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Abstract

Androgens, steroid hormones produced by follicular cells, play a crucial role in the regu-
lation of ovarian function. They affect folliculogenesis directly through androgen recep-
tors (ARs) or indirectly through aromatization to estrogens. Androgens are thought to be 
primarily involved in preantral follicle growth and prevention of follicular  atresia. It also 
seems possible that they are involved in the activation of primordial follicles. According 
to the World Health Organization, endocrine-disrupting chemicals (EDCs) are substances 
that alter hormonal signaling. EDCs comprise a wide variety of synthetic or natural chemi-
cals arising from anthropogenic, industrial, agricultural, and domestic sources. EDCs inter-
fere with natural regulation of the endocrine system by either  mimicking or blocking the 
function of endogenous hormones as well as acting directly on gene expression or through 
epigenetic modifications. Disruptions in ovarian processes caused by EDCs may originate 
adverse outcomes such as anovulation, infertility,  or premature ovarian failure. In this 
chapter, we aim to point out a possible involvement of androgen excess or deficiency in 
the regulation of ovarian function. We will summarize the effects of EDCs expressing anti-
androgenic or androgenic activity on female physiology. Continuous exposition to even 
small concentration of such compounds can initiate oncogenesis within the ovary.

Keywords: androgens, androgen receptors, ovarian follicle, folliculogenesis, endocrine-
disrupting chemicals

1. Introduction             

The mammalian ovarian follicle guarantees two essential functions in the ovary. It synthe-

sizes many substances, including steroids, and by this way creates a microenvironment for 

the proper development and maturation of a viable oocyte. Even though gonadotrophins are 
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regarded as the main hormones regulating follicular development, sex steroids are also known 

to play an important role in this process. Currently, the least established follicular function is 

that related to androgens. Androgens were originally regarded as hormones influencing pri-
marily the male physiology. This perception has changed as numerous investigations have 

demonstrated the effects of androgens such as testosterone (T) and dihydrotestosterone (DHT) 
on female physiology [1]. It turned out that androgens are one of the most important agents 

influencing folliculogenesis [2–6]. Androgens are known to exert pro-apoptotic effects [7, 8] 

but are also indispensable in normal folliculogenesis for both androgen receptor-mediated 

responses and as substrates for estrogen synthesis [9]. Androgenic actions play a role mainly 

in early follicular growth, whereas estrogenic roles are more important at later follicle devel-

opment stages [1, 9]. The high number of androgen receptors (ARs) that characterize granu-

losa cells (GCs) in preantral follicles declines during antral differentiation at the same time as 
expression of mRNA for P450 aromatase (P450arom) and estrogen synthesis increase [10–13].

Recently, a growing concern aroused about the potential for environmental endocrine- 

disrupting chemicals (EDCs) to alter sexual differentiation. EDCs are one of the factors that 
can induce unfavorable changes taking place in the ovary [14, 15]. They originate as a result 

of human industrial activities, enter the natural environment, and then disturb hormonal 

regulation (e.g., through blocking steroid hormone receptors) [16]. Such a mechanism of 

action negatively influences many processes taking place in the reproductive tract of a female 
[17, 18]. In extreme cases, this may lead to the elimination of many populations from their 

natural habitats, by premature cessation of ovarian function, among other putative mecha-

nisms. The image of muscular bodies as the model for an ideal, which is frequently carried 

in mass communication media, has led to an increase in the number of enthusiasts for andro-

genic anabolic steroid (AAS) use. AAS is a group of synthetic compounds that originate from 

testosterone and its esterified or alkalinized derivatives belonging to EDCs. The association 
between AAS use and cancer that has been described in the literature and may be related to 

the genotoxic potential has already been shown in several studies [19, 20]. In vitro toxicologi-

cal models are widely used to assess the effects of endogenous androgens and EDCs on ovar-

ian function, to understand their role in the initiation/progression of ovarian cancers.

In this chapter, we intend to point out a possible impact of androgen excess or deficiency on the 
regulation of ovarian function as well as following EDC action with antiandrogenic (e.g., vinclo-

zolin, linuron) or androgenic (e.g., anabolic steroids: testosterone propionate, boldione) activity 

due to the fact that continuous exposition to even small concentration of such compounds can 

initiate oncogenesis within the ovary. Following our previous results obtained using an in vitro 

animal model generated for studying androgen deficiency, we have found that the exposure of 
porcine follicles to an environmental antiandrogen—vinclozolin—caused deleterious effects at 
antrum formation stage that may negatively influence the reproductive function in mammals.

2. Androgen receptor structure and mechanism of action

Like all steroid hormones, androgens affect target cells by binding to and activating special-
ized receptors. The types of receptors that are involved in the signal transduction decide on 
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its mechanism of action. A genomic response is usually induced by receptors localized in 

the cytoplasm/nucleus. Additionally, androgens can also exert their effects by interacting 
with receptors located on the cell membrane to perform rapid, non-genomic actions. It is well 

known that the cross talk between non-genomic and genomic signaling pathways is crucial 

for proper ovarian function [21].

The ARs, encoded by a gene composed of eight exons located on the X chromosome, are 

proteins with approximately 919 amino acids. The exact length of ARs is variable due to the 

existence of two diverse polyglutamine and polyglycine stretches in the N-terminal region 

of the protein [22]. This AR region modulates its transactivation [23, 24] and, hence, its func-

tionality. The ARs, which belong to the nuclear receptor superfamily, are characterized by a 

modular structure consisting of four functional domains: C-terminal domain responsible for 

ligand binding (LBD), a highly conserved DNA-binding domain (DBD) with centrally located 

zinc fingers, a hinge region, and N-terminal domain (NTD) (Figure 1) [25, 26]. The C-terminal 

domain of ARs is encoded by exons 4–8. Within itself, besides LBD, C-terminal domain also 

contains transcriptional activation function 2 (AF2) co-regulator binding interface [27, 28]. 

