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Abstract

Mass spectrometry coupled to nanoliquid chromatography aims to be an alternative to 
antibody‐based determination of low‐abundant proteins. High‐resolution mass spec‐
trometers, plug‐and‐play systems and pumps have been developed for this purpose. 
Important aspects of approaches are limit of detection, specificity, variability and cost. 
In this chapter, the most recent literature (from 2008) has been reviewed and a check‐
list/workflow for targeted proteomics is presented with special focus on low‐abundant 
proteins in complex matrices. The chapter is intended to serve as a starting point for 
low‐abundant target determination and highlights some of the most central studies in 
this field.

Keywords: targeted mass spectrometry, nanoliquid chromatography, proteomics, 

tandem mass spectrometry

1. Introduction

The ∼1,000,000 different proteins (including modifications) determine much of an organism 
function. The protein abundance range from 0.01 to 10,000 ppm [1] in humans, a major chal‐

lenge when working in the low ppm‐area.

Obtaining qualitative and quantitative information of proteins is of interest in biological 

systems, analysing samples such as cells [2, 3], tissue [4], blood [5] or extracellular vesicles 

[6, 7]. However, determinations of these are not that straightforward, although several ‘rou‐

tine‐based’ methods exist in industry, research laboratories and clinics (see Table 1) [8, 9]. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Living organism Timing* Quantification Quantification value User demand

Immunofluorescence (IF) + 1 day ++ Relative +

ELISA – 30 minutes–6 hours ++ Relative/absolute +

SDS‐PAGE + silver staining/

Coomassie blue

– 30 minutes–4 hours + Relative +

Western blot (WB) – 30 minutes–2 days ++ Relative +

LC‐MS/MS – 4 hours–2 days +++ Relative/absolute +++

+, equals low user demand and cost; +++, equals high user demand and cost.

*Estimated duration from in‐house experience

Table 1. Comparison of methods used to quantify proteins in biological samples.
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Determination of proteins through targeted tandem mass spectrometry (tMSMS) with nano‐

liquid chromatography (nanoLC) has gained interest in the last 10 years; major reason is 

increased sensitivity through LC downscaling and more accurate and sensitive mass spec‐

trometers [10–14]. This enhanced sensitivity enables digging deeper into a sample, which may 

provide the desired data, compared to attempting whole‐proteome determination (compre‐

hensive proteomics, demonstrated by Thakur et al. [15] and Pirmoradian et al. [16]).

This chapter provides a short introduction to the state of the art targeted nanoliquid chroma‐

tography‐mass spectrometry (nanoLC‐MS/MS), recent examples from literature and finally 
a workflow suitable for confident determination and quantification of proteins in complex 
matrices.

1.1. Proteomics by mass spectrometry

Proteomics is the large‐scale measurement of proteins [10, 17]. Study of the proteome and 

set of proteins are nowadays often standard in cancer, studies of extracellular vesicles, 

blood analysis, etc. Proteomics by mass spectrometry can mainly be divided into two major 

approaches: comprehensive and targeted approach.

In comprehensive proteomics, the goal is to identify as many proteins as possible based on 

search algorithms (e.g. Mascot [18], SEQUEST [19], MSAmanda [20], Andromeda [21]). In tar‐

geted proteomics, the target protein(s) is known [22]. The latter is focused in this chapter. In 
addition to the two approaches, proteomics is often divided into whether proteins analysed 

intact (top‐down proteomics) or in pieces (bottom‐up proteomics). Bottom‐up proteomics is 
mainly used, as the smaller pieces of proteins are easier to handle in liquid chromatography, 

easier to transfer to mass spectrometer and data analysis is also easier.

For over 10 years, the quest to implement quantitative proteomics for biomarker studies has 
been debated and attempted [4, 23–27]. Although LC‐MS has been the standard approach to 

small molecule analysis, there is still a way to go before proteomics enters the clinic.

1.2. Targeted nanoLC‐MS/MS, a rapid overview

In most targeted nanoLC‐MS/MS approaches, peptides are used, due to their easy transfer 

through electrospray ionization (ESI), and favourable LC traits. In most cases, Trypsin and/or 

LysC are/is chosen to cleave the proteins, although other enzymes are also used [28]. A set of 

peptides containing a protein‐specific sequence representing the target protein are selected; 
proteotypic/signature peptides. In the selection process, the UniProt database [29], Expasy 

[30], Skyline [31] and PeptideAtlas [32] can be helpful. After selection, the peptides are nor‐

mally bought as synthetic labelled standards (i.e. Absolute quantification  (AQUA) peptides 

[33]) as ideal internal standards, and subsequently chromatographed and detected on the 

nanoLC‐MS/MS platform available.

