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Abstract

Energy internet provides an open framework for integrating every piece of equipment
involved in energy generation, transmission, transformation, distribution, and consump-
tion with novel information and communication technologies. In this chapter, the authors
adopt a combination of game theory and big data to address the coordinated management
of renewable and traditional energy, which is a typical issue on energy interconnections.
The authors formulate the energy management problem as a three-stage Stackelberg game
and employ the backward induction method to derive the closed-form expressions of the
optimal strategies. Next, we study the big data-based power generation forecasting tech-
niques and introduce a scheme of the wind power forecasting, which can assist the
microgrid to make strategies. Simulation results show that more accurate prediction
results of wind power are conducive to better energy management.

Keywords: energy internet, Stackelberg game, microgrid energy management, wind
power forecasting

1. Introduction

Energy internet has been identified as a key enabler of the third industrial revolution [1], which
represents a new paradigm shift for both energy industry and consumers. In this new para-
digm, the energy provisioning and demand sides are connected more closely and promptly
than ever before by implementing distributed and flexible energy production and consump-
tion while hiding the diversity of underlaying technologies through standardized inter-
faces [2, 3]. In addition, energy consumers with colocated distributed energy sources and
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distributed energy storage devices within limited areas, such as school, office building, indus-
trial park, and residence community, etc, can form a local energy internet, that is, the
microgrid, which provides a promising way of relieving the stress caused by the increasing
energy demands and penetrations of renewable energy sources.

Microgrid is, in essence, a flexible and efficient network for interconnecting distributed renew-
able energy sources, load, and intermediate storage units at consumer premise [4]. It can be
treated by the grid as a controllable load or generator and can operate in either islanded or
grid-connected mode [5]. However, due to the intermittent and fluctuating characteristics of
renewable energy sources and limited generation capacity, the large penetration of
uncontrolled and uncoordinated renewable generators into the microgrid especially distribu-
tion network will cause a high level of volatility and system disturbances. For instance, the
uncertainties brought by renewable energy sources will lead to significant mismatch between
generation and load, which results in numerous critical problems such as power imbalance,
voltage instability, interarea oscillations, and frequency fluctuations [6]. Hence, novel energy
management methodologies are required to harness the full potential of the microgrid to
reduce the energy supply-demand imbalance by making the full use of widespread renewable
energy resources.

We study a distributed energy management problem in order to efficiently use renewable
energy, with the aim of maximizing the individual objective function of each market player
while guaranteeing the reliable system operation and satisfying users’ electricity demands.
Due to the uncertainty and uncontrollability of renewable generation, the authors utilize the
big data-based renewable power forecasting techniques to obtain the short-term prediction
value [7]. Then, the authors focus on solving the distributed microgrid energy management
problem by employing noncooperative game theory [8], which provides an effective mathe-
matical tool for analyzing optimization problems with multiple conflicting objective functions.
The major contributions are summarized as follows:

¢  We adopt a combination of game-theoretical and data-centric approaches to address the
microgrid energy management problem in energy internet. To address the uncertainties
brought by wind turbine, the authors propose a deep learning-based short-term wind
power forecasting algorithm by combining stacked autoencoders (SAE), the back-propa-
gation algorithm, and the genetic algorithm. The authors employ SAE with three hidden
layers in the pre-training process to extract the characteristics from the training sequence
and the back-propagation algorithm to calculate the weights of the overall neural network
in the fine-tuning process. Then, the authors adopt a genetic algorithm to optimize the
neuron number of hidden layers and the learning rate of autoencoders.

*  We provide thorough introduction and summary of the related works and the state-of-
the-art progress in the research direction of energy management in microgrids. The
authors have categorized the existing literature based on research motivations and appli-
cation scenarios. The authors provide in-depth analysis and discussion on the contribu-
tions of the surveyed works, common assumptions, application scenarios, advantages,
disadvantages, and possible future directions. The extensive review of available works
sheds new insights to the underexplored open issues of energy management design in
microgrids.
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*  We model the energy management problem as a three-stage Stackelberg game to capture the
dynamic interactions and interconnections among electricity users, the microgrid, the utility
company, and the energy storage company. In the first stage, both the utility company and
the energy storage company issue real-time electricity prices to the microgrid. In the second
stage, the microgrid adjusts its electricity price offered to electricity users and the amounts of
electricity procured from the utility and the energy storage companies. In the third stage,
electricity users adjust their electricity demands based on the price offered by the microgrid.
The objective function of each game player is well designed based on multiobjective optimi-
zation approaches, and practical constraints such as active power generation limits, power
balance, electricity demands, etc., have been taken into consideration.

