2
‐coated PEEK implant surface was confirmed by elemental 

mapping, as revealed in Figure 10(d) [37]. These analytical results indicate that TiO
2
‐coated 

implants have a superior ability to induce bone growth and achieve bone ingrowth. The A‐

TiO
2
‐coated PEEK implants experienced some coating detachment, resulting in a mixed adhe‐

sive failure between the A‐TiO
2
 coating and PEEK substrate, as well as cohesive failure of the 

bone itself. However, the R‐TiO
2
‐coated PEEK implant surfaces were almost completely cov‐

ered with new bone tissue, almost no film detachment from the implants was observed, and 
thus, the failure can be regarded as cohesive failure by the bone tissue itself.

Figure 11 depicts the histological sections of the three implants at 4, 8, and 12 weeks after 
implantation [37]. Notably, new bone tissue that was generated by bone remodeling had 

formed mature lamellar bone, and directly connected to the TiO
2
‐coated PEEK implants 

after 4 weeks, indicating excellent osseointegration performance. Thus, it was concluded that 

Figure 10. Fracture morphology of the (a) bare PEEK implant, (b) A‐TiO
2
‐coated PEEK implant, and (c) R‐TiO

2
‐coated 

PEEK implant with (d) the composition analysis of its bone tissues and implant interface after the push‐out test 

conducted at 12 weeks [37].
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TiO
2
 coating exhibits strong osteoblast compatibility and rapidly activates bone remodeling. 

Subsequently, the coating induced adhesion and proliferation of osteoblasts on the implant 

surface, and differentiation into osteocytes for the production of new bone tissue and later 
bone bonding. Conversely, new lamellar bone on the surface of the bare PEEK implants was 

not completely mature and not fully bonded with the implant.

The response of the TiO
2
‐coated PEEK implants in the marrow cavity (located far from the 

cortical bone) at 4 weeks indicated that regenerated bone tissues grew onto the implant sur‐

faces; moreover, this new bone is the result of bone tissue repair, which proliferates from the 

endosteum of cortical bone. Due to the osteoconductive effect, the new bone tissues grew 
inward to the implant surfaces in the marrow [45]. These findings indicate that TiO

2
 coatings 

have excellent osteoconductivity and promote new bone growth on the TiO
2
‐coated PEEK 

implant surfaces, with connections to cortical bone. By contrast, the surfaces of the bare PEEK 

implant were covered with fibrous tissue, implying that bone bonding did not occur between 
the implant and the cortical bone. Fibrous tissue growth is likely caused by micro movement 

in the implant and poor stability during the early implantation period [46].

Figure 11. Histological sections of the bare PEEK implant, A‐TiO
2
‐coated PEEK implant, and R‐TiO

2
‐coated PEEK 

implant at 4, 8, and 12 weeks after implantation [37].
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When the implant period was extended to 8 weeks, immature osteogenesis was observed in 
the cortical bone around the bare PEEK implant, and new bone tissue was maturing after 

12 weeks. However, fibrous tissue was still identified at the interface between the implants 
and bone tissues, indicating that the osseointegration capacity of bare PEEK implants is very 

limited, even when the implantation period is extended. By contrast, 8 weeks after the implan‐

tation of the TiO
2
‐coated PEEK implants, histological sections in the marrow cavity revealed 

that the new bone tissue was maturing and osteocytes covered the their surface. In other 

words, the osteoconductive effect of TiO
2
 coating triggers quick bone remodeling. The new 

bone was fully mature and closely integrated with the TiO
2
 coating in the cavity after 12 weeks 

(Figure 11 [37]). However, a comparison of the TiO
2
 coatings with different phase structures 

indicated that the degree of bone bonding between new bone and the R‐TiO
2
‐coated PEEK 

implant was significantly better than that between new bone and the A‐TiO
2
‐coated PEEK 

implant. In addition, some gaps existed between the A‐TiO
2
 coating and the new bone in some 

areas; detachment of the A‐TiO
2
 coating was also noted.

In summary, the in vitro and in vivo characteristics can be improved by TiO
2
 coating because of 

its bioactivity; R‐TiO
2
 coatings perform particularly well, promoting biomimetic HA growth, 

osteoblast compatibility, and osseointegration. These phenomena are attributable to the abun‐

dance of negatively charged hydroxyl groups on the R‐TiO
2
 surface [35–37].

4. Conclusions

In this chapter, TiO
2
 coatings prepared using the AIP technique to alter the surface properties 

of biomaterials were described. Specifically, it was found that introducing TiO
2
 coating to 

stainless steel and PEEK specimens adds various anticorrosive, antimicrobial, and bioactive 

surface properties to the materials, which were systematically reviewed herein. The following 

conclusions can be drawn:

1. Owing to the efficient photocatalytic performance of its anatase phase structure, A‐TiO
2
‐coated 

stainless steel exhibits excellent antimicrobial efficacy against S. aureus and E. coli bacteria. The 

material could possibly serve as a new antimicrobial treatment for surgical instruments and 

medical implements to reduce the risk of hospital‐acquired infections.

2. The high corrosion resistance of TiO
2
 coatings in a 3.5 wt% sodium chloride solution was 

postulated as a direct consequence of its ceramic nature, suggesting that TiO
2
 is electro‐

chemically inert in the human body environment.

3. Based on the in vitro and in vivo tests, the bioactivity and osseointegration of all TiO
2
 coat‐

ings were far superior to bioinert PEEK; moreover, R‐TiO
2
 coatings exhibited greater per‐

formance than A‐TiO
2
 coatings because of the abundance of negatively charged hydroxyl 

groups on its surface. Consequently, TiO
2
‐coated PEEK specimens are suggested for use 

in clinical applications.

4. Overall, the aforementioned results prove that TiO
2
 coatings are highly suitable for surface 

modifications of biomedical materials.
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