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Abstract

Since transcriptome analysis provides genome-wide sequence and gene expression infor-
mation, transcript reconstruction using RNA-Seq sequence reads has become popular dur-
ing recent years. For non-model organism, as distinct from the reference genome-based 
mapping, sequence reads are processed via de novo transcriptome assembly approaches to 
produce large numbers of contigs corresponding to coding or non-coding, but expressed, 
part of genome. In spite of immense potential of RNA-Seq–based methods, particularly 
in recovering full-length transcripts and spliced isoforms from short-reads, the accurate 
results can be only obtained by the procedures to be taken in a step-by-step manner. In this 
chapter, we aim to provide an overview of the state-of-the-art methods including (i) qual-
ity check and pre-processing of raw reads, (ii) the pros and cons of de novo transcriptome 
assemblers, (iii) generating non-redundant transcript data, (iv) current quality assessment 
tools for de novo transcriptome assemblies, (v) approaches for transcript abundance and 
differential expression estimations and finally (vi) further mining of transcriptomic data 
for particular biological questions. Our intention is to provide an overview and practical 
guidance for choosing the appropriate approaches to best meet the needs of researchers 
in this area and also outline the strategies to improve on-going projects.

Keywords: whole transcriptome, de novo assembly, genome-wide expression, non-model 
organism

1. Introduction

The on-going advances in sequencing technologies and a drastic drop in the cost of sequenc-

ing allow us to obtain genome-wide genetic information for virtually all kingdoms of life. 
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Particularly, making large-scale DNA sequencing more affordable and accessible for small-
scale laboratories has greatly promoted genomic research studies on non-model organisms 

genetically linked to a specific biological question of interest [1, 2]. Despite huge effort, de novo 

sequencing of an entire genome is not an easy task, even now, and this also makes ‘RNA 

sequencing (hereafter, RNA-Seq)-based transcriptomic analysis’ appealing for non-model 

organisms that are generally described as having no or limited genomic resources and tran-

scriptomic datasets as well as molecular tools [3–6]. In the field of ‘-omics’ disciplines, RNA-Seq 
is among high-throughput experimental methods and widely used for identifying all func-

tional elements in the genome. In other words, RNA-Seq data are directly derived from func-

tional genomic elements, mostly protein-coding genes. Therefore, analysing the expressed part 

of genome by RNA-Seq gives substantial information about the genome-wide transcriptome 

structure, profile and dynamics for non-model organism at genome-wide scale. Currently, 
large-scale sequencing efforts such as ‘Fish-T1K (Transcriptomes of 1000 fishes)’, ‘1KITE (1K 
insect transcriptome evolution)’ and ‘1KP (1000 Plants Project)’ have been initiated to serve 
as valuable source of transcriptome composition and dynamics. In spite of immense potential 

of RNA-Seq–based methods, particularly in recovering full-length transcripts and spliced iso-

forms from short-reads, the accurate results can be only obtained by the procedures to be taken 

in a step-by-step manner.

Compelling evidence show that a number of factors de novo transcript construction procedure 

were reported, such as error-prone and biased (e.g. GC%) nature of sequencing technologies, 
limitations of assembler algorithm and multi k-mer approaches [7–9], read length [10], coverage 

depth of reads [11], pre-processing options of raw reads [12, 13] and transcript complexity of 

organism (e.g. sequence variations at terminal regions, alternative splicing, antisense transcrip-

tion, overlapping genes) [14]. Therefore, the state-of-the-art advancements in methodologies 

Figure 1. An overview of de novo transcriptome analysis pipelines from assembly to quality checking and pre-processing 

to assembly and transcript quantification.
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and applications for transcriptome assembly should be meticulously considered while plan-

ning a project. As no consensus procedure exists, researchers mainly in the field of ecology and 
evolution use many different approaches and tools from sequence pre-processing to functional 
annotations (Figure 1). In this context, establishing a guideline that facilitates and standardizes 

the transcriptome assembly and post-assembly analysis provides a good starting point.

2. De novo transcriptome assembly methods and mining transcriptome 

data for non-model organism

2.1. Quality check and pre-processing of raw reads

Following sequencing reaction and initial processing, next-generation sequencing instru-

ments generate raw image files that are automatically processed via instrument base calling 
software to output a massive quantity of raw sequence data in “.fastq” format. The “.fastq” is 

a text format containing both sequence read and base calling information encoded in ASCII 
characters. The read quality at each base or quality score can be obtained by converting the 

ASCII characters into Phred score (Q) indicating the probability of an erroneous base call. 

Compelling evidences show that a minimum threshold of Phred score for assembly and align-

ment is 20 (equivalent to 99% probability of being correct) for each base in raw read. Despite 
remarkable progress in sequencing chemistry and base detection approaches, the instruments 

can still produce incomplete, erroneous and ambiguous reads. Therefore, a pre-processing 

step (quality checking and read filtering) is considered an essential prerequisite prior to 
de novo transcriptome assembly because erroneous and ambiguous bases can often lead to 

fragmented and misassembled transcripts.