* Based on the short-term wind power prediction, we employ the backward induction
method to analyze the proposed three-stage Stackelberg game and derive the closed-form
analytical expressions for optimal energy management solutions. In the simulation, the
authors compare the optimal payoff of the microgrid with different prediction errors of
wind power forecasting. Numerical results show that accurate prediction results of wind
power are conducive to better energy management.

The structure of this chapter is organized as follows. In Section 2, we give a brief review of
related works on energy management and prediction technologies. The system model of
energy management and problem formulation are provided in Section 3. Section 4 introduces
the proposed game-theoretical and data-centric energy management algorithm. The simula-
tion results and analyses are presented in Section 5. Finally, Section 6 gives the conclusion.

2. Related works

The aim of this chapter is to solve the distributed microgrid energy management problem by
exploring both game theory and big data analysis in energy internet. The comprehensive
summary of the classifications of distributed microgrid energy management is shown in
Table 1. Some literature studies propose mathematical tools to deal with uncertainties of
renewable energy in energy management problems. Two main methods that have been widely
applied to handle day-to-day uncertainties of renewable energy are stochastic optimization

Application scenarios Solution methods Optimization goals Literature

Renewable energy generation Stochastic optimization =~ Handling date uncertainties of renewable energy [10-12]

Robust optimization [14-17]
Wind power forecasting Linear methods Increasing the accuracy of prediction model [19, 20]
Nonlinear methods [24-27]
Microgrid management Ordinary decision theory ~Optimizing energy-scheduling strategies [28-30]
Noncooperative games [33-36]
Cooperative games [37-40]

Table 1. A comprehensive summary of distributed microgrid energy management.
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and robust optimization [9]. On the one hand, stochastic optimization provides an effective
framework to optimize statistical objective functions while the uncertain numerical data are
assumed to follow a proverbial probability distribution. In Ref. [10], a multistage framework is
presented to minimize the cost of the total energy management system based on stochastic
optimization. The authors developed a stochastic dynamic programming method for optimiz-
ing the multidimensional energy management problem in Ref. [11]. A stochastic optimization-
based real-time energy management approach was adopted to minimize the operational cost
of the total energy system in Ref. [12]. However, considering the complex operation details and
various practical constraints in practical applications, the precise estimation of the probability
distributions of uncertain data can be a tremendous challenge. Hence, the impact of data
uncertainties on the optimality performance may not be sufficiently captured in the stochastic
optimization-based energy management approaches.

On the other hand, robust optimization, which considers the worst-case operation scenarios,
only requires appropriate information and enable a distribution-free model of data uncer-
tainties [13]. Hence, robust energy management can mitigate the negative effect of uncertainty
on the optimality performance and thus overcome the aforementioned limitations of stochastic
optimization. In Ref. [14], a novel pricing strategy was presented to enable robustness against
the uncertainty of power input. The authors proposed a robust energy-scheduling approach
for solving the uncertainty brought by electric vehicles in Ref. [15]. Robust energy manage-
ment methods were proposed to optimize the energy-dispatching problem while the worst-
case scenarios of renewable energy integration have been considered [16, 17]. However, due to
the fact that the worst-case scenarios of all uncertain factors are assumed to provide the highest
protection against uncertainties, the optimality performance is also severely degraded as the
price paid for robustness.

With the development of advanced information and communication technologies, the big
data-based forecasting approach can learn from these massive amounts of real-world data,
and thus adapt conventional energy management design to this new data-centric paradigm
by utilizing the historical knowledge. Taking wind power forecasting as an example, the data-
centric approaches mine the relationship between historical data and knowledge to build the
prediction model through various approaches, such as persistence methods, linear methods,
and nonlinear methods. The persistence method is one of the classic methods for wind power
forecasting and is usually utilized as a benchmark method while short-term wind speeds are
assumed highly correlated [18]. Linear methods have been shown to outperform most persis-
tence methods in short-term forecasting as they can capture the time relevance and probabil-
ity distribution of wind speed data [19, 20]. Nonlinear methods such as artificial neural
networks (ANNSs) [21], support vector machines (SVM) [22, 23], etc., are demonstrated to
outperform linear methods in nonlinear models. ANN, which is a simplified model of human
brain neural processing, has the advantage of fast self-learning capability, easy implementa-
tion, and high prediction accuracy [24]. SVM is a machine-learning model of ANNSs to analyze
data which is used for classification and regression analysis [25]. To efficiently handle the
complex, unlabeled and high-dimensional time series data, deep learning has been proposed
in Ref. [26]. As an essential deep learning architecture, SAE plays a fundamental role in
unsupervised learning and the objective function can be solved efficiently via fast back
propagation [27].
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There already exists some work about energy management design in microgrid. In Ref. [28], a
double-layer control model, which consists of a dispatch layer to offer the output power of
each unit and a schedule layer to provide the operation optimization, is proposed for
microgrid energy management. The authors presented a fair energy-scheduling strategy in
Ref. [29] to maximize the total system benefit while providing higher energy utilization priorities
to users with larger contributions. In Ref. [30], the authors took demand side management and
generation scheduling into consideration for ensuring the real-time operation of energy manage-
ment system. However, the previous studies mainly focus on the total benefit in the energy
management system, and ignore the interactions and interconnections among multiple market
players, including utility companies, storage companies, microgrids, customers, and so on.

