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Abstract

Dose-response models are applied to animal-based cancer risk assessments and human-
based clinical trials usually with small samples. For sparse data, we rely on a parametric
model for efficiency, but posterior inference can be sensitive to an assumed model. In
addition, when we utilize prior information, multiple experts may have different prior
knowledge about the parameter of interest. When we make sequential decisions to
allocate experimental units in an experiment, an outcome may depend on decision rules,
and each decision rule has its own perspective. In this chapter, we address the three
practical issues in small-sample dose-response studies: (i) model-sensitivity, (ii) disagree-
ment in prior knowledge and (iii) conflicting perspective in decision rules.

Keywords: dose-response models, model-sensitivity, model-averaging, prior-sensitivity,
consensus prior, Bayesian decision theory, individual-level ethics, population-level
ethics, Bayesian adaptive designs, sequential decisions, continual reassessment method,
c-optimal design, Phase I clinical trials

1. Introduction

Dose-response modeling is often used to learn about the effect of an agent on a particular

outcome with respect to dose. It is widely applied to animal-based cancer risk assessments and

human-based clinical trials. A sample size is typically small; so many statistical issues can arise

from a limited amount of data. The issues include the impact of a misspecified model, prior-

sensitivity, and conflicting ethical perspectives in clinical trials. In this chapter, we focus on

cases when an outcome variable of interest is binary (a predefined event happened or not)

when an experimental unit is exposed to a dose. Main ideas are preserved for cases when an

outcome variable is continuous or discrete.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



There are two different approaches to statistical inference. One approach is called frequentist

inference. In this framework, we often rely on the sampling distribution of a statistic and large-

sample theories. Another approach is called Bayesian inference. It is founded on Bayes’ Theo-

rem, and it allows researchers to express prior knowledge independent of data. In a small-

sample study, Bayesian inference can be more useful than frequentist inference because we can

incorporate both researcher’s prior knowledge and observed data to make inference for the

parameter of interest. Bayesian ideas are briefly introduced for dose-response modeling with a

binary outcome in Section 2.

In a small-sample study, we often rely on a parametric model to gain statistical efficiency

(i.e., less variance in parameter estimation), but our inference can be severely biased by the

use of a wrong model. To account for model uncertainty, it is reasonable to specify multiple

models and make inference based on “averaged-inference.” In this regard, Bayesian model

averaging (BMA) is a useful method to gain robustness [1]. The BMA method has a wide

range of application, and we focus its application to animal-based cancer risk assessments in

Section 3.

In clinical trials, study participants are real patients, and therefore, we need to carefully

consider ethics. There are conflicting perspectives of individual- and population-level ethics

in early phase clinical trials. Individual-level ethics focuses on the benefit of trial partici-

pants, whereas population-level focuses on the benefit of future patients, which may require

some level of sacrifice from trial participants. We compare the two conflicting perspectives in

clinical trials based on Bayesian decision theory, and we discuss a compromising method in

Section 4 [2, 3].

A sample size for an early phase (Phase I) clinical trial is often less than 30 subjects. Dose

allocations for first few patients and statistical inference for future patients heavily depend on

researcher’s prior knowledge in sparse data. When multiple researchers have different prior

knowledge about a parameter of interest, one compromising approach is to combine their

prior elicitations and average them (i.e., consensus prior) [4, 5]. When we average the prior

elicitations, there are two different approaches to determine the weight of each prior elicita-

tion, weights determined before observing data and after observing data. We discuss operating

characteristics of the two different weighting methods in the context of Phase I clinical trials

in Section 5.