In the most conserved region of ARs—DNA-binding domain—two zinc fingers encoded by 
exon 2 and exon 3, respectively, are located. The first zinc finger determines the specificity of 
DNA recognition, which makes contact with major groove residues in an androgen-response 

element (ARE) half-site. The second zinc finger is a dimerization interface that mediates bind-

ing with a neighboring AR molecule engaged with an adjacent ARE half-site [29]. The short 

flexible hinge region, encoded by exon 4, regulates DNA binding, nuclear translocation, and 
transactivation of the ARs [30]. The N-terminal domain, encoded by AR exon 1, is relatively 

long and poorly conserved. It displays the most sequence variability by, as mentioned above, 

virtue of polymorphic (CAG)n and (GGN)n repeat units encoding polyglutamine and poly-

glycine tracts, respectively [31–33]. This domain contains also the AF1, which harbors two 

transactivation regions, transcriptional activation unit-1 (TAU-1), and transcriptional activa-

tion unit-5 (TAU-5). The N-terminal domain is essential for AR activation [34] and, because 

it contains many sites for Ser/Thr phosphorylation, may be involved in mediating cross talk 

with other signaling pathways leading to the modulation of AF1 activity and interaction with 

co-regulators [35].

In the absence of androgens, unliganded ARs remain in the cytoplasm. To maintain the unbounded 

AR protein in a stable and inactive configuration, the molecular chaperone complex, including 
Hsp90 and high-molecular-weight immunophilins, is needed. Androgens like other steroids can 

freely diffuse across the plasma membrane and bind to the LBD region that induces conforma-

tional changes, including the Hsp90 dissociation from ARs. Followed by these transformation, 

ARs undergo dimerization, phosphorylation, and translocation to the nucleus, which is mediated 

by the nuclear localization signal (NLS) in the hinge region. The dimer binds to the androgen 

response elements (AREs) located in the promoter of the target gene and leads to the recruit-

ment of co-regulators, either coactivators or corepressors such as steroid receptor coactivator 1 

(SRC1) and transcriptional intermediary factor 2 (TIF2), leading to transcription of genes that 

are involved in many cellular activities, from proliferation to programmed cell death [36]. In 

some cases, for example, in the low androgen concentration, the ligand-independent signaling 

pathway may occur. This process involves MAPK/ERK pathway and depends on growth factor 
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receptors. As a result, transcriptional activity enhancement, through direct phosphorylation of 

steroid receptors, is observed [37]. The androgen signaling pathways depicted above are collec-

tively known as “genomic pathway” (Figure 2) [38].

Apart from the direct or indirect genomic effects, androgens may also operate in cells by the 
“non-genomic pathway,” stimulating rapid effects in signal transduction through the produc-

tion of second messengers, ion channel transport, and protein kinase cascades. This kind of 

activity involves receptors localized in the plasma membrane or in “lipid rafts” [39]. Rapid 

non-genomic action of androgens might be mediated by binding to transmembrane recep-

tors unrelated to nuclear hormone receptors (usually G-protein-coupled receptor (GPCR)) 

that was well documented in different tissues [40, 41]. Among GPCRs, there are GPRC6A 

and ZIP9 that have been pharmacologically well characterized [42, 43]. Additionally, andro-

gens can induce activation of the Src/Ras/Raf/MAPK/ERK1/ERK2 pathway in the cytoplasm, 

independently of receptor-DNA interactions (Figure 2) [44, 45]. It was shown that in lutein-

ized human GCs androgens caused rapid, non-genomic-dependent rise in cytosolic calcium, 

involving voltage-dependent calcium channels in the plasma membrane and phospholipase 

C [46, 47].

Androgen action might be disturbed by alternative splicing [48]. This is a common event 

described in the structural molecular biology of AR genes. Alternative splicing is a process 

by which multiple different mRNAs and downstream proteins can be generated from one 
gene through the inclusion or exclusion of specific exons [49]. This process might occur in 

Figure 1. Schematic representation of the structural and functional domains of AR protein (A) and the coding of exons 

1–8 in relation to each functional domain of human AR gene (B). AF, transcriptional activation function; NLS, nuclear 

localization signal; HSP, heat shock protein.
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95% of all multi-exonic genes and provides a significant advantage in evolution by increas-

ing proteomic diversity [50]. Although deregulation of this process may lead to inappropri-

ate spliced mRNA, impaired proteins and eventually to diseases such as cancers [51, 52] or 

endocrine system dysfunction [53]. More recently, two AR splice variants expressed in GCs 

from patients with polycystic ovary syndrome (PCOS), which is one of the most common 

causes of female infertility, have been identified [54]. The altered AR splicing patterns are 
strongly associated with hyperandrogenism and abnormal folliculogenesis in PCOS [55]. It 

seems possible that AR alternative splicing may be an important pathogenic mechanism in 

human infertility.

Figure 2. Molecular mechanism of the AR action. After entering into the cell, ARs bind to their specific receptors located 
in the cytoplasm; the ligand-receptor complexes are then translocated to the nucleus. After that, they bind to DNA 

as dimmers modulating gene expression (1). Alternatively, the ligand-receptor complexes in the nucleus interact with 

transcription factors, which in turn bind to their responsive elements on the DNA to regulate gene expression (2). 

Hormone-independent mechanism involves AR phosphorylation and activation, which is triggered by protein kinase 

cascade in response to growth factors binding to their receptors located on the cell membrane. Phosphorylated ARs 

enter the nucleus and bind to DNA, regulating gene expression (3). Androgens may also be directly bounded by cell 

membrane receptors, triggering the activation of protein kinase cascades. Thereafter, phosphorylated transcription 

factors bind to their own response elements in the genome, thereby controlling gene expression (4). Androgen action 

might be either mediated by intracellular secondary messengers produced in response to the activation of G-protein-

coupled receptors (5). TF, transcription factor; cAMP, cyclic AMP; PKA, protein kinase A; PLC, phospholipase C; IP
3
, 

inositol 1,4,5-trisphosphate; DAG, diacylglycerol; PKC, protein kinase C.
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3. Androgens and follicular development

In the ovary of a mature mammalian female, the process of folliculogenesis proceeds all 

the time, which manifests in cell proliferation and differentiation. Such a process, involving 
growth and development of ovarian follicles from the stage of primordial to the preovulatory 

ones, is a substantially complicated phenomenon requiring multidirectional regulation. From 

the initial pool of ovarian follicles starting to grow, the preovulatory stage is reached by only 

a few. More than 99% of the follicles undergo atresia at various stages of development. The 

transition from the preantral to an early antral stage is most susceptible to this process. All 

primordial follicles present during fetal life constitute a reserve that cannot increase later on, 

during the postnatal period. Therefore, the very first stages of folliculogenesis, such as forma-

tion of primordial follicles, their recruitment from the resting pool, and then transformation 

into primary ones, are critical for the reproductive cycle of a vertebrate female animal [56]. 