Game theory has widely been applied in microgrid energy management to provide a distrib-
uted self-organizing and self-optimizing solution for optimization problems with conflicting
objective functions in Ref. [31]. Games can be classified into two categories based on whether
or not binding agreements among players can be enforced externally, that is, noncooperative
and cooperative games [32]. Noncooperative games, which offer an analytical framework
tailored for characterizing the interactions as well as decision-making process among multiple
game players, focus on predicting players’ individual strategies and analyzing the competitive
decision-making involving players to find the Nash equilibrium. The players will influence the
decision-making process despite their partially or even completely conflicting interests upon
the result of a decision. In contrast, cooperative games offer mathematical tools to study the
interactions of rational cooperative players, and the strategic outcome among those players as
well as their utilities can be improved under a common agreement.

For noncooperative game-based microgrid energy management, the authors proposed a mul-
tiuser Stackelberg game model for maximizing the benefit of each player in Ref. [33]. In Ref.
[34], a new model of electricity market operation was adopted to optimize the objective
function of each player. The authors provided a dynamic noncooperative repeated game
model to optimize the energy-trading amounts of users with distributed renewable genera-
tors [35]. In Ref. [36], a distributed real-time game-theoretical energy management scheme was
employed to maximize the total social benefit while minimizing the cost of each player. For
microgrid energy management schemes based on cooperative games, the authors proposed a
cooperative demand response scheme for reducing the electricity bills of users in Ref. [37]. In
Ref. [38], a cooperative energy-trading approach was proposed for the downlink coordinated
multipoint transmission powered by smart grids to reduce energy cost. The authors developed
a cooperative distributed energy-scheduling algorithm to optimize the energy dispatch prob-
lem while considering the integration of renewable generation and energy storage in Ref. [39].
In Ref. [40], the authors provided a multistage market model for minimizing the operational
cost of the utility company while maximizing the total benefit of the market. Compared to
cooperative games, the noncooperative games have the advantage of a lower communication
overhead and do not require a common commitment among various market players. As one
kind of noncooperative game models, the Stackelberg game can efficiently model the hierarchy
among players, where the leaders have dominant market positions over followers, and can
impose their own strategies upon the followers. Considering above two points, the authors
propose the noncooperative game-theoretical approach and model the microgrid energy man-
agement problem as a three-stage Stackelberg game.
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In summary, most of the previous studies have not provided a comprehensive framework for
how to utilize the real-world data to improve the energy management performance. The prior
statistic knowledge of uncertain renewable power outputs was assumed to be perfectly known
and its impact on the energy-trading process among market players has not been fully ana-
lyzed. This motivates us to explore the integration of deep learning-based wind power fore-
casting technique with Stackelberg game-based energy management strategy, so as to make a
further step to enable data-centric energy management in future energy internet.

3. System model and problem formulation

3.1. System model

Figure 1 presents a structure of a typical microgrid energy management system with the utility
company, the energy storage company, users, and various kinds of renewable energy sources.
In this system, without loss of generality, the authors assume that there is a single conventional
energy generation company, which is denoted as the utility company, and a renewable sources-
based energy storage company, which is denoted as the storage company. The energy storage
company which operates independently from the utility company can store and absorb excess

_ Power Flow

Uity Company Energy Storage Company

smmm=== Information Flow

m  local Enerey Management

Figure 1. System model of microgrid energy management.
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energy during nonpeak periods and deliver it back to the grid during the peak times. Further-
more, the authors assume that there is a single microgrid and there are K users, denoted as
K =1{1,...k ..., K}, in this model. The utility company and the storage company are regarded as
energy suppliers to meet the electric power demand of the microgrid and ensure the stability of
the power system. To implement efficient energy management, the microgrid should be in
charge of energy dispatching and be responsible for meeting users’ electricity demands based
on the forecasting of renewable energy generation. However, due to renewables” uncontrollable
fluctuations, variability, intermittent nature, and the capacity limitation of the microgrid, the
microgrid may not be able to meet the electricity demand of users by itself and has to purchase
electricity from the utility company and the storage company.