The golden standard in nanoLC is usually a 75 μm inner diameter (ID) column packed with 

2–3 μm diameter silica‐particles functionalized with C18‐phase. A solid‐phase extraction 

(SPE) column is often connected on‐line, to increase loading capacity [34].

Performing Quantitative Determination of Low-Abundant Proteins by Targeted Mass...
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The chromatographed peptides elute, ideally at different retention times and are transferred 
to the MS through ESI. In later years, quadrupole‐Orbitraps (QOrbitrap) and quadrupole 

time‐of‐flight (QTOF) instruments have been introduced in targeted MS/MS, alongside triple 
quadrupoles (QqQ). The two first options provide higher resolution compared to traditional 
QqQ, and thus less interferences [35, 36]. Common for the instruments is that a parent mass‐

to‐charge (m/z) is monitored in the first quadrupole and fragmented prior to the second mass 
analyser. In QqQ and QTOF instruments, collision induced dissociation (CID) is the most 
common, whereas in QOrbitrap instruments, higher energy collision induced dissociation is 

used (HCD). The main daughter ions in either dissociation are positive b and y ions. For QqQ, 
multiple‐reaction monitoring (MRM) and selected reaction monitoring (SRM) are most com‐

mon, whereas for the QOrbitrap and QTOF, a mode referred to as parallel reaction monitor‐

ing (PRM) is mostly used (Figure 1).

In SRM or MRM mode, both the parent and fragment m/z ratios have to be inserted into the 

method, whereas for the PRM mode, only the parent m/z ratio is inserted, and all fragment 

m/z ratios are recorded and can be isolated after data acquisition in the software of choice.

1.3. Peptide selection: considerations regarding proteotypic peptides

Peptides used for LC‐MS/MS identification usually contains between 6 and 20 amino acids 
in sequence [37]. The proteotypic peptides should ideally not contain amino acids which are 

prone to modifications, either during sample preparation or in the biological system. Hence, 
methionine, tryptophane, tyrosine and cysteine are often not chosen when possible. Although, 

if no other proteotypic peptide exists, the normal rate of phosphorylation, for example, is less 

than 5%, which may be neglected. Methionine oxidation is one of the most common modifica‐

tions in bottom‐up proteomics, mainly due to sample handling. Hence, quantification based 
on a peptide containing methionine is not preferable, except when using labeled proteins as 

internal standards which can correct for this.

1.4. Quantification of proteins with tMSMS: labelled proteins versus labelled peptides

The major advantage of LC‐MS/MS‐based proteomics over Enzyme‐linked immunosorbent 

assay (ELISA), WB or IF‐based proteomics is the quantification quality [38]. Quantification in 

Figure 1. Selected reaction monitoring (SRM) where single ion transitions are monitored in contrast to parallel reaction 

monitoring (PRM) where a single ion is fragmented into several fragment ions and monitored.
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tMSMS is mainly based on heavy labelled peptides (normally 15N and/or 13C isotopes of arginine 

and lysine) which are added to the sample as internal standard. In contrast antibodies, house‐

keeping proteins are usually used for standardization. In later years, the housekeeping protein 

method has been criticized, as these may change in experiments [39]. But there are also a pitfall 

using synthetic internal standard peptides, namely variation during cleavage of proteins to pep‐

tides [28, 40]. Up to 85% of the variation in bottom‐up proteomics arises from enzymatic cleavage 
[40]. Hence, addition of synthetic heavy‐labelled proteins as internal standards is a far better 
approach, but may prove to be more costly. As shown in Figure 2, using labelled proteins can 

correct for sample preparation as well as data analysis, whereas labelled peptides only correct for 

sample preparation on peptide level and not sample preparation on protein level which often is 

needed for low‐abundant target isolation techniques.

Correction of all steps involved in analyses is important, with internal standards, software 

and manual inspection of data [26, 41–43].

1.5. Reducing sample complexity

Proteomics of low‐abundant targets often requires specialized sample clean‐up. Removal of 

high‐abundant targets, direct target isolation and fractionation are among the most common 

approaches. In blood, a common approach is a removal of the most abundant targets by multi‐

affinity removal system (MARS), lowering the dynamic range of the sample. However, with 
this approach, the target(s) may also be lost due to protein‐protein interactions, and quan‐

tification may be an issue. Yadav et al. claims that for a biomarker discovery, both depleted 
fractions and non‐depleted fractions should be analysed [44]. Recently, oxytocin was shown 

to have a high degree of binding to blood proteins, which severely affects quantification [45]. 