Quality checking and visualization of raw reads (in fastq) start with the FastQC tool (a stand-

alone Java program available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 
FastQC generates a HTML output containing a number of graphical illustrations providing 
the number and length of raw reads and duplication rate, but two main component of the 

FastQC tool: (i) per base sequence content and (ii) per base sequence quality are particularly useful 

in guiding pre-processing step. The most popular pre-processing tools are FASTX-Toolkit 

[15], Trimmomatic [16], Cutadapt [17], NGS QC Toolkit [18] and Qtrim [19], and regardless 

of the tools used, common pre-processing steps include: (i) removing adapter sequences, (ii) 
discarding the low quality reads (Q ≤ 20) and ambiguous nucleotides (Ns), (iii) removing the 
short-read length sequences (length below 50 base pair (bp)) and (iv) trimming low qual-
ity bases at the both ends of reads (generally first 10 bp) (Figure 1) [20]. After pre-process-

ing, resulting high-quality reads are ready for downstream analysis; de novo transcriptome 

assembly.

2.2. A brief glance at de novo transcript assemblers

Currently, the length of sequence reads from NGS instruments (e.g. sequencing by synthesis 
from Illumina HiSeq Models) is ranged from 150 to 250 base pairs (bp) and, following quality 
checking and filtering step, the high-quality sequence reads have to be de novo assembled for 
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transcript reconstruction. The sequence read length is shown to be one of the key parameters in 

determining de novo assembly strategy. While the overlap-layout consensus (OLC) approach 
has been used for the assembly of long reads generated from the third-generation sequencing 

instruments such as PacBio Sequel or Oxford Nanopore, de Bruijn graph approach has been 

used in both de novo genome and transcriptome assembly because this computationally effec-

tive algorithm can process billions of short reads to reconstruct the transcriptome as complete 

as possible. In the de Bruijn methods, the graphs are constructed from short reads and then 

paths in this graph are used to generate contigs. In graph construction, a given read is broken 

into k-mer seeds (nodes) and edges are added between consecutive k-mers (in manner; the 

suffix of length k−1 of one node is the prefix of length k−1 of the other) and then, these k-mers 
are arranged into a de Bruijn graph structure (Figure 2). Contigs are obtained by inversely 
transforming the optimal path in the de Bruijn graph into sequences [21]. However, de Bruijn 

graph-based strategy between de novo genome and transcriptome assembly is slightly modi-

fied because of the following reasons: (i) while the DNA sequencing depth is expected to be 
uniform across the genome (except in repetitive regions), the sequencing depth of transcripts 

can vary considerably, (ii) Genome assembly graph is considered as linear (theoretically one 

graph for each chromosome), but due to alternative splicing, transcriptome assembly is more 

complex than genome and requires a graph to represent the multiple alternative transcripts 

per locus [1, 21]. By considering these challenges, several de novo assembly tools such as 

Trinity [1], SOAPdenovo-Trans [22], Trans-AbySS [23], Oases [24], IDBA-Tran [25], BinPacker 

[26] and Bridger [27] have been developed so far (Box 1). Most of these tools, which are ini-
tially developed for de novo genome assembly (except for Trinity) use de Bruijn graph-based 

assembly strategy and have their own pros and cons in transcript reconstruction.

Figure 2. The de Bruijn graph approach is instrumental for reference-free transcriptome assembly and de Bruijn graphs 

are built from the short reads. These short reads are split into short k-mers (here, k-mer length, 5) and then k-mers are 

connected by overlapping prefix and suffix (k−1)-mers. When the de Bruijn graph is built from reads, the optimal paths 

are obtained in the graphs and reconstructed transcripts (or contigs) are recovered by inversely transforming the optimal 

path in the de Bruijn graph.
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The quality of assemblies in terms of transcript number and length generated by such assem-

blers is highly influenced by k-mer length or hash length. Schulz et al. [24] reported that 

although assemblies generated using short k-mer have the risk of introducing misassemblies, 

rare transcripts can only be retrieved by selecting short k-mers while longer k-values perform 

best on high expression genes. In order to identify the full spectrum of transcript abundance 

and isoforms, de novo assemblers utilize an iterative multi-kmer approach from 21 to 71, except 

for Trinity whose k-mer length is fixed to 25. Due to its apparent importance, an informed 
k-mer selection tool, KREATION, has been recently developed using fit-based algorithm, lim-

iting the number of k-mer values without significant loss in assembly quality but with saving 
in assembly time [28]. KREATION first clusters the assemblies generated from single k-mer 
to determine “extended clusters” showing the assembly quality and then, a heuristic model is 

applied to predict the optimal stopping threshold for a multi k-mer assembly study.

Box 1. A general overview of de novo transcriptome assembly tools from short-reads.