3.2. Objective function
3.2.1. Objective function of the utility company

The definition of the utility company's objective function is rather flexible. Generally, the
authors consider the cost function consisting of the electricity generation cost denoted as C(L)
and the pollutant emission cost denoted as I(L) [41]. Each of them can be modeled as a
quadratic function of the electricity demand L. Besides, line loss, which is mainly caused by
resistance of the transmission lines, has been taken into consideration to ensure energy supply.
Hence, the objective function of the utility company is formulated as

ug(Lm,g/ Pg) = Rg(Lm,g/ Pg) - Cg(gng,g) - Ig(gng,g)r (1)

where

Rg (Lm,g/ Pg) - Lm,gpg/
Cy(egLm,g) = ag(eglmg)” + by (egLm,g) + g (2)

Io(egLm ) = ag(egLmg)” + B (egLmg)-

Rg(Ly, g, pg) denotes the electricity revenue; Cq(e4Ly,¢) and Ig(egLyy, o) are the cost functions of
the power generation and the pollutant emission, respectively; L,, , denotes the quantity of
electricity bought from the utility company by the microgrid; p, is the unit electricity price of

the utility company; and ag, by, ¢y, ag, B, are the cost parameters of Cg(egLu,¢) and Ig(egLum,g).
Assuming that p, denotes the power loss percentage during power transmission, which is

related to voltage, efficiencies of transformers, and resistance of the transmission line. Hence,
€¢Ly,¢ is the actually generated electricity to satisfy the microgrid demand L,z where

e =1/(1-p,).

3.2.2. Objective function of the storage company

The authors considered the power loss inefficiency during the battery charging and
discharging processes, as well as line loss, and the objective function of the storage company
is formulated as
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us (Lm,S/ Ps) = Rs (Lm,S/ Ps) - Cs(gsLm,s)/ (3)
where

Rs (Lm,S/ PS) = Lm,spsr

Cs€s L, s 4
Cs(&sLy,s) = . (%)
ncnd

R¢(Ly,s, p,) denotes the electricity revenue; C,(&sLy, s) is the cost function of energy storage; L, s
denotes the quantity of electricity bought from the storage company by the microgrid; p, is the
unit electricity price of the storage company; 7. and 7, are the charging and discharging
efficiencies of storage equipment, respectively; and c; denotes the unit cost of operation and
maintenance. The meaning of ¢; is the same as ¢, introduced above.

3.2.3. Objective function of the microgrid

The authors focus on renewable energy which is the main source of the microgrid and consider
the satisfaction function based on quality of service of the electricity provided by the utility
and storage companies [42]. Hence, the objective function of the microgrid is formulated as

U, (Lm,g/ Ly, Pm) = Rm,g(Lm,g) + Rm,S(Lm,S)
- Cm g(Lm g Pg) - Cm,s(Lm,Sr Ps) + Rm (Lk,m/ Pm) (5)
— Cu(Ly + A) = Ly(L, + A) + F|A|,

where
dm,g 2
Rm,g(Lm,g) = Xm,ng,g A (Lm,g) 7

Rm,s(Lm,s) = Xm,sLm,s - A

Lk ms Pm ZLk mpP oy

Cin ( mgfpg) = m,gpg/
C ( mS/ps)_LmSps’

Co(Ly +A) = ay(Ly + A + by (L, + A) + cp,
Ln(Ly + A) = an(L, + A + B, (L, + A).