An alternative approach is a direct target isolation aiming to isolate the protein(s) of interest 

[46]. This is also quite effective, but time‐consuming and rather costly. Additionally, proper 

Figure 2. Labelled proteins compared to labelled peptides in bottom‐up targeted proteomics.
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control of isolation efficiency with proper protein internal standards is needed. The latter has 
been shown by Edfors et al. where protein targets were isolated with polyclonal antibodies in 

HeLa spiked with recombinant protein internal standards [47]. Fractionating proteins by LC 

and gel electrophoresis is also common for reducing sample complexity.

1.6. Downscaled LC systems: enhanced sensitivity with ESI‐MS

In 2002, Shen et al. displayed a ∼200‐fold increase in sensitivity when downscaling LC columns 

from 75 to 15 μm when connected to ESI‐MS [48]. Fifteen years later, proteomics in 75–50 μm for‐

mat has become commercially available through the largest instrument manufacturers [34, 42], 

whereas more downscaled systems are used for even higher sensitivity. For peptides, the dem‐

onstrated sensitivity is in the attomolar‐zeptomolar range. A major drawback with downscaled 
systems is that they traditionally are often low‐capacity systems, i.e. sample capacity is lower on 

these systems compared to conventional larger ID systems. Hence, using strong cation exchange 

(SCX) columns on‐line [49] or high capacity solid phase extraction columns (poly‐styrene‐octa‐

decene‐divinylbenzene, PS‐OD‐DVB [50]) often needed to take full advantage of the increased 

sensitivity of such downscaled systems [51].

1.7. Mass spectrometers: selectivity and sensitivity

Selectivity and sensitivity are among the two most important aspects of low‐abundant tar‐

get determination by mass spectrometry. Selectivity in this context is defined as the ability 
to differentiate between masses, and the mass spectrometers selectivity is often character‐

ized by measuring full width at half maximum‐value (FWHM), where a high value is better. 
Sensitivity at which the signal level is higher than the noise is often characterized by a signal‐

to‐noise ratio. In Table 2, the resolution and mass accuracy are reported for the three most 

common mass analysers used in targeted mass spectrometry today.

The resolution for the QTOF and QOrbitrap instruments is up to 20 times as large as a typi‐
cal QqQ‐instrument. In MS/MS, interferences are common and Gallien et al. showed that 

high‐resolution of a QOrbitrap instrument is superior in eliminating these, compared to 

QqQ‐instruments [35]. Additionally, we have earlier showed that at least three transitions are 

needed (even with high‐resolution QOrbitrap) to eliminate false positives [42].

A sketch of important technological developments (Figure 3) developing targeted proteomics by 

NanoLC‐MS/MS highlights the importance of hardware developments, such as ESI, QOrbitrap 

instruments, sample preparation strategies, such as Stable isotope labeling by amino acids in 

cell culture (SILAC) and software/database developments (e.g. Skyline and UniProt).

Mass spectrometer Resolution Mass accuracy

Triple quadrupole 2000–10,000 100 ppm

QOrbitrap 140,000–240,000 2 ppm

QTOF 100,000 2–5 ppm

Table 2. Resolution and mass accuracy of common mass spectrometers used for targeted proteomics.
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2. Selected studies in targeted mass spectrometry

In the following subsections, a set of studies performing targeted mass spectrometry of pro‐

teins in various biological samples will be presented and discussed with emphasis on high‐

quality targeted proteomics results and lead to a protocol for targeted mass spectrometry of 

low‐abundant targets.

In 2014, a study by Edfors et al. demonstrated use of recombinant manufactured proteins 

labelled with SILAC mixture as internal standard [47]. To approximately lysate from 1 

 million HeLa cells, 1 pmol of recombinant proteins were added and digested with trypsin. 

The resulting peptide mixture was then immunoprecipitated with protein antibodies applied 

on peptides, which is cheaper than ordering specific peptide‐recognizing antibodies. With 
the lowered complexity and increased concentration, 57 of 127 proteins were identified by at 
least one peptide in data‐dependent acquisition (i.e. not tMSMS). Even though this study is 

not used with tMSMS, it evaluates and presents a method for immunoprecipitation on pep‐

tide level with protein antibodies which enables easier access to targets. Additionally, it keeps 

quantification in mind with the use of protein internal standards. Additionally, reduction of 
complexity meant that the LC‐MS analysis could be reduced from 3 hours to 15 minutes. The 

relative standard deviation in the study ranged from 10 to 40%, which for some targets is 

somewhat higher than the required 10–20% as set by the Food and Drug Administration and 
others [52, 53].