2. Bayesian inference

In statistics, we address a research question by a parameter, which is often denoted by θ. We

begin Bayesian inference by modeling the prior knowledge about θ. A function, which

models the prior knowledge about θ, is called the prior density function of θ, and we denote

it by f(θ). It is a non-negative function, which satisfies
ð
Ω

f ðθÞ dθ ¼ 1, whereΩ is the set of all

possible values of θ (i.e., parameter space). We then model data y
!
¼ ðy1,…, ynÞ given θ. The

likelihood function, denoted by f ðy
!
jθÞ, quantifies the likelihood of observing a particular
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sample y
!
¼ ðy1,…, ynÞ under an assumed probability model. By Bayes’ Theorem, we update

our knowledge about θ after observing data y
!
as

f ðθjy
! Þ ¼

f ðy
!
jθÞ f ðθÞ

f ðy
!
Þ

: ð1Þ

The function f ðθjy
!
Þ is called the posterior density function of θ given data y

!
. Since we treat

observed data y
!
¼ ðy1,…, ynÞ as fixed numbers, we often express Eq. (1) as follows

f ðθjy
! Þ ∝ f ðy

!
jθÞ f ðθÞ ¼ k f ðy

!
jθÞ f ðθÞ , ð2Þ

where k is the normalizing constant which makes
ð
Ω

f ðθjy
!
Þ dθ ¼ 1. We can often realize f ðθjy

!
Þ

based on the prior density function f(θ) and the likelihood function f ðy
!
jθÞwithout considering

the denominator f ðy
!
Þ ¼

ð
f ðyjθÞ f ðθÞ dθ in Eq. (1) which is called the marginal likelihood.

2.1. Example

Suppose we observe n = 20 rats for 2 years. Let π be the parameter of interest, which is

interpreted as the probability of developing some type of tumor. Suppose a researcher models

the prior knowledge about π using the prior density function

f ðπÞ ¼
Γðaþ bÞ

ΓðaÞ ΓðbÞ
π
a�1 ð1� πÞb�1 , 0 < π < 1 : ð3Þ

It is known as the beta distribution with shape parameters a > 0 and b > 0. We often denote the

beta distribution by π � Betaða, bÞ, and the values of a and bmust be specified by the researcher

independent from data. Let y
!
¼ ðy1,…, ynÞ denote observed data, where yi = 1 if the i

th rat

developed tumor and yi = 0 otherwise. Assuming y1,…, yn are independent observations, the

likelihood function is as follows

f ðy
! jπÞ ¼

Yn
i¼1

π
yi ð1� πÞ1�yi ¼ π

s ð1� πÞn�s , ð4Þ

where s ¼
Xn

i¼1
yi is the total number of rats developed tumor. By Eq. (2), the posterior

density function of π is as follows

f ðπjy
! Þ ¼ kπaþs�1 ð1� πÞbþn�s�1 , ð5Þ

where k ¼ ΓðaþbþnÞ
ΓðaþsÞΓðbþn�sÞ is the normalizing constant, which makes

ð1
0
f ðπjy

!
Þ dπ ¼ 1. We can

recognize that πjy
!
� Betaðaþ s, bþ n� sÞ.
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If the researcher fixed a = 2 and b =3 and observed s = 9 from a sample of size n = 20, the prior

density function is f ðπÞ ¼ kπ ð1� πÞ2 with k ¼ Γð5Þ
Γð2ÞΓð3Þ ¼ 12, and the posterior density function

is f ðπjy
!
Þ ¼ kπ10 ð1� πÞ13 with k ¼ Γð25Þ

Γð11ÞΓð14Þ ¼ 27457584. The prior and posterior distributions

are shown in Figure 1. The knowledge about π becomes more certain (less variance) after

observing the data.

2.2. Example

This example is simplified from Shao and Small [6]. In dose-response studies, we model π as a

function of dose x. There are many link functions between π and x used in practice. In this

example, we focus on a link function

πx ¼
eβ0þβ1x

1þ eβ0þβ1x
ð6Þ

which is known as a logistic regression model. It is commonly assumed that a dose-response

curve increases with respect to dose, so we assume β1 > 0 (and β0 can be any real number).

There are two regression parameters in Eq. (6), β0 and β1, and we denote them as β
!
¼ ðβ0, β1Þ.

Figure 2 presents two dose-response curves. The solid curve is generated by β
!
¼ ð�1; 2Þ, and

the dotted curve is generated by β
!
¼ ð�2; 5Þ. As β0 increases, the background risk π0 ¼ eβ0

1þeβ0

increases, where π0 is interpreted as the probability of tumor development at dose x = 0. The

dose-response curve increases when β1 > 0, and it decreases when β1 < 0. The rate of change in

the dose-response curve is determined by|β1|.