Improper coordination of the primordial follicle formation and activation of their growth may 

disturb folliculogenesis in mature individuals originating infertility.

3.1. Origin of primordial follicles

In the developing ovary, the primordial follicles consist of an oocyte surrounded by a single 

layer of squamous pregranulosa cells. Once assembled, some of the primordial follicles are 

immediately stimulated to growth, but most remain quiescent until selected follicles are gradu-

ally recruited into a growing follicle pool, throughout the reproductive life [57]. The recruit-

ment of primordial follicles into a growth (primordial-to-primary follicle transition) involves 

a change in the shape of the granulosa cells from squamous to cuboidal and the initiation of 

oocyte growth. The primordial-to-primary follicle transition is an irreversible process. The early 

stages of folliculogenesis are believed to be gonadotropin independent. All events related to 

early follicular development are mostly regulated by paracrine growth factors originating from 

the growing oocyte itself and from the somatic cells that surround it [58, 59] and also by ovar-

ian steroid hormones (i.e., progesterone, androgens, and estrogens) [6]. Interestingly, during 

initiation of primordial follicle growth, a fundamental role for androgens has been shown. In 

mouse, bovine and primate ovaries T and DHT [3, 60, 61] are responsible for the stimulation of 

this process, while in sheep DHEA plays the main role [62]. The initiation of primordial follicle 

growth might be mediated through paracrine stimulation, by upregulation of IGF-1 and/or its 

receptor [63]. On the other hand, it seems possible that androgens, acting through ARs, regulate 

the early stages of follicular development. Fowler et al. [61] reported that in human fetal ovaries 

pregranulosa cells express ARs, and the oocytes of the primordial follicles are able to synthe-

size androgens. Taken together, androgens might stimulate the primordial-to-primary follicle 

transition but still an open-ended question is that how they exactly influence primordial follicle 
recruitment and whether this is a primary or secondary response [64].

3.2. Antral follicle formation

Studies indicating AR expression in the different compartments of follicles throughout most 
stages of folliculogenesis allowed us to assume that androgens regulate follicular  development [9]. 
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Although AR expression pattern differs between follicular cell types, it has been observed that AR 
number declines together with follicle maturation to the preovulatory stage [65]. AR-mediated 

actions might be important in the antrum formation during follicular development. Mouse pre-

antral follicles cultured in vitro in the presence of an AR antagonist, bicalutamide, showed sig-

nificantly suppressed growth and antral cavity formation. At the same time, supplementation 
of culture medium with DHT restored the follicular growth and antral development in follicles 

cultured without FSH addition [66]. Similar situation was observed after different androgens 
(incl. T, DHT, or DHEA) in addition to in vitro culture system of mouse preantral follicles. 

They undergone rapid granulosa cell proliferation and amplified responsiveness to FSH [67]. 

Moreover, supplementation of culture media with estrogens, with or without fadrozole (an aro-

matase inhibitor), had no effect on follicular development, while the addition of an AR antago-

nist, flutamide, suppressed follicular growth. These studies allow to state that these androgen 
stimulatory effects on antrum formation and follicular growth are mediated directly through 
ARs and are not induced by T aromatization to estrogens [3]. Our recent research was conducted 

to determine whether experimentally induced androgen deficiency during in vitro culture of 
porcine ovarian cortical slices affects preantral follicular development. Cultured preantral folli-
cles were supplemented with testosterone, nonsteroidal antiandrogen, 2-hydroxyflutamide, and 
a dicarboximide fungicide, separately or in combination with androgen. 2-Hydoxyflutamide is a 
pharmaceutical compound, which is regarded as a model antiandrogen in experimental studies. 

It promotes AR translocation to the nucleus and DNA binding but nevertheless fails to initi-

ate transcription, inhibiting the AR signaling pathway [68]. We demonstrated the deleterious 

effects of androgen deficiency at antrum formation stage, what confirms androgen involvement 
in porcine early follicular development [69]. In summary, it was clearly shown that androgens 

enhance ovarian follicle growth, from preantral to antral stage. The main findings regarding the 
direct action of androgens on the in vivo and in vitro control of follicular development in mam-

mals are based on the transcriptional actions of ARs in follicular cells.

3.3. Preovulatory follicular development

During antrum formation GCs separate into cumulus GCs and mural GCs, which line the fol-

licle wall. These two subpopulations of GCs gain different morphological and functional prop-

erties during further follicle development [70]. The mural granulosa cells are characterized by 

high levels of steroidogenic enzyme activity, which converts androgens to estrogens, while 

the cumulus cells (CCs) are engaged in supporting oocyte growth and maturation. Just before 

ovulation, CCs acquire steroidogenic abilities and start to produce primarily progesterone [71]. 