In contrast to the protein internal standard, peptide internal standards have also recently been 

used for quantitative proteomics in breast cancer cells [54]. 319 protein targets were moni‐

tored and from this selection, coefficients of variations for 79 of the protein targets presented. 
For each target a heavy labelled proteotypic peptide was added. A pool of breast cancer cells 
was lysed at one specific location and distributed to three sites, where sample preparation 
and analysis were conducted. The authors report a median variation within and between 

laboratories <10% for 95% of the monitored targets. The study shows a feasibility for tMSMS 

analysis of high‐abundant targets, whenever extensive pre‐fractionation is not needed and 

protocols are made carefully.

The dynamic range of proteins in blood/serum/plasma is far more demanding than cells [5]. 

Hence, searching for low‐abundant proteins in this matrix often requires depletion strate‐

gies. But, other strategies can also be used to increase detection limits. Recently, a study 

showed that with internal standard triggered parallel reaction monitoring (IS‐PRM), a lower 

Figure 3. Selected technological developments aiding targeted proteomics by nanoLC‐MS/MS.
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limit of quantification can be reached, compared to traditional SRM [55]. With the use of 

algorithms and synthetic internal standard AQUA peptides, data acquisition of endogenous 

peptides was triggered by detection of IS‐peptides during chromatography (for comprehen‐

sive proteomics, this is known as data‐independent acquisition (DIA)). For example, at a 
peptide amount of 50 amol using IS‐PRM could use ∼300 transitions, whereas SRM could use 

∼50 transitions. The reason could be attributed to a much higher resolution of the QOrbitrap 
compared to the QqQ instrument, and more dedicated use of the mass analyser with real‐

world triggered analysis, enabling high fill times.

Another study from 2011 used accurate inclusion mass screening (AIMS [56]), comprehensive pro‐

teomics and targeted proteomics to verify biomarkers in plasma [25]. Using depleted plasma and 

comprehensive proteomics, a selection of candidates for biomarker analysis was made and trans‐

ferred to an SRM method with internal standard peptides. Of the 373 targets investigated in 

SRM, only 164 of these were identified with >3 transitions per peptide, which is attributed to 
the targets abundance. The study however makes a very important point regarding tMSMS‐proce‐

dures. It must be made cost‐effective compared to ELISA and Western blot (WB).

A highly promising tool, developed a few years back, compares the relative intensities between 

the ions in the internal standard and the endogenous target (Figure 4 adapted from Ref. [43]).

The check, of course, could be performed manually, but for large datasets automation is desir‐

able. The authors showed that the developed algorithm worked in 90–100% of the cases, and 

that specificity was above 80%.

The hunt for low‐abundant targets can, as previously mentioned, be accomplished with frac‐

tionation. A study aimed for detection of prostate specific antigen (PSA) in serum samples in 
pg/mL‐level by depletion and fractionation [57]. Specifically, serum samples were depleted 
of high‐abundance proteins, digested with trypsin, spiked with internal standard peptide and 

Figure 4. (A) Transitions and relative intensities for three ions (1–3) where the relative ratio is constant and target is 

verified. (B) Same as (A), but relative ratio of ion 2 is not equal to the ratio of ions 1 and 3 and target is discarded.
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resulting peptides LC fractionated at high pH. Approximately 9% of the eluent were introduced 

directly onto an LC‐MS system, and the remaining 91% was fractionated on 96 well plates. This 

allows for determining which of the fractions containing the target peptide and which sub‐

sequently could be pooled and analysed by LC‐SRM. They reached correlation coefficients of 
>0.99, limits of quantifications of 50 pg/mL for PSA and CV of <<10%. As the authors discuss, 
the throughput is lower with fractionation, but for specialized applications fractionation may 

be necessary.

Some of the presented studies above have successfully used peptide internal standards for 

quality control during analysis and quantification. Alternatively, labelled proteins can be 
used and another approach that has gained interest in the later years is protein standard 

absolute quantification (PSAQ™ [58]). Proteins are made recombinantly in e.g. bacteria and 

labelled metabolically with heavy lysine and arginine. These are subsequently purified based 
on tags (e.g. His6X, glutathione S‐transferase tag, etc.). Full‐length or partial proteins can be 
made with this approach. As shown in Figure 2, these can be added directly after proteins 

have been extracted from the organism and used for normalization. However, as the authors 

describe, the necessary protein‐tag affects the protein and it is not an ideal internal standard 
in that way, and hence must be evaluated. Nonetheless, this approach has recently been used 

for detection of toxins in food [59] and acute kidney injury biomarkers in urine [60].