To express prior knowledge about β
!
, we need to find an appropriate prior density function f ðβ

!
Þ.

It is not simple because it is difficult to express one’s knowledge on the two-dimensional

parameters β
!
¼ ðβ0, β1Þ. For mathematical convenience, some practitioners use a flat prior den-

sity function f ðβ
!
Þ∝ 1. Another way of expressing a lack of prior knowledge about β

!
is as follows

f ðβ
!
Þ ∝

1

2πσ2
e�

β2
0
þβ2

1
2σ2 Iβ1>0 ð7Þ

with an arbitrarily large value of σ [6]. When a reliable source of prior information is available,

there is a practical method, which is known as the conditional mean prior [7], and it will be

discussed in a later section (see Section 4.2). In an experiment, the experimental doses

x
!
¼ ðx1,…, xnÞ are fixed, and we observe random binary outcomes y

!
¼ ðy1,…, ynÞ. Given y

!

(and fixed x
!
), the likelihood function is as follows

f ðy
! jβ

!
Þ ¼

Y

n

i¼1

eβ0þβ1xi

1þ eβ0þβ1xi

� �yi 1

1þ eβ0þβ1xi

� �1�yi

¼
eβ0s1þβ1s2

Yn

i¼1
ð1þ eβ0þβ1xiÞ

, ð8Þ
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where s1 ¼
Xn

i¼1
yi and s2 ¼

Xn

i¼1
xiyi. By incorporating both prior and data, the posterior

density function is as follows

f ðβ
!
jy
!
Þ ∝ f ðβ

!
Þ

eβ0s1þβ1s2

Yn

i¼1
1þ eβ0þβ1xi
� �

: ð9Þ

In an animal-based studies, one parameter of interest is the median effective dose, which is

denoted by ED50. It is the dose, which satisfies

πED50
¼

eβ0þβ1ED50

1þ eβ0þβ1ED50
¼ :5 , ð10Þ

and it can be shown that ED50 ¼ �β0
β1
by algebra. In the case of β0 = �2 and β1 = 5, we have

ED50 = .4 as describe in the figure with the dotted curve. In the case of β0 = �1 and β2 = 2, we

have ED50 = .5 as described in the figure with the solid curve.

In 1997, International Agency for Research on Cancer classified 2,3,7,8-Tetrachlorodibenzo-p-

dioxin (known as TCDD) as a carcinogen for humans based on various empirical evidence [8].

Prior and Posterior Distributions

θ

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Prior

Posterior

Figure 1. The prior f(π) in the dotted curve and the posterior f ðπjy
!
Þ in the solid curve.
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In 1978, Kociba et al. presented the data on male Sprague-Dawley rats at four experimental

doses 0, 1, 10 and 100 nanograms per kilogram per day (ng/kg/day) [9]. In the control dose

group, nine of 86 rats developed tumor (known as hepatocellular carcinoma); three of 50 rats

developed the tumor at dose 1; 18 of 50 rats developed the tumor at dose 10; and 34 of 48 rats

developed the tumor at dose 100 [6]. Without loss of generosity, we let xi = 0 for i = 1,…, 86; xi =

1 for i = 87,…136; xi = 10 for i = 137,…, 186; and xi = 100 for i = 187,…, 234. The given

information is sufficient to calculate s1 ¼
Xn

i¼1
yi ¼ 64 and s2 ¼

Xn

i¼1
xiyi ¼ 3583. By the use

of the flat prior f ðβ
!
Þ ∝ 1 with the restriction β1 > 0, given the observed sample of size n = 234,

we can generate random numbers of β
!
¼ ðβ0, β1Þ from the posterior density function

f ðβ
!
jy
!
Þ ∝

eβ0s1þβ1s2

Yn

i¼1
ð1þ eβ0þβ1xiÞ

Iβ1>0 , ð11Þ

where Iβ1>0 ¼ 1 if β1 > 0 and Iβ1>0 ¼ 0 otherwise. Using a method of Markov Chain Monte

Carlo (MCMC), we can approximate the posterior distribution of β
!
as shown in the left panel

of Figure 3. By transforming (β0, β1) to ED50 ¼ �β0
β1
, we can approximate the posterior

Dose−Response Curves (Logistic Link)

x

π

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2. Two dose-response curves using the logistic link.
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distribution of the median effective dose ED50 as shown in the right panel. The posterior mean

of ED50 is EðED50jy
!
Þ ¼ 64:9 with 95% credible interval (50.8, 82.5), the 2.5th percentile and the

97.5th percentile of the posterior distribution.