Trinity

Trinity’s main difference from other transcriptome assembly programs is that it is directly 
manufactured for de novo RNA assembly. It uses the parallel calculation method to create alter-

nate spliced isoforms and transcripts with de Bruijn method [1]. Trinity has three functional 

modules; Inchworm, Chrysalis and Butterfly of which work in succession and perform different 
tasks [29]. Inchworm uses greedy extension model based on k-mer overlap and reports full-

length transcripts for a dominant isoform. Then, Chrysalis clusters overlapping contigs and 

constructs de Bruijn graphs. Finally, Butterfly process these graphs in parallel and reconstructs 

full-length transcripts for each isoform. In addition to reconstruct accurate transcripts from 

RNA-Seq data, Trinity exhibit superior performance in recovering isoforms. Trinity requires 

extensive computational resources and running time, but it performs best in terms of assem-

bly quality such as N50 value, fewer chimeras and transcript coverage.

SOAPdenovo-Trans

SOAPdenovo-Trans is de Bruijn graph-based assembler, which derived from its genome assem-

bler version SOAPdenovo2 [22]. In SOAPdenovo-Trans algorithm, two module error-removal 

and heuristic graph traversal methods are borrowed from Trinity and Oases, respectively. The 

algorithm has two main steps: (i) contig assembly and (ii) transcript assembly. Contigs are gener-

ated using SOAPdenovo after globally and locally error removal. SOAPdenovo-Trans uses both 

single-end reads and paired-end reads which mapped back onto the contigs to build scaffolds 
and then it applies a strict transitive reduction method to simplify the scaffolding graphs, and 
provide more accurate results. SOAPdenovo-Trans uses less memory and shortest running time 

than other assembler programs. Although SOAPdenovo-Trans performed best in base coverage, 

the minimum, first quartile, median, mean and third quartile length of transcripts obtained from 
SOAPdenovo-Trans is shorter than that in BinPacker, Bridger, IDBA-Tran and Trinity.
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Trans-AbySS

Trans-abyss is a method and pipeline for the collection and analysis of short transcriptomic 

data. Abyss assembly process consists of single-ended and double-ended stages. The single-

ended stage is also based on the de Bruijn graph structure; when parameter k is given, it is 

transformed into tiled k-mer represented as read nodes and (k-1) bases are superimposed 

as directed edges. Allelic differences, minor changes in the sequence and repetitive random 
base invocation errors lead to ‘bubbles’ throughout the graph. Once these errors have been 

removed in the k-mer space, the single-ended contigs defined by the ‘walk’ clear across the 
graph. In the matched tier phase, the pairs aligned in the single-ended contigs define the 
empirical distribution of the distances of the pairs. Single-ended readings of different contigs 
to the co-aligned pairs and empirical distribution then intercontig distance and combined to 

form contigs are paired end contigs that can be combined [23]. Trans-AbySS reaches the end 

by creating direct sequenced readings with Bruijn graphics, removing possible errors from 

the middle and solving each connected Bruijn graph for each connected component. Compared 
to other assembler programs the lowest percentage of chimera is seen in Trans-AbySS [30]. 

Comparative studies showed that with Trinity, Trans-ABySS performed best in gene coverage 
and number of recovered full-length transcripts [31].

Oases

Oases is a RNA transcriptome assembler that contains many developmental constructs. 

Combines multiple k-mers and topological analysis methods. In addition, it uses the dynamic 
error correction feature developed for RNA-Seq data. Assembly process of Oases takes place 

by creating independent assemblies, which vary according to the length of the k-mers, and 

then assembling them all together in one assembly. In each assembly, readings are used to 

generate de Bruijn, and then faults are simplified, organized into a scaffold, divided into loci 
and eventually analysed. Then dynamic correction is performed and Oases creates contigs 

sets of clusters called loci. Since it is more likely to be unique, long contigs treated first when 
the scaffold is constructed and faults that may arise from alternative splices are eliminated. 
Oases provide a robust pipeline from RNA-Seq readings to generate full-length assemblies 

of transcripts. Especially designed for dealing with RNA-Seq condition, unequal coverage 
and alternative spliced situations [24]. Oases-Velvet produced the highest number of chimeric 

transcripts at different k-mer sizes and it has the highest RAM (i.e. random access memory) 
usage among all assemblers.

IDBA-Tran

IDBA-Tran uses a different approach. Firstly, it produces small de Bruijn graphs and enlarges 

the graph with larger k values. Subsequently, transcripts are found on a large Bruijn graph, 
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where the same genetic transcripts usually form a single component [25]. IDBA-Tran modu-

lates the products of the k-mers of the same composition with a very normal distribution, 

which depends on the expression levels of the corresponding isoforms. IDBA-Tran obtains a 

large number of small components, each representing a single gene. For each small compo-

nent, IDBA-Tran retrieves the isoform sequences with matched-ended reads by looking for 

compound pathways. Based on more than one normal distribution and contig length, IDBA-

Tran calculates a local threshold to determine whether a k-mer or contigs in error. Using the 

probabilities and depths that connect the two components together, taking into account the 

length of the path, the graphics that make up the IDBA-Tran components detect and remove 

faulty paths. For this reason, IDBA-Tran produces more contigs for low-expressed transcripts 

and performs better than Oases and Trinity [25].