3. Brief summary and possible areas of applications

Targeted mass spectrometry has increased in popularity with easier access to databases, LC‐

MS equipment, methods and software. Table 3 lists a selection of the cited literature on which 

this chapter is based on and divided into appropriate sections for easier access.

High‐sensitivity mass spectrometers and miniaturized liquid chromatography operating at 

20–200 nL/minute in systems have been introduced, enabling low zeptomolar detection of 

peptides in various complex matrices. Specificity has increased with high‐resolution mass 
spectrometers having >30,000 resolution. Variation is the main bottleneck for quantitative 
mass spectrometry entering clinical use, mainly due to the use of non‐ideal internal stan‐

dards. Costs are still high, but developments in easy transfer of methods and easy standard 

production have reduced the cost/benefit ratio.

Keyword Some references

Databases [29, 32]

Quantification [25, 54, 55, 58, 60]

Liquid chromatography [2, 3, 13, 42, 49, 51]

Mass spectrometry [10, 11, 35, 56]

Data treatment [18–21, 30, 31]

Table 3. A selection of studies referenced in the chapter focused on databases, quantification, liquid chromatography, 
mass spectrometry and data treatment.
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Determination of proteins in extracellular vesicles has been proposed as a tool for early prog‐

nosis of cancer, and as the vesicles themselves are in low abundance, the protein amount 

found within them is also in extremely low abundance [61, 62]. Blood is also a very interesting 

sample matrix for targeted proteomics, as sample acquisition is relatively low‐invasive (com‐

pared to tissue) and contains a vast majority of biomarkers for diseases, and where the low‐

abundant targets may give future information for early diagnosis of diseases. With highly 

sensitive systems, determination of important pathway proteins can be achieved [63], and 

with future development of robust quantification techniques for proteins such systems can be 
applied to tissue, cells and urine as well, and gain their way in clinical diagnostic applications 

together with DNA and metabolite screening.

4. Four‐point workflow for bottom‐up‐based proteomics of low‐abundant 
targets

Based on the few selected studies, a four‐step guide to confident low‐abundant protein identi‐
fication is presented (Figure 5). The workflow can either be used for relative quantification or 
absolute quantification depending on knowledge about the protein internal standard.

4.1. Standard and internal standard preparation

Determine protein targets and use UniProt, PeptideATLAS, SRMAtlas and Skyline to find 
appropriate proteotypic peptides for your protein (minimum two peptides for each protein).

Based on the origin of your sample; prepare a metabolically labelled internal standard, e.g. 

SILAC labelled cell line for tissue/cells studies or recombinant with 15N, 13C isotopes. For abso‐

lute protein quantification, the target protein concentration in the internal standard is needed.

4.2. LC‐MS/MS method development

Monitor LC retention time with AIMS platform and data‐dependent proteomics with the 

labelled internal standard if possible and make sure that perform retention time is. For extra 
low‐abundant proteins, acquire recombinant proteins which can be used to prepare stable 

peptides, or if not available buy recombinant peptides (not necessarily labelled).

For the LC‐system in question: optimize chromatography with adjusting gradient slope, gra‐

dient time, column choice, etc.

If available, use a high‐resolution mass spectrometer with mass resolution >30,000. Perform LC‐
MS/MS analysis of the peptides in question, optimize parameters to enable highest possible signal 

to noise (S/N) ratio and highest fragment ion intensities and finally determine ion intensity ratios.

4.3. Sample preparation

Acquire the sample(s) in question and add the protein internal standard in the process as 

early as possible. Choose the appropriate sample preparation strategy depending on the tar‐

get abundance (MARS‐depletion, immunoaffinity purification or similar)
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4.4. LC‐MS/MS analysis

With the established method, analyse the sample and with the determined ion intensity ratios, 

retention time, etc. validate your targets either manually or with software (i.e. Skyline). Use 

target/internal standard ion ratio for complete method variation correction.
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Figure 5. Schematic drawing of workflow for targeted nanoLC‐MS/MS of low‐abundant protein targets in cells, tissue, 
blood, extracellular vesicles and urine.
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