3. Bayesian model averaging

In a small sample, we borrow the strength of a parametric model to gain efficiency in param-

eter estimation. However, an assumed model may not describe the true dose-response rela-

tionship adequately. The impact of model misspecification is not negligible particularly in a

poor experimental design. In such a limited practical situation, Bayesian model averaging

(BMA) can be a useful method to account for model uncertainty. It is widely applied in

practice, and in this section, we focus on the application to cancer risk assessment for the

estimation of a benchmark dose [1, 6, 10, 11].

Let θ denote a parameter of interest. Suppose we have a set of K candidate models denoted by

M ¼ fM1,…,MKg. Let β
!

k denote the vector of regression parameters under modelMk for k =1,

…, K. Suppose θ is a function of β
!

k, and the interpretation of θ must be common across all

models. Let f ðβ
!

kjMkÞ and f ðy
!
jβ
!

k,MkÞ denote the prior density function and the likelihood

function, respectively, underMk. By the Law of Total Probability, the posterior density function

of θ is as follows

f ðθjy
! Þ ¼

XK

k¼1

f ðθjMk, y
!
Þ PðMkjy

!
Þ : ð12Þ

In Eq. (12), the posterior density function f ðθjMk, y
!
Þ depends on model Mk, and the posterior

model probability PðMkjy
!
Þ quantifies the plausibility of model Mk after observing data, which

is given by

Regression Parameters

β0

β
1

−3.0 −2.5 −2.0 −1.5 −1.0

0
.0
0

0
.0
2

0
.0
4

Median Effective Dose

ED50

0 20 40 60 80 100

Figure 3. Approximate posterior distributions of (β0, β1) and ED50 ¼ �β0
β1
.
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PðMkjy
! Þ ¼

f ðy
!
jMkÞPðMkÞXK

j¼1
f ðy

!
jMjÞ PðMjÞ

: ð13Þ

In Eq. (13), the prior model probability P(Mk) is determined before observing data such that

PðMkÞ > 0 for k ¼ 1;…, K and
XK

k¼1
PðMkÞ ¼ 1. The marginal likelihood underMk requires the

integration

f ðy
! jMkÞ ¼

ð
f ðy

!
jβ
!

k,MkÞ f ðβ
!

kjMkÞ dβ
!

k : ð14Þ

In the BMA method, all K models contribute to inference of θ through the averaged posterior

density function in Eq. (12), and the weight of contribution is determined by Bayes’ Theorem

in Eq. (13).

3.1. Example

This example is continued from the example in Section 2.2. Recall πx is interpreted as the

probability of a toxic event (tumor development) at dose x. In many cancer risk assessments,

a parameter of interest is θγ at a fixed risk level γ, which is defined as follows

γ ¼
πθγ

� π0

1� π0
ð15Þ

or equivalently πθγ
¼ π0 þ ð1� π0Þγ. In words, θγ is a dose corresponding to a fixed increase

in the risk level. In frequentist framework, Crump defined a benchmark dose as a lower

confidence limit for θγ [12]. In Bayesian framework, an analogous definition would be a lower

credible bound (i.e., a fixed low percentile of the posterior distribution of θγ). The definition is

widely applied to the public health protection [13].

In practice, γ is fixed between 0.01 and 0.1. Often, the estimation of θγ is highly sensitive to an

assumed dose-response model because we have a lack of information at low doses. Shao and

Small fixed γ = 0.1 and applied BMA with K = 2 models, logistic model and quantal-linear

model [6]. In the quantal-linear model, the probability of tumor development is modeled by

πx ¼ β0 þ ð1� β0Þð1� e�β1xÞ : ð16Þ

with the restrictions 0 < β0 < 1 and β1 > 0 under the monotonic assumption. The logistic model

was given in Eq. (6) of Section 2.2.