BinPacker

BinPacker reshapes the problems and generates full-length transcripts by following the 

aggregated graph line generated by various techniques used in Bridger. Some advantages 

of BinPacker: (i) BinPacker allows the use of user-defined k-mer values for best performance 
and (ii) BinPacker uses a strict mathematical model. This allows the BinPacker to achieve a 

lower false positive rate at the same sensitivity level. (iii) BinPacker makes full use of the step 

depth applied to graphics, so that the assembly results are more accurate. BinPacker combines 

transcripts on every merging graph it creates [26]. BinPacker is more unsuccessful than other 

programs on chimeric data [31].

Bridger

Using a multi-k strategy to achieve high sensitivity leads to more false positives. However, 
identifying the optimal set of paths that represent the potential isoform can significantly 
reduce false positive estimates. Bridger’s basic idea is to build a bridge between two popular 

assemblers, Cufflinks (reference-based assembler) and Trinity (de novo assembler). Bridger 

uses a rigorous mathematical model called the minimum path envelope to search for the low-

est path set (transcript) supported by RNA-Seq readings. Bridger runs very fast and requires 

less memory space and CPU (i.e. Central Processing Unit) time than other methods and gen-

erates splicing graphics for all genes [27].

2.3. Generating non-redundant transcript data

As described in the previous section in detail, a reference transcriptome for non-model organ-

ism can be built using various types of de novo transcriptome assemblers. All these assemblers 

are successful to some extent in recovering expressed transcripts; however, constructing full-

length transcripts from short reads remains a daunting and complicated task. Therefore, to 

obtain more accurate data, researchers performed several studies to optimize a number of 
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key parameters affecting assembly results such as optimal sequencing depth [11], the read 

length [10], multi k-mer approaches [7–9], the quality score and error correction of sequence 

reads [12, 13]. However, transcriptome software themselves follow a multi-stage procedure to 
avoid introducing misassemble, chimeric assembly and transcript artefacts and to obtain all 

spliced isoforms from the same gene. For instance, the Inchworm module of Trinity assembles 

short-reads using greedy extension based on k-mer overlap and reports full-length transcripts 

for a dominant isoform. Then, the final module, Butterfly, processes the individual graphs in 
parallel and reconstructs full-length transcripts for each isoform after Chrysalis clusters over-

lapping contigs, and constructs de Bruijn graphs. Despite all these efforts, de novo assembly 

of short-reads, regardless of software used, results in hundreds of thousands of contigs, a set 

of contiguous transcript sequences. Without any further analysis such as clustering or post-

assembling, the final set of contigs includes (i) partial transcripts and rudimentary isoforms 
(splice variants), (ii) redundant transcripts (different lengths of the same transcripts, mostly 
fragments) and (iii) chimeric (fusion) and misassembled sequences [3].

Creating non-redundant transcript dataset with various bioinformatics approaches is a first 
step after de novo transcript assembly. Because, eliminating redundant transcripts and retaining 

one representative of each transcript isoform (generally, correct and longest in each transcript 

cluster) are particularly important for downstream applications such as the analysis of tran-

script structure, gene expression, phylogenomics and identification of SNP variants [8, 30, 32]. 

To date, several clustering algorithm and post-assembly implementations were developed 

and used in a significant number of articles for the purpose of creating a non-redundant con-

sensus dataset. The most popular tools used to reduce redundancy in the assembled dataset 

are CAP3 [33], CD-HIT-EST [34], iAssembler [35], MIRA [36] and TIGR-TGI Clustering tool 
[37] as well as Corset [32], if performing a differential gene expression analysis. In addition to 
these tools, some assemblers such as Oases and Trans-ABySS have their own “merging tools” 

to generate a consensus transcript set when applied multiple k-mer approaches.

So far, all studies using de novo transcriptome assembly procedure have included either post-

assembly or clustering analysis. Among the assembly-based approaches, CAP3 [33] is one 

of the first large-scale EST-based assembly tool, which filters for redundant information by 
detecting overlaps between the contigs and generate the consensus sequence for each tran-

script. As an overlap-layout-consensus (OLC)-based assembly pipeline, TIGR gene indices 
clustering tool (TGICL) [37] was developed for producing larger and more complete consensus 

sequences. In this pipeline, a final set of contigs is first clustered based on pairwise sequence 
similarity and then each cluster is assembled so that consensus sequences (or non-redundant 

unigenes) are generated. Yet these methods are successful in removing redundancy, the meth-

ods have failed to satisfy the needs of generating a contig per transcripts. It was suggested that 

there are two type problems, which might be responsible for such failure. The problems fre-

quently observed during assembly are (i) the misassembly of spliced transcripts or paralogs 

and (ii) contigs derived from the same transcript fail to be assembled together. The iAssembler 

[35] specially developed to overcome these problems encountered and it consists of seven 

modules grouped into three functional phases: general controller (input, output and assembly 
parameters), assembler and error corrector phases. The iAssembler utilizes the approaches of 
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CAP3 and MIRA assemblers for initial assembly of transcripts, and subsequently, the pair-

wise alignment information of overlapped transcripts is obtained using Megablast to assem-

ble them into one contig if those transcripts fail to be assembled by either MIRA or CAP3. 
The assembly process finishes after correcting the above-mentioned errors via error corrector 
phases, which is the main contribution of iAssembler. A comparison showed that iAssembler 

has a superior performance over CAP3, MIRA and TGICL in terms of generating much less 
assembly errors in assembling [35].