The role of ARs in the female was elucidated by the studies of various global and tissue-specific 
AR knockout (ARKO) mouse models [72]. Granulosa cell-specific ARKO (GCARKO) mouse 
models have demonstrated that granulosa cells are an important site for androgen action and 

strongly suggested that the AR in these cells is an important regulator of androgen-mediated 

follicular growth and development. On the other hand, AR inactivation in the oocyte, as shown 

in the OoARKO female mouse model, appears to have no major overall effect on female fer-

tility [73]. Using female mice lacking functional ARs (AR−/α), Hu et al. [74] demonstrated 

impaired expression of ovulatory genes, defective morphology of the preovulatory cumu-

lus oophorus cells, and markedly reduced fertility. However, there are contradictory reports 
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concerning androgen effects on oocyte maturation and embryonic development. While some 
authors found androgens exerting inhibitory effects on these processes in different species [75, 

76], others have shown that T increases the cleavage rate of fertilized rat oocytes and that dihy-

drotestosterone improves the fertilizability of mouse oocytes [77, 78]. Optimal androgen levels 

appear to be of real importance in the maintenance of proper preovulatory follicular devel-

opment ensuring normal ovulatory function. Administration of T or DHT did not increase 

preovulatory follicle numbers in primate ovaries [12]. Yet, in pigs, treatment with T or DHT 

during the late follicular phase increased the number of preovulatory follicles and corpora 

lutea [79]. In mice, DHT at a low dose [80] improved the ovulatory response to superovulation. 

Likewise, in vivo treatment of rats with a steroidal AR blocker (cyproterone acetate) leads to 

a decrease in the number of new corpora lutea, indicating an inhibition of ovulation [81]. To 

sum up, these findings indicate that androgens indeed play a role at the preovulatory stage of 
follicle life cycle. Moreover, the coordination of oocyte maturation and ovulation is reactive to 

the androgenic environment. Therefore, a balance of androgen positive and negative actions 

is required for optimal ovarian functioning. Some contradictory findings on the role played by 
androgens in this period of follicle development stress the need for further research aimed at 

elucidating the background of these processes.

4. Antiandrogenic and androgenic EDC action within the ovary

In the light of a dramatic increase of evidences demonstrating the harmful effects of EDCs 
present in the environment, it is crucial for further research on the female reproductive 

potency to understand the mechanisms of their action within ovaries. Among EDCs there is a 

large group of chemicals exerting antiandrogenic effects and blocking endogenous androgen 
action. We can find there pharmaceuticals (e.g. 2-hydroxyflutamide, ketoconazole) as well 
as environmental contaminants: pesticides (e.g. vinclozolin, linuron) or synthetic androgens 

such as testosterone propionate or boldione, which are widely used anabolic steroids [82]. 

During our previous experiments concerning the involvement of androgen in ovarian fol-

licular development and atresia, we generated an in vitro toxicological model for studying 

androgen deficiency. Using 2-hydroxyflutamide, which is a nonsteroidal antiandrogen acting 
at the AR level, we induced distortions of androgen action in the ovary that in consequence 

reduced porcine GC viability and proliferation [83].

Vinclozolin, a commonly used dicarboximide fungicide, is registered in the USA and Europe 

to prevent decay of fruits and vegetables. It was shown that vinclozolin possesses an antian-

drogenic activity in mammals and fish [84–86]. Two major ring-opened metabolites of vin-

clozolin (butenoic acid M1 and enanilide M2) have been detected in rodent fluids and tissue 
extracts following in vivo exposure that might have negative consequences for human health 

[87–89]. Exposure to vinclozolin during gonadal sex determination period in mice promotes a 

transgenerational increase in pregnancy abnormalities and female adult onset malformation 

in the reproductive organs [90, 91]. Our previous studies showed that vinclozolin at an envi-

ronmentally relevant concentration might contribute to the amplification and propagation 
of apoptotic cell death in the granulosa layer, leading to the rapid removal of atretic follicles 
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in porcine ovary [92, 93]. Besides, it seems possible that vinclozolin activates non-genomic 

signaling pathways directly modifying the AR action. Another widely used pesticide with 

antiandrogenic activity is linuron. In vitro studies in mammals demonstrated that linuron 

competitively inhibits the binding of androgens to the ARs [94] and acts as a weak AR antago-

nist in transcriptional activation assays [95]. Additionally, prenatal in vivo exposure to high 

doses of linuron caused reduced testosterone production, altered expression patterns in gene 
involved in tissue morphogenesis, and morphological disruptions to androgen-organized tis-

sues [96–98]. It is currently hypothesized that antiandrogenic pesticides such as vinclozolin 

or linuron act through a mixed mode of action including both AR antagonism and reduced 

testosterone production.

The European Community banned the use of anabolics in Europe by means of laws  

96/22/EC and 96/23/EC. Despite these regulations, in many countries, exogenous sex hor-

mones are widely and illegally used in livestock for anabolic purposes during the last 2 

months of the fattening period. Such deliberate action raised ovarian cancer incidence in 
both adult and young animals [99]. Literature search reveals a positive correlation between 

steroid hormone abuse and cancer incidence [100]. Sex hormones and gonadotropins are 

responsible for the regulation of granulosa cell proliferation and their physiological changes 

with maturation [101]. They stimulate cell growth, even in mutated cells, and this is why 

they are considered cocarcinogens. Thanks to their ability to stimulate mitosis, thus increas-

ing the number of cell divisions, steroids also increase the risk of mutations [102]. Generally, 

some mutations can be corrected by cellular DNA repair mechanisms, but since these pro-

cesses require prolonged times, it is believed that faster cell division increases the risk of 

mutations that can be transferred to daughter cells. Consequently, these hormones may act 

not only as cocarcinogens but also as true carcinogens, being able to provoke an increased 

risk for mutation in their target cells. They also stimulate the divisions of the mutated cells 

[103]. An increased proliferation rate observed in many cell lines indicates that sex steroid 

hormones act as growth factors and activate respective signaling pathways [104]. Although 

this is not a uniform view, it seems that sex steroids interfere with mechanisms controlling 

apoptotic cell death. Regarding androgens, in some experiments, they have been shown to 

promote granulosa cell apoptosis [105], while other authors have affirmed that they pre-

served granulosa cells and follicles from undergoing programmed cell death [106]. Today, 

there is more than 100 varieties of AAS that have been developed, with only a few approved 

for human or veterinary use. They are used not only by athletic competitors and sports-

men but also by people wanting to alter their physical appearance usually based on the 

widespread belief that strong, muscled body is the model for the ideal. Some anabolic sub-

stances, i.e., testosterone propionate, boldione, or nandrolone, are openly available on the 