m

Rin,¢(Lm,g) denotes the satisfaction value; Cy, g (L, g, p,) denotes the payment of the microgrid

for electricity bought from the utility company; and X, ; denotes the satisfaction parameter for
the utility company. As the satisfaction parameters depend on various factors, such as electric-
ity demands, electricity prices, preferences in different energy sources, weather conditions,
etc., it is hard to model the satisfaction parameters accurately. Thus, the authors assume that
these parameters are predefined. Analogously, d., ,, denotes predefined satisfaction parameters
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of the microgrid for the utility company. The definitions of R, s(Ly,s) and C,, s(Ly, s, p,) are
similar to those of Ry, ¢(Lm,g) and Cu,¢(Lm,g, p,) as introduced above; Ry (L, m, p,,) denotes the

electricity revenue acquired from users while Ly ,, is the quantity of electricity bought by the
kth user and p,, is the unit electricity price of the microgrid; Cm(ﬁr + A) and Im(ir + A) are the
cost functions of wind power generation and wind power pollutant emission, respectively;
Ay by €y o, B, are the cost parameters of C, (ﬁr + A) and Im(ﬁr +A). L, + A denotes the

prediction result of wind power while L, is the real wind power and A is the prediction error.
F denotes the penalty factor of the prediction error A that satisfies F < 0. That is, the payoff of
the microgrid will decrease when the result of wind power forecasting is not accurate, which
reflects the restriction of the power purchase agreement in the market.

3.2.4. Objective function of users

In a similar way, the authors also take the satisfaction function into consideration. Hence, the
objective function of the kth user is given by

Ux(Lk,m, p,;) = Rigm(Ligm) — Crom(Lims P,y,)s (7)

where

dy,
Rk,m(Lk,m) == Xk,mLk,m - ?m (Lk,m)zr

Ck/m(Lkrm’ pm) = Lk/mpm'

(8)

Ry, m(Lk,m) denotes the satisfaction value and Ci (L, p,,) denotes the payment that the kth
user pays for electricity bought from the microgrid. The meanings of Xy ,, and d ,, are similar
to Xy, and dyy, .

3.3. Problem formulation

The authors propose a three-stage Stackelberg game, which consists of leaders and followers to
describe the interconnection of each stage and model the energy management process. The
three-stage Stackelberg game is described in a distributed manner in Figure 2:

e Stage I: The utility and the storage companies, as leaders of the game, announce the unit
electricity price p, and p, to the microgrid. By setting reasonable prices, the companies

hope to maximize their own payoffs. Thus, the authors can describe the optimization
problem for the utility and storage companies as

max Uy (Pg)s 9)
max Us(p,). (10)

s

e Stage II: The microgrid can be assumed as the follower of the utility and the storage
companies as well as the leader of users. On the one hand, the microgrid determines
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Figure 2. The diagram of the three-stage Stackelberg game.

electricity demand L,, ; and L,, s based on the prediction result of the wind power and the
unit prices p,, p,. On the other hand, it announces electricity price p,, to users. The
objective of the microgrid is also to maximize its payoff by adjusting L, ¢, Ly, s, and p,,.
We describe the optimization problem for the microgrid as
, max U (L, g7 L, s Py )s
sit. Cp:0<¢€gLy, ¢ <Lg maxs

Cy: OsgsLm,sSLs,maxx (11)

Cs: 0P, <P, max

K
Ca:Lus+Lmng=) Lgm—L —A>0,
k=1

where Lg max, Ls,max, and p,, ... denote the capacity and pricing constraints.
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e Stage III: The kth user (Vke(l,2,...,K}), as the follower of the microgrid, determines
electricity amount Ly ,, purchased from the microgrid based on p,, to maximize its payoft.
We can describe the optimization problem for the kth user as

max Ug(Lg ), (12)

k, m

st. Cs: Lim=Lis, (13)

where Ly j is the basic electricity demand of the kth user.

4. Algorithms and analysis

In this section, we first propose a distributed energy management algorithm based on the
three-stage Stackelberg game. Then, the big data analysis-based wind power forecasting
algorithm is derived by combining SAE, the back-propagation algorithm, and the genetic
algorithm.

4.1. Distributed energy management algorithm

We propose a three-stage Stackelberg game to describe the interconnections of each stage and
use the backward induction to capture the interrelation of the decision-making process in each
stage.

4.1.1. Analysis of the third-stage user game

The optimization objective of the kth user is defined in Eq. (12), which is a standard concave
function. Hence, the authors can use the Karush-Kuhn-Tucker (KKT) conditions to solve the
optimization problem. The optimal solution of the kth user is given by

i o Xk,m Y Pm
kml| = ——5——",

dk,m (14)
ﬁk, m2 = Lip,

where ﬁk, m1 denotes the optimal electricity procurement quantities; ﬁk, x> denotes the scenario
where the optimal electricity procurement quantity lines on the boundary of the inequality
constraint.