Another widely used approach to reduce redundancy in contig assembly is clustering 

sequences. In this regard, by far the most popular tool is CD-HIT-EST [34]. The CD-HIT-EST 
is generally used to remove the shorter redundant transcripts and duplicate contigs in large-

scale transcriptome datasets. Compared to assembly-based approaches, the CD-HIT-EST is 
dramatically faster in practice due to its novel parallelization strategy. Corset [32] as a state- of-

the-art approach was proposed for hierarchically clustering contigs using information about 

shared reads. The performance evaluation showed that Corset outperformed CD-HIT-EST in 
recall (i.e. true positives/(true positives + false negatives)) for genes with no fragmentation 
and the authors suggested that CD-HIT-EST is not the most effective contig clustering tool 
while Corset gives a convenient method to cluster contigs [32]. More recently, a clustering 
tool, RapClust [38] has been developed for de novo transcriptome clustering based on the rela-

tionships exposed by multi-mapping sequencing fragments and it generates clusters of com-

parable or better quality than current clustering approaches and does so substantially faster. 
Although accumulating evidences have indicated that the sequence identity threshold should 

be set above 90% in both assembly and clustering approaches, a detailed comparison analysis 
is required for those approaches in terms of accuracy and capability for removing redundant 

sequences.

2.4. Quality assessment tools for de novo transcriptome assemblies

Quality assessment of de novo assembled transcripts using reference-free or evidence-based 

tools seems to be a prerequisite for meaningful interpretation of downstream analysis such 

as discovery of novel transcripts and correct identification of differentially expressed genes. 
From a practical point of view, the quality assessment of assembled transcriptome sequences 

can be handled in three different ways: (i) basic statistical metrics, (ii) reference-free evalua-

tion tools and (iii) reference-dependent or sequence homology-based approaches. Generally, 

calculating basic statistical metrics is considered as first step in the evaluation of assembled 
transcriptome. These metrics include total number of transcripts, total base coverage, tran-

script coverage, N50 value, the presence of chimeric transcripts, longest transcript length, 
average length of transcripts, etc. These metrics are simple and useful to obtain information 

about the transcript numbers and coverage at a first glance, but provides no information 
about accuracy or reliability of transcripts. For instance, N50 value is a median length of a 
set of contigs (assembled transcripts), but it measures the continuity of contigs but not their 

accuracy. Recently, reference-free evaluation tools were developed for the accuracy and com-

pleteness of de novo transcriptome assemblies (see Box 2, i.e. RSEM-EVAL and TransRate). 
These approaches only process high-quality sequence reads and assembled transcriptome 
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based on their strong background models and producing scores indicating assembly quality. 

As for sequence homology-based quality metric, it is seen as standard evaluation criteria for 

transcriptome assemblies. In this approach, each contig in the assembled transcriptome set 

was aligned against a reference database (rnaQUAST) or publicly available databases using 

BLAST, BLAT or SCAN methods (Box 2). Besides, now it is well known that the genome of 
all living organisms from bacteria to mammals contains evolutionary conserved and phylo-

genetic clades characteristic of single-copy orthologous gene sets. Therefore, it is considered 

as an indicator of quality and completeness of transcriptome assembly (see BUSCO in Box 2).

Box 2. A general overview and framework of de novo transcriptome assembly evaluation tools.

DETONATE

Li et al. [39] proposed a software package called DETONATE (DE novo TranscriptOme rNa-
seq Assembly with or without the Truth Evaluation) which is a methodology for assessing and 
ranking of de novo transcriptome assemblies obtained from various assemblers. DETONATE 
software is consisted of two parts: RSEM-EVAL and REF-EVAL. As a reference-free evaluation 
method, RSEM-EVAL is considering as main contribution of the software and uses a probabilistic 
model that requires only an assembly and the RNA-Seq reads to compute the joint probability. 

RSEM-EVAL provides a score obtained from calculation of three components; maximum like-

lihood (ML) estimate, an assembly prior and a Bayesian information criterion (BIC) penalty, 
reflecting whether resulting contigs are supported by RNA-Seq reads or not. Then, RSEM-EVAL 
ranks these scores in descending order (from highest to lowest) and highest-scoring assembly is 

considered as ground truth, in other words, most reliable and compact assembly.

rnaQUAST

Bushmanova et al. [40] developed a quality evaluation tool for transcriptome assemblies. The 

tool, rnaQUAST, basically maps assembled transcripts to reference genome using BLAT [41] 

or GMAP [42] and comparing resulting alignments to gene database for measuring quality 

metrics. In addition to the basic descriptors for contig continuity such as total length, average 

length of assembled transcripts, longest transcripts and N50 value, the principal contribution 
of rnaQUAST is arised from the alignments of transcripts to isoforms’ positions and analy-

ses them to estimate how well the isoforms are covered by the assembly. For de novo quality 

assessment, rnaQUAST takes advantage of other tools like BUSCO.