Internet for use by body builders. The International Agency for Research on Cancer classi-

fies them as probable human carcinogens, with a carcinogenicity index higher than that of 
other androgens such as stanozolol, clostebol, and testosterone [107]. Recently, several mod-

els of primary granulosa cell cultures, originating from different animal species, have been 
devised and are being used to test the effects of EDCs (including anabolic steroids) on cell 
proliferation, steroidogenesis, and neoplastic transformation [108]. Moreover, after in vivo 

exposure of an animal to  testosterone propionate, an increase in primary follicle number 
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together with a decrease in those with antrum was observed, leading to the higher propor-

tion of atretic follicles and the lack of corpora lutea within the ovaries [109]. Following these 

considerations, it should be useful to evaluate the possible involvement of anabolics in the 

follicular cell transformation being this the first step of carcinogenesis. It might be also pos-

sible, in view of the way in which steroids and their derivate act in the mammalian ovary, to 

check if anabolics trigger follicular cell apoptosis, thereby causing PCOS.

5. Conclusions

In the last decades, it was proven that environmental chemical compounds exert toxic and 

genotoxic effects and thus form a serious threat to mammalian reproduction. However, the 
impact of anabolics on ovarian function has been less realized and studied. Recognition and 

evaluation of risk associated with the AAS use are of the utmost importance for human health. 

Harmful effects of compounds with antiandrogenic activities acting during folliculogenesis 
have been shown to affect oocyte survival and follicle growth, as well as steroidogenesis. 
Better understanding of the mechanisms underlying the consequences of the EDC exposure is 
required to implement a risk reduction measures to the health of living organisms and, more 

generally, for a more effective environmental protection activities from chemical pollutants.

Acknowledgements

This work was supported by grant no. DEC-2013/09/B/NZ9/00226 from the National Science 

Centre, Poland.

Conflict of interest

Authors declare that there is no conflict of interest that would prejudice the impartiality of 
this scientific work.

Author details

Malgorzata Duda1*, Kamil Wartalski1, Zbigniew Tabarowski2 and Gabriela Gorczyca1

*Address all correspondence to: maja.duda@uj.edu.pl

1 Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian 

University in Krakow, Krakow, Poland

2 Department of Experimental Hematology, Institute of Zoology and Biomedical Research, 

Jagiellonian University in Krakow, Krakow, Poland

Theriogenology12



References

[1] Walters A, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biology of 

Reproduction. 2008;7:380-389

[2] Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle stimulating hormone inter-

actions in primate ovarian follicle development. The Journal of Clinical Endocrinology 

and Metabolism. 1999;84:2951-2956

[3] Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicles transi-

tion in bovine follicles in vitro. Biology of Reproduction. 2006;75:924-932

[4] Palacios S. Androgens and female sexual function. The European Menopause Journal. 

2007;57:61-65

[5] Cardenas H, Jimenez P, Pope WF. Dihydrotestosterone influenced numbers of healthy 
follicles and follicular amounts of LH receptor mRNA during the follicular phase of the 

estrous cycle in gilts. Reproduction. 2008;135:343-350

[6] Gervásio CG, Bernuci MP, Silva-de-Sá MF, Rosa-E-Silva AC. The role of andro-

gen hormones in early follicular development. ISRN Obstetrics and Gynecology. 

2014;2014:818010

[7] Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. 

Pharmacology and Therapeutics. 2001;92:57-70

[8] Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cell during fol-

licular atresia: Relationship with steroid and insulin-like growth factors. Cell Research. 

2004;14:341-346

[9] Prizant H, Gleicher N, Sen A. Androgen actions in the ovary: Balance is key. Review 

Journal of Endocrinology. 2014;222:R141-R151

[10] Tetsuka M, Hillier SG. Androgen receptor gene expression in rat granulosa cells: The role 

of follicle stimulating hormone and steroid hormones. Endocrinology. 1995;137:4392-4397

[11] Tetsuka M, Hillier SG. Differential regulation of aromatase and androgen recep-

tor in granulosa cells. The Journal of Steroid Biochemistry and Molecular Biology. 

1997;61:233-239

[12] Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early 

stages of follicular growth in the primate ovary. The Journal of Clinical Investigation. 

1998;101:2622-2629

[13] Turner K J, Macpherson S, Millar SM, McNeilly AS, Williams K, et al. Development 

and validation of a new monoclonal antibody to mammalian aromatase. Journal of 

Endocrinology. 2002;172:21-30

[14] Gunnarsson L. Evolutionary conservation of human drug targets in organisms used for 

environmental risk assessments. Environmental Science and Technology. 2008;42:5807-5813

The Role of Androgens in Ovarian Follicular Development: From Fertility to Ovarian Cancer
http://dx.doi.org/10.5772/intechopen.68881

13



[15] Hecker M, Holler H. Endocrine disruptor screening: Regulatory perspectives and needs. 

Environmental Science Europe. 2011;23:1-14

[16] Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease 

susceptibility. Journal of Steroid Biochemistry and Molecular Biology. 2011;127:204-215

[17] Woodruff TK, Walker CL. Fetal and early postnatal environmental exposures and repro-

ductive health effects in the female. Fertility and Sterility. 2008;89:e47-e51

[18] Uzumcu M, Zama AM, Oruc E. Epigenetic mechanisms in the actions of endocrine-dis-

rupting chemicals: Gonadal effects and role in female reproduction. Reproduction in 
Domestic Animals. 2012;47:338-347

[19] Maravelias C, Dona A, Stefanidou A, Spiliopoulou C. Adverse effects of anabolic ste-

roids in athletes: A constant threat. Toxicology Letters. 2005;158:167-175

[20] Liljeqvist S, Helldén A, Bergman U, Söderberg M. Pulmonary embolism associated with 

the use of anabolic steroids. European Journal of Internal Medicine. 2008;19:214-215

[21] Björnström L, Sjöberg M. Mechanisms of estrogen receptor signaling: Convergence 

of genomic and nongenomic actions on target genes. Molecular Endocrinology. 