4.1.2. Analysis of the second-stage microgrid game

In stage II, the authors assume user Kek ={1,...,i,...,K} purchases electricity Ly ,;1 and user
K'eK" ={1,...,1,...,K"} purchases electricity Ly, ,,». While K = K| JK”, the authors can obtain
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K K/ K//

X —
ZLk,m = Zkgipm + ZLk,b- (15)
k=1 K=1 k,m ' =1

Based on KKT conditions, the optimal amount of electricity procured from the utility company

is given by

im, g1 = 07
P Xing =Py = tma
* g . (16)
- L max
Lm, B = g,—/
\ &g

In a similar way, based on KKT conditions, the optimal amount of electricity procured from the
storage company is given by

( ﬁm,sl = 07
r _szs_ps_ym,l
L2 = g / (17)
ﬁm,sS _ Ls,max,

\ &5

The optimal price is given by
( ﬁml = 07
K Xim " 1
DOIIET N ST o g
— k’ m k,m

2
Zk’:l E

(18)

me

\ pm3 = pm,max’

A ~ ~ ~

Ly, ¢1, L, ¢3, Lin,s1, L, 3, P71, and p,,,5 denote the scenarios that where the optimal solutions line

on the boundaries of the inequality constraints. ﬁm, oy Iim, «2,and p, , denote the interior solutions.

When Ly, o =00r Ly, = LS% and Ly, s =0o0r L, s = L"‘/E ==, there is no price competition between
the utility and storage companies. Thus, the analysis of the corresponding p, and p; is omitted

here. Considering the price competition game between the utility company and the storage
company, p,, can be viewed as a function of p, and p, based on Eq. (18), which is given by

Pm = Am,lpg + Am,2ps + Am,3/ (19)

where
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1
d
Am,l - Z , 1 8 s
K=l . ( 2 ) )
1+ ' +
z ) Ts
dm,g dm,s
1
dm S
Am,z 1 / 1 ; s
. Zl(:l E ) 2 (20)
T2 |y
dm,g dm,s
K’ Xk m Xm,g Xm,s K Xk,m " £
K=1dy Zk” -1 g + ds Zk’:l i m + Zk”:l Lip | + L+ 4
Ay = e - — :
1+Zyzlm Z/ 2 1+Zk’=1a 2 N 2
i T 2 k=1 dkrm i + 2 dm,g dm,s
dm,g dﬂ‘l S dm,g dm,s
4.2.3. Analysis of the first-stage utility and storage company game
In this case, defining L,, , as a function of pg, we have
Lm,g(Pg> = Agap, + Aga, (21)
where
1 ZK/ Am 1
1 dm,g k=1 dk m
m,g 1 + m, g
dm,s
(22)
Xmg Xms_ps K ka_AmZPS_Am?) " ~
4 - , . : : , Ly —L,—A
Xmg  ng T A s K=1 di m T Zy =1 kb Br
Ag72 — dm ¢ dm . .
7 1 + _7s
dm,s
Hence, U, can be written as a quadratic function of p,, which is given by
(23)

where
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Ag’g = AgJ — €§ (llg + ag)A;y
Ag74 = Ag72 [1 — 2€§(ag + Oég)AgJ] — gg(bg + ﬁg)Agvl’ (24)

Ags = —féz;(ﬂg + “g)A;z - Eg(bg + 5g)Ag72 — G

Since Uy is a convex function of p . based on Eq. (22), the authors can obtain p g by solving the

convex function that

Ags

~ 95
=_ 8 25
Ps = " 24, (25)

In the same way, p, can be obtained similarly as above since p, has the same solution structure
with p, . The detailed process is omitted here due to space limitations.

4.2. Algorithm of wind power forecasting

We propose a deep learning-based short-term wind power forecasting algorithm by combining
SAE, the back-propagation algorithm, and the genetic algorithm. It is noted that the proposed
forecasting model can also be applied for other distributed renewable energy sources such as
solar energy, hydroenergy, etc. The reason why the authors study the wind power forecasting in
this chapter is mainly due to the illustration purpose and the availability of the wind big data. The
core of the algorithm is to establish a forecasting model through training on the historical data.
Exploiting the statistical relationship among the historical time series data can be divided into
two processes: the pre-training process and the fine-tuning process. In the pre-training process,
three stacked AEs, which consist of one visible layer, one hidden layer, and one output layer form
a neural network. In the fine-tuning process, one more layer is added to the end of the neural
network and back-propagation algorithm is applied to obtain more appropriate in