BUSCO

In an evolutionary context, Simao et al. [43] presented a software package, BUSCO (Benchmarking 
Universal Single-Copy Orthologs) for assessment of transcriptome assembly and completeness. 
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For that purpose, BUSCO scans transcriptome assembly for the presence of near-universal sin-

gle-copy orthologous gene-sets generated from OrthoDB database of orthologs (http://www.
orthodb.org). Covering a high proportion of single-copy orthologous gene-sets indicates com-

pleteness of assembled transcripts. BUSCO sets are generated for six major phylogenetic clades; 
3023 genes for vertebrates, 675 for arthropods, 843 for metazoans, 1438 for fungi and 429 for 
eukaryotes. Accumulating evidence showed that above 90% covering of single-copy ortholo-

gous gene-sets indicates a good completeness of transcriptome assembly.

TransRate

Despite relative success in generating de novo transcriptome assemblies from short-reads, due 

to wide range of multiple and flexible parameters of de novo assembly methods, this methods 

can generate different assemblies, even if same data were used. These assemblies include 
chimeras, structural errors, incomplete assembly (e.g. hybrid assembly of gene families, spu-

rious insertions in contigs) and base errors. To overcome frequently occurring problems and 

filtering, optimization as well as comparison of assemblies, Smith-Unna et al. [44] developed 

a reference-free transcriptome assembly evaluation tool for the accuracy and completeness of 

de novo transcriptome assemblies using only input reads and assembled contigs. TransRate 

first aligns the input reads to final assembly, processes those alignments, and calculates contig 
scores using the full set of processed read alignments. Following these processes, TransRate 

classifies contigs into two classes; well assembled and poorly assembled, by learning a score 
cut-off from the data that maximizes the overall assembly score. TransRate gives two types of 
reference-free statistics; TransRate contig score and assembly score which are calculated by 

considering these errors. Therefore, TransRate is seen as a diagnostic quality score tool while 

RSEM-EVAL, another reference-free transcriptome assembly evaluation tool.

SCAN

Comparing assembled transcripts against a reference nucleotide or proteome is a routine task 
for annotating transcripts. By utilizing this information, Misner et al. [45] described an ana-

lytical R package called SCAN (sequence comparative analysis using networks) which gener-

ates gene-similarity networks illustrating sequence similarities between transcript assemblies 

and reference data. The SCAN differs from other software such as BLAST [46] or BLAT [41] in 

that it provides a robust statistical support in a biological context.

2.5. Current approaches for transcript quantification from RNA-Seq

Following to the assembly procedures, next step is to map the reads to a reference genome 

or transcriptome, quantify the transcript abundances and detect the differentially expressed 
transcripts among interested biological conditions. In this section, we give a brief overview of 

algorithms used is each analysis procedure (Figure 3).

Transcriptome Analysis for Non-Model Organism: Current Status and Best-Practices
http://dx.doi.org/10.5772/intechopen.68983

65



Figure 3. Schematic representation of transcript quantification from alignment to differential expression analysis.

Alignment is an important step in RNA-Seq analysis, which refers to the mapping of the reads 

to a reference genome or transcriptome, if it is available. Aligners can be classified as spliced 
and unspliced aligners. Unspliced aligners, e.g. Burrows-Wheeler alignment tool (BWA) and 

Bowtie, align the reads to the transcriptome by using Burrows-Wheeler or seed methods. 

These aligners do not properly control intron-sized gaps since they are not designed for 

spliced alignments. For accurate and fast alignment of the sequence reads over exon/intron 
boundaries, spliced aligners are proposed which use either exon-first or seed-extended meth-

ods [47]. While mapping reads using splice-aware aligners such as HISAT [48], TopHat2 [49] 

and STAR [50] are generally preferred for genome alignment, the software that is particularly 

developed for differential gene expression analysis for de novo assembled transcriptome uses 

Bowtie alignment program with ‘—best’ option [32, 51]. Alignment process can be compli-

cated due to several factors: sequencing errors, polymorphisms, imperfect annotation, intron-
sized gaps, intron signal, alternative splicing and pathological splicing. Moreover, alignment 
results directly affect the results of downstream analysis, e.g. transcript quantification, dif-
ferential expression, gene ontology and pathway analysis [52].

After mapping, the next step is the quantification of each transcript for each sample. It has 
been reported that the number of reads aligned to the reference genome is linearly related to 

the abundance of transcripts. Large number of transcript quantification algorithms is avail-
able in the literature. rSeq models the sequence reads assumed to follow Poisson distribution 

with parameters related to the transcript abundances [53]. RSEM is a widely used approach 
that uses expectation-maximization (EM) algorithm to compute the maximum-likelihood 
estimates of θ parameters, where θ

i
 is the probability of a fragment derived from ith tran-

script. Gibbs sampling is used as well to estimate the posterior means and confidence inter-

vals of transcript abundances. RSEM does not require reference genome or transcriptome 
files from the users. RSEM conducts a quality score data within the scope of its statistical 
model or uses a position-dependent error model based on the FASTQ or FASTA input data 
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types, respectively [51, 54]. Scripture uses the gapped alignments of the reads across splice 

junctions and the annotated transcripts and produces transcript expressions as RPKM (read 
per kilobase per million mapped reads) values [55]. Cufflinks assume the sequence reads 
are sampled independently with uniform probability along transcripts and proportional to 

the abundances among transcripts. A Bayesian method is used in parameter estimation [56]. 