2005;19:833-842

[22] Lubahn DB, Brown TR, Simental JA, Higgs HN, Migeon CJ, et al. Sequence of the intron/

exon junctions of the coding region of the human androgen receptor gene and identifica-

tion of a point mutation in a family with complete androgen insensitivity. Proceedings 

of the National Academy of Sciences USA. 1989;86:9534-9538

[23] Brockschmidt FF, Nothen MM, Hillmer AM. The two most common alleles of the coding 

GGN repeat in the androgen receptor gene cause differences in protein function. Journal 
of Molecular Endocrinology. 2007;39:1-8

[24] Buchanan G, Yang M, Cheong A, Harris JM, Irvine RA, et al. Structural and functional 

consequences of glutamine tract variation in the androgen receptor. Human Molecular 

Genetics. 2004;13:1677-1692

[25] Beato M, Klug J. Steroid hormone receptors: An update. Human Reproduction Update. 

2000;6:225-236

[26] Kumar R, Thompson EB. Transactivation functions of the N-terminal domains of 

nuclear hormone receptors: Protein folding and coactivator interactions. Molecular 

Endocrinology. 2003;17:1-10

[27] Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C. Structural evidence for ligand 

specificity in the binding domain of the human androgen receptor. Implications for 
pathogenic gene mutations. Journal of Biological Chemistry. 2000;275:26164-26171

[28] He B, Gampe RT, Kole AJ, Hnat AT, Stanley TB, et al. Structural basis for androgen recep-

tor interdomain and co-activator interactions suggests a transition in nuclear receptor 

activation function dominance. Molecular Cell. 2004;16:425-438

Theriogenology14



[29] Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT. Structural basis of androgen 
receptor binding to selective androgen response elements. Proceedings of the National 

Academy of Sciences USA. 2004;101:4758-4763

[30] Haelens A, Tanner T, Denayer S, Callewaert L, Claessens F. The hinge region regulates 

DNA binding, nuclear translocation, and transactivation of the androgen receptor. 

Cancer Research. 2007;67:4514-4523

[31] Ferro P, Catalano MG, Dell’Eva R, Fortunati N, Pfeffer U. The androgen receptor 
CAG repeat: A modifier of carcinogenesis? Molecular and Cellular Endocrinology. 
2002;193:109-120

[32] Ding D, Xu L, Menon M, Reddy GP, Barrack ER. Effect of a short CAG (glutamine) 
repeat on human androgen receptor function. Prostate. 2004;58:23-32

[33] Ding D, Xu L, Menon M, Reddy GP, Barrack ER. Effect of GGC (glycine) repeat 
length polymorphism in the human androgen receptor on androgen action. Prostate. 

2005;62:133-139

[34] Jenster G, van der Korput HA, Trapman J, Brinkmann AO. Identification of two tran-

scription activation units in the N-terminal domain of the human androgen receptor. 

The Journal of Biological Chemistry. 1995;270:341-7346

[35] Rochette-Egly C. Nuclear receptors: Integration of multiple signalling pathways through 
phosphorylation. Cell Signalling. 2003;15:355-366

[36] Khorasanizadeh S, Rastinejad F. Nuclear-receptor interactions on DNA-response ele-

ments. Trends in Biochemical Sciences. 2001;26:384-390

[37] Bunone G, Briand PA, Miksicek RJ, Picard D. Activation of the unliganded estro-

gen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. 

European Molecular Biology Organization Journal. 1996;15:2174-2183

[38] Picard D, Bunone G, Liu JW, Donzé O. Steroid-independent activation of steroid recep-

tors in mammalian and yeast cells and in breast cancer. Biochemical Society Transactions. 

1997;25:597-602

[39] Simons K, Toomre D. Lipid rafts and signal transduction. Nature Reviews Molecular 

Cell Biology. 2000;1:31-39

[40] Braun A, Thomas P. Biochemical characterization of a membrane androgen receptor in 

the ovary of the Atlantic croaker. Biology of Reproduction. 2004;71:146-155

[41] Thomas P, Dressing G, Pang Y, Berg H, Tubbs C, et al. Progestin, estrogen and androgen 

G-protein coupled receptors in fish gonads. Steroids. 2006;71:310-316

[42] Pi M, Parrill AL, Quarles LD. GPRC6A mediates the non-genomic effects of steroids. 
Journal of Biological Chemistry. 2010;285:39953-39964

[43] Pascal LE, Wang Z. Unzipping androgen action through ZIP9: A novel membrane andro-

gen receptor. Endocrinology. 2014;155:4120-4123

The Role of Androgens in Ovarian Follicular Development: From Fertility to Ovarian Cancer
http://dx.doi.org/10.5772/intechopen.68881

15



[44] Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. 

Journal of Cellular Biochemistry. 2006;99:333-344

[45] Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV. Androgen receptor-mediated non-genomic 

regulation of prostate cancer cell proliferation. Translational Andrology and Urology. 

2013;2:187-196

[46] Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling MC. Multiple actions of 

steroid hormones – A focus on rapid, nongenomic effects. Pharmacological Review. 
2000;52:513-556

[47] Cato AC, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling path-

ways. Science’s Signal Transduction Knowledge Environment. 2002;2002:re9

[48] Dehm SM, Tindall DJ. Alternatively spliced androgen receptor variants. Endocrine-

Related Cancer. 2011;18:R183-R196

[49] Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics. 2002;30:13-19

[50] Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: Diversification, exon 
definition and function. Nature Reviews Genetics. 2010;11:345-355

[51] Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, et al. Mechanisms of the androgen recep-

tor splicing in prostate cancer cells. Oncogene. 2014;33:3140-3150

[52] Chen J, Weiss WA. Alternative splicing in cancer: Implications for biology and therapy. 

Oncogene. 2015;34:1-14

[53] Piekiełko-Witkowska A, Nauman A. Alternative splicing and its role in pathologies of 
the endocrine system. Endokrynologia Polska. 2011;62:160-170

[54] Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 

2007;370:685-697

[55] Wang F, Pan J, Liu Y, Meng Q, Lv P, et al. Alternative splicing of the androgen receptor 

in polycystic ovary syndrome. Proceedings of the National Academy of Sciences USA. 