IsoEM method exploits information from the distribution of insert sizes and estimates the 
isoform abundances using an EM algorithm [57]. MMSeq estimates haplotype, isoform and 
gene-specific expression using a Poisson-based model and EM algorithm. The priors of tran-

script abundances are assumed to follow a Gamma distribution [58]. BitSeq models the poste-

rior probabilities sequence reads with Markov chains and estimates the transcript expressions 
using a Bayesian approach [59]. eXpress has a similar methodology to cufflinks. However, 
it can determine the transcript abundances real-time, and can model indels and errors [60]. 

CEM identifies the RNA-Seq biases, i.e. positional, sequencing and mapping biases, with 
quasi-multinomial distribution model and estimates the isoform abundances with compo-

nent elimination EM approach [61]. Sailfish is an alignment-free approach that is based on 
indexing and counting k-mers of sequence reads. EM method is used in maximum-likeli-
hood estimation of the transcript abundances. Sailfish is reported as the fastest quantifica-

tion method as compared to other methods [62]. TIGAR2 models the insertion, deletion and 

substitution errors in a probabilistic framework, given the gapped alignment of reads to the 

reference genome. TIGAR2 uses a generative model, including alignment state, nucleotides, 

the read length distribution and read qualities at first and second positions, to estimate the 
transcript isoform expressions [63].

Kanitz et al. [64] benchmarked these methods on both simulated and an experimental datas-

ets. The performances are found to be very similar for all algorithms. Teng et al. [65] described 

several evaluation metrics and compared 7 quantification algorithms and reported that Flux 
Capacitor and eXpress underperformed, while RSEM outperformed other methods. We 
believe that RSEMs accuracy may result from its ability to properly handling short transcripts, 
poly (A) tails and the reads that map to multiple genes. Moreover, this method does not 
require a reference genome, which is stated to be challenging mostly for eukaryotic species, 

whose RNA transcripts are spliced and polyadenylated [51]. Beyond these methods, Corset 
has shown to be another powerful method, which clusters the transcripts into genes and cal-

culates the counts for each gene in a single step [32].

After mapping, per transcript read counts can be used as a relative measure of transcript 

abundance. In a perfect world, transcript abundance of steady-state mRNA should be 

directly proportional to the number of reads: a transcript from gene A with twice the cellular 
concentration of transcript B should have twice as many reads. This relationship should hold 

across a large range of expression levels spanning several orders of magnitude. Generated 

transcript abundances can be input to various analysis pipelines. In most cases, the objective 

is to identify the differentially expressed transcripts between given biological conditions. 
A key data assumption here is that the data should not contain any technical biases, which 

may arise from sequence composition, transcript length, sequence depth, sampling bias in 

library preparation, presence of majority fragments, etc. To enable comparison of genes 

across samples, these technical biases should be identified and corrected before starting 
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differential expression analysis. Total count (TC), upper quartile (UQ) and median methods 
are quantile-based methods, which divide transcript read counts by total number of reads, 

3rd quartile and median, respectively. The disadvantage of these methods is that the greater 

counts can dominate the lower counts in downstream analysis, e.g. differential expression 
analysis. Reads per kilobase per million mapped reads (RPKM) adjusts read counts both for 
sequence depth and gene length. RPKM produces unbiased estimates of number of reads; 
however, this affects the variance. Trimmed mean of M values (TMM) and DESeq2 median 
ratio approaches are considered as effective library size approaches. These methods assume 
that a majority of transcripts is not differentially expressed and thus minimize the effect 
of majority sequences. TMM trims the data based on the log-fold-changes and absolute 
intensities, then computes the weighted average of genewise log-fold-changes using delta 

method [66]. DESeq2 median ratio approach generates a pseudo reference sample, which 
is the geometric mean across samples. Size factors are obtained from the counts and the 

pseudo reference sample across all genes [67]. An important problem in differential expres-

sion analysis is to statistically model the obtained RNA-Seq counts. The preceding studies 

applied microarray-based methods to log-transformed counts [68, 69]. Some of the studies 

preferred modelling these data using Poisson distribution [61, 70]. Poisson distribution has 

a single parameter that represents both mean and variance. Nagalakshmi et al. [71] stated 

that the presence of biological replicates leads the variance exceeds the mean. This problem 

is referred to as overdispersion, which led to the development of novel approaches using 

negative binomial (NB) distribution. DESeq2 and edgeR are the two popular and NB-based 
approaches to model RNA-Seq data. Both approaches are based on the estimation of mean 

and variance relationship based on NB distribution. DESeq2 conducts local regression, 
while edgeR uses a single proportionality constant in this estimation [72, 73]. More recently, 
Law et al. [74] proposed the voom method, which estimates the mean and variance rela-

tionship from log-counts at observational level. Voom provides both gene expression esti-

mates and the corresponding precision weights for downstream analysis. Integration of this 

method with limma (linear models for microarray and RNA-Seq data) method provided the 

best control of type-I error, best power and lowest false discovery rate. Wang and Gribskov 