2015;112:4743-4748

[56] Skinner MK. Regulation of primordial follicle assembly and development. Human 

Reproduction Update. 2005;11:461-471

[57] McLaughlin EA, McIver SC. Awakening the oocyte: Controlling primordial follicle 

development. Reproduction. 2009;137:1-11

[58] Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of 

ovarian follicular development. Proceedings of the National Academy of Sciences USA. 

2002;99:2890-2894

[59] Smith P, Wilhelm D, Rodgers RJ. Development of mammalian ovary. Journal of 

Endocrinology. 2014;221:R145-R161

[60] Yang JL, Zhang CP, Li L, Huang L, Ji SY, et al. Testosterone induces redistribution of forkhead 

box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic 
acid expression at early stage of mouse folliculogenesis. Endocrinology 2010;151:774-782

Theriogenology16



[61] Fowler PA, Anderson RA, Saunders PT, Kinnell H, Mason JI, et al. Development of ste-

roid signaling pathways during primordial follicle formation in the human fetal ovary. 

The Journal of Clinical Endocrinology and Metabolism. 2011;96:1754-1762

[62] Narkwichean A, Jayaprakasan K, Maalouf WE, Hernandez-Medrano JH, Pincott-Allen 
C, Campbell BK. Effects of dehydroepiandrosterone on in vivo ovine follicular develop-

ment. Human Reproduction. 2014;29:146-154

[63] Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote 

oocyte insulin-like growth factor I expression and initiation of follicle development in 

the primate ovary. Biology of Reproduction. 1999;61:353-357

[64] Magamage MPS, Zengyo M, Moniruzzaman M, Miyano T. Testosterone induces activation 

of porcine primordial follicles in vitro. Reproductive Medicine and Biology. 2011;10:21-30

[65] Rice S, Ojha K, Whitehead S, Mason H. Stage-specific expression of androgen receptor, 
follicle stimulating hormone receptor, and anti-Mullerian hormone type II receptor in 

single, isolated human preantral follicles: Relevance to polycystic ovaries. The Journal of 

Clinical Endocrinology and Metabolism. 2007;92:1034-1040

[66] Murray AA, Gosden RG, Allison V, Spears N. Effect of androgens on the development 
of mouse follicles growing in vitro. Journal of Reproduction and Fertility. 1998;113:27-33

[67] Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, et al. Effect of adrenal and ovar-

ian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology. 

2001;142:4930-4936

[68] Duda M, Wolna A, Knapczyk-Stwora K, Grzesiak M, Knet M, Tabarowski Z, Slomczynska 

M. The influence of the antiandrogen-2-hydroxyflutamide on the androgen receptor 
expression in the porcine ovarian follicles – An in vitro study. Reproduction in Domestic 

Animals. 2013;48:454-462

[69] Wartalski K, Hereta M, Gorczyca G, Goch P, Tabarowski Z, Duda M. Androgens 

Influence on in vitro Development of Porcine Preantral Follicles. VIII Ovarian Club, 4-7 

November, Paris. Available from: http://oc2016.cme-congresses.com/posters.aspx

[70] Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle 
development in mammals. Animal Reproduction Science. 2004;82:431-446

[71] Salustri A, Fulop C, Camaion A, Hascall VC. Oocyte–granulosa cell interaction. In: 

Leung PCK and Adashi EY, editors. The ovary. Elsevier Academic Press, San Diego; 

2004. p. 131-43

[72] Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, et al. Generation and characterization of 

androgen receptor knockout (ARKO) mice: An in vitro model for the study of androgen 

functions in selective tissues. Proceedings of the National Academy of Sciences USA. 

2002;99:13498-13503

[73] Chang C, Lee SO, Wang RS, Yeh S, Chang TM. Androgen receptor (AR) physiological 

roles in male and female reproductive systems: Lessons learned from AR-knockout mice 

lacking AR in selective cells. Biology of Reproduction. 2013;89:21

The Role of Androgens in Ovarian Follicular Development: From Fertility to Ovarian Cancer
http://dx.doi.org/10.5772/intechopen.68881

17



[74] Hu C, Wang PH, Yeh S, Wang S, Xie C, Xu Q, et al. Subfertility and defective folliculogen-

esis in female mice lacking androgen receptor. Proceedings of the National Academy of 

Sciences USA. 2004;101:11209-11214

[75] Ecay TW, Powers RD. Differential effects of testosterone and dibutyryl cyclic AMP on 
the meiotic maturation of mouse oocytes in vitro. Journal of Experimental Zoology. 

1990;253:88-98

[76] Anderiesz C, Trounson AO. The effect of testosterone on the maturation and develop-

mental capacity of murine oocytes in vitro. Human Reproduction. 1995;10:2377-2381

[77] Starowicz A, Galas J, Duda M, Tabarowski Z, Szoltys M. Effects of testosterone and pro-

lactin on steroidogenesis in post-ovulatory cumuli oophori and on in vitro oocyte fertili-

sation in the rat. Reproduction, Fertility and Development. 2017;29:406-418

[78] Suzuki O, Koura O, Noguch Y, Uchio-Yamada K, Matsuda J. Reduced superovulation 

efficiency by high-dose treatment of dehydroepiandrosterone in mice. Reproduction, 
Fertility and Development. 2012;25:307-307

[79] Cardenas H, Pope WF. Androgen receptor and follicle-stimulating hormone receptor in 

the pig ovary during the follicular phase of the estrous cycle. Molecular Reproduction 

and Development. 2002;62:92-98

[80] Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of 
ovarian development and function. Molecular Endocrinology. 2010;24:1393-1403

[81] Kumari GL, Datta JK, Roy S. Evidence for a role of androgens in the growth and matura-

tion of ovarian follicles in rats. Hormone Research. 1978;9:112-120

[82] Hejmej A, Kotula-Balak M, Bilinska B. Antiandrogenic and estrogenic compounds: effect 
on development and function of male reproductive system. In: Abduljabbar H, editor.  

Steroids - Clinical Aspect. InTech, Croatia; 2011. p. 51-82

[83] Duda M, Durlej M, Knet M, Knapczyk-Stwora K, Tabarowski Z, Slomczynska M. Does 

2-hydroxyflutamide inhibit apoptosis in porcine granulosa cells? – An in vitro study. 

Journal of Reproduction and Development. 2012;58:438-444

[84] Kelce WR, Wilson EM. Environmental antiandrogens: Developmental effects, molecular 
mechanisms, and clinical implications. Journal of Molecular Medicine. 1997;75:198-207

[85] Kiparissis Y, Metcafle TL, Balch GC, Metcalfe CD. Effects of the antiandrogens, vinclo-

zolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias 

latipes). Aquatic Toxicology. 2003;63:391-403

[86] Kavlock R, Cummings A. Mode of action: Inhibition of androgen receptor function-

vinclozolin-induced malformations in reproductive development. Critical Reviews in 

Toxicology. 2005;35:721-726

[87] Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LE. Environmental hormone dis-

ruptors: Evidence that vinclozolin developmental toxicity is mediated by antiandro-

genic metabolites. Toxicology and Applied Pharmacology. 1994;126:276-285

Theriogenology18



[88] van Ravenzwaay B, Kolle SN, Ramirez T, Kamp HG. Vinclozolin: A case study on 

the identification of endocrine active substance in the past and a future perspective. 
Toxicology Letters. 2013;223:271-279

[89] Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, Skinner 
MK. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult 

onset disease and associated sperm epigenome biomarkers. Reproductive Toxicology. 

2012;34:694-707

[90] Buckley J, Willingham E, Agras K, Baskin LS. Embryonic exposure to the fungicide vin-

clozolin causes virilization of females and alteration of progesterone receptor expression 

in vivo: An experimental study in mice. Environmental Health. 2006;5:4

[91] Nilsson EE, Anway MD, Stanfield J, Skinner MK. Transgenerational epigenetic effects 
of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. 

Reproduction. 2008;135:713-721

[92] Knet M, Tabarowski Z, Slomczynska M, Duda M. The effects of the environmental anti-
androgen vinclozolin on the induction of granulosa cell apoptosis during follicular atre-

sia in pigs. Theriogenology. 2014;81:1239-1247

[93] Knet M, Wartalski K, Hoja-Lukowicz D, Tabarowski Z, Slomczynska M, Duda M. 

Analysis of porcine granulosa cell death signaling pathways induced by vinclozolin. 

Theriogenology. 2015;84:927-939

[94] Bauer ERS, Daxenberger A, Petri T, Sauerwein H, Meyer HHD. Characterization of the 

affinity of different anabolic and synthetic hormones to the human androgen recep-

tor, human sex hormone binding globulin and to the bovine progestin receptor. Acta 

Pathologica, Microbiologica et Immunologica Scandinavica. 2001;108:838-846

[95] McIntyre BS, Barlow NJ, Wallace DG, Maness SC, Gaido KW, Foster PM. Effects of in 
utero exposure to linuron on androgen-dependent reproductive development in the 

male Crl:CD(SD)BR rat. Toxicology and Applied Pharmacology. 2000;167:87-99

[96] Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, et al. A mixture of the 
“antiandrogens” linuron and butyl benzyl phthalate alters sexual differentiation of the 
male rat in a cumulative fashion. Biology of Reproduction. 2004;71:1852-1861

[97] Turner KJ, McIntyre BS, Phillips SL, Barlow NJ, Bowman CJ, Foster PM. Altered gene 

expression during rat Wolffian duct development in response to in utero exposure to the 

antiandrogen linuron. Toxicological Science. 2003;74:114-128

[98] Wilson VS, Lambright CR, Furr JR, Howdeshell KL, Earl Gray L Jr. The herbicide linuron 

reduces testosterone production from the fetal rat testis during both in utero and in vitro 

exposures. Toxicology Letters. 2009;186:73-77

[99] Pregel P, Bollo E, Cannizzo FT, Rampazzo A, Appino S, Biolatti B. Effect of anabolics 
on bovine granulosa-luteal cell primary cultures. Folia Histochemica et Cytobiologica. 

2007;45:265-271

The Role of Androgens in Ovarian Follicular Development: From Fertility to Ovarian Cancer
http://dx.doi.org/10.5772/intechopen.68881

19



[100] Nielsen SW, Kennedy PC. In: Moulton J, editor. Tumors in domestic animals. 3rd ed. 

Los Angeles CA: University of California Press; 1990. pp. 502-508

[101] Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the 
mammalian ovary: Oocytes carry the conversation. Science. 2002;296:2178-2180

[102] Fortune JE, Ribera GM, Yang MY. Follicular development: The role of follicular micro-

environment in selection of dominant follicle. Animal Reproduction Science. 2004;82: 

109-126

[103] Gibson DA, Simitsidellis I, Collins F, Saunders P. Evidence of androgen action in endo-

metrial and ovarian cancers. Endocrine-Related Cancer. 2014;21:203-218

[104] Migliaccio A, Castoria G, Di Domenico M, et al. Sex steroids hormones and growth fac-

tors. The Journal of Steroid Biochemistry and Molecular Biology .2002;83:31-35

[105] Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: A hormonally controlled apop-

totic process. Endocrine Reviews. 1994;15:707-724

[106] Segars JH, Driggers PH. Estrogen action and cytoplasmic signaling cascades. Trends in 

Endocrinology and Metabolism. 2002;13:349-354

[107] De Brabander HF, Poelmans S, Schilt R, et al. Presence and metabolism of the ana-

bolic steroid boldenone in various animal species. A review. Food Additives and 

Contaminants. 2004;21:515-525

[108] Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life 

health outcomes: An epigenetic bridge? Aging Disorders. 2014;5:419-429

[109] Patel S, Zhou C, Rattan S, Flaws JA. Effects of endocrine-disrupting chemicals on the 
ovary. Biology of Reproduction. 2015;93:1-9

Theriogenology20