[31] points out that there may be differences on the differential expression results, between 
reference genome-based and de novo transcriptome assembly approaches. Incomplete and 

incorrect reference annotation, exon level expression differences and fragmentation of low 
coverage transcripts are pointed as the reasons of these differences. The authors suggest to 
perform both approaches even the reference genome is present.

2.6. Transcriptomics tells more: focusing on specific annotation tools and guidelines

The general analysis framework of de novo assembled transcripts has three phases: (i) generat-
ing non-redundant transcripts and quality assessment, (ii) basic sequence annotations includ-

ing homology-based sequence annotations (BlastX), gene ontology (GO Slim and Enrichment), 
pathway analysis (KEGG Enrichment) and (iii) transcript quantifications (Figure 1). Although 

annotation process (beyond the scope of this chapter) provides significant information regard-

ing cellular component, molecular functions and biological process in which transcripts 

involved, more information can be obtained if transcriptomic data can be further analysed and 
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interpreted in line with the study objectives and research questions. For instance, in evolution-

ary perspective, transcriptome data can be used for detecting positively selected or fast evolving 

genes (PSG, FEG) and are increasingly used in genome-wide phylogenetic studies [75–77] fol-

lowing the steps: orthologs gene detection (particularly single copy genes), multiple sequence 
alignment of coding regions with PRANK and GUIDANCE pipeline (PRANK algorithm is 
based on an exhaustive search of the best pairwise solution; the guidance assigning a confidence 
score for each residue, column and sequence in a multi-alignment from Prank [78], so Guidance 

[79] can be used for weighting, filtering or masking unreliably aligned positions in sequence 
alignments before positive selection using the branch-site dN/dS test). Following a multiple 
sequence alignment, the phylogeny is inferred by Phyml [80] based on proteins residues trans-

lated from multi-alignments of single copy orthologous. Then, multiple sequence alignment is 

used to detect positive selection using the branch-site model with the CodeML program of the 
PAML [81].

In the context of genome-wide sequence polymorphism within species, mining de novo con-

structed transcripts by appropriate variant calling tools may help us to elucidate the nucleotide-

level organismal differences. Among the genetic markers, single nucleotide polymorphisms 
(SNPs) are the most frequent DNA variation across genome and these genetic markers are 

widely used for characterising genetic diversity and population structure at genome level, 

construction of linkage and QTL mapping and association mapping due to their high density/
frequency and low mutation rate over generations. In non-model organism, lack of genome 

sequence information, the standard approach for identification of SNPs or insertion-deletion 
(InDels) starts by mapping high-quality reads against a reference transcript set constructed 

de novo and detect variations. Briefly, the high-quality reads were aligned against reference 
transcript set using unspliced aligners such as Burrows-Wheeler alignment tool (BWA) [82] or 

Bowtie2 [83] and then mapped file ‘.bam’ is obtained for variant calling. After sorting aligned 
reads and removing duplicates and merging ‘.bam’ alignment results, GATK2 (genome analy-

sis tool kit) [84] is used to perform SNP calling. GATK2 software first filters, realigns and reca-

librates reads using its standard filter and data pre-processing methods. The resulting analysis 
ready reads are parsed to detect SNPs using GATK-UnifiedGenotyper tool with parameters 
of “-stand_call_conf 30” and “-stand_emit_conf 10”. Following this step, SNP calls are hard-
filtered using GATK-VariantFiltration tool with parameters of “quality by depth > 5”, “unfil-
tered read depth ≥ 10” and “read mapping quality ≥ 40” to obtain reliable and accurate SNPs 
[85–87].

The eukaryotic genome harbours a large number of non-coding RNAs, which include small 

and long non-coding RNAs (lncRNAs). LncRNAs are RNA molecules that are longer than 
200 nucleotides in length and do not contain protein-encoding sequences. Recent studies have 
shown that although human genome contains about 19,000 protein-encoding genes (approxi-
mately 2% of the genome) [88], 58,684 high-quality lncRNAs have been identified in the 
genome using a large-scale transcriptome analysis [89]. Accumulating evidence showed that 

the protein-coding genes are accounted for only 50% of final assembled transcriptome data. 
Mining final non-redundant transcriptome data via long non-coding RNA identification tools 
such as PLEK [90], lncRScan-SVM [91], FEELnc [92] or measuring protein coding potential of 

transcripts using various tools such as coding potential calculator (CPC) [93], coding potential 
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assessment tool (CPAT) [94], coding-non-coding index (CNCI) [95] provides us more informa-

tion about the transcriptome landscape of non-model organism.
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