Let M1 denote the logistic model, and let M2 denote the quantal-linear model. Assume the

uniform prior model probabilities PðM1Þ ¼ PðM2Þ ¼ :5 and flat priors on the regression

parameters. By posterior sampling, we can approximate the posterior model probabilities

PðM1jy
!
Þ ¼ :049 and PðM2jy

!
Þ ¼ :951. Under M1, the posterior mean of θ0.1 is 20.95 with the

5th percentile 16.74. Under M2, the posterior mean is 8.25 with the 5th percentile 5.95. These
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results are very similar to the results reported by Shao and Small [6]. From these model-

specific statistics, we can calculate the model-averaged posterior mean

Eðθ0:1jy
! Þ ¼

X2

k¼1

Eðθ0:1jMk, y
!
Þ PðMkjy

!
Þ ¼ 20:95 ð:049Þ þ 8:25 ð:951Þ ¼ 8:87 : ð17Þ

However, we are not able to calculate the 5th percentile of the model-averaged posterior

distribution based on the given statistics. In fact, we need to approximate the posterior distri-

bution f ðθ0:1jy
!
Þ, which is a mixture of f ðθ0:1jM1, y

!
Þ and f ðθ0:1jM2, y

!
Þ weighted by

PðM1jy
!
Þ ¼ :049 and PðM2jy

!
Þ ¼ :951, respectively, as shown in Figure 4. In the figure, the left

panel shows an approximation of f ðθ0:1jM1, y
!
Þ, the middle panel shows an approximation of

f ðθ0:1jM2, y
!
Þ, and the right panel shows an approximation of the averaged posterior f ðθ0:1jy

!
Þ.

The averaged posterior density f ðθ0:1jy
!
Þ is bimodal, but it is very close to f ðθ0:1jM2, y

!
Þ because

the quantal-linear model M2 fits the data better than the logistic model M1 by a Bayes factor of

PðM2jy
!

Þ

PðM1jy
!

Þ
¼ :951

:049 ¼ 19:4. The 5th percentile of the model-averaged posterior distribution is approx-

imately 5.97, and it is a BMA-BMD based on the BMA method proposed by Raftery et al. [1]

and the BMD estimation method suggested by Crump [12].

4. Application of Bayesian decision theory to Phase I trials

In a Phase I cancer trial, the main objectives are to study the safety of a new chemotherapy

and to determine an appropriate dose for future patients. Since trial participants are cancer

patients, dose allocations require ethical considerations. Whitehead and Williams discussed

several Bayesian approaches to dose allocations [14]. One decision rule is devised from the

perspective of trial participants (individual-level ethics), and another decision rule is devised

from the perspective of future patients (population-level ethics). However, a decision rule,

which is devised from the population-level ethics, is not widely accepted in current prac-

tice [15]. Instead, there are some proposed decision rules, which compromise between the

individual- and population-level perspectives [3, 16]. In this section, we discuss the two

Logistic Model

θ0.1

0 10 20 30 40 50

Quantal−Linear Model

θ0.1

0 10 20 30 40 50

Bayesian Model Averaging

θ0.1

0 10 20 30 40 50

Figure 4. Posterior distributions of θ0.1 from the logistic model (left panel), the quantal-linear model (middle panel), and

the Bayesian model averaging (right panel).
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conflicting perspectives in Phase I clinical trials and a compromising method based on

Bayesian decision theory.

Assume a dose-response relationship follows a logistic model

πx ¼
eβ0þβ1x

1þ eβ0þβ1x
, ð18Þ

where x is a dose in the logarithmic scale (base e) and πx is the probability of observing an

adverse event due to the toxicity of a new chemotherapy at dose x. The logarithmic transforma-

tion on the dose is to satisfy πx ! 0 as x ! 0. Let x
!

n ¼ ðx1,…, xnÞ denote a series of decisions for

n patients (i.e., allocated doses) and y
!

n ¼ ðy1,…, ynÞ denote a series of observed responses,

where yi = 1 indicates an adverse event and yi = 0 otherwise. Let Lðβ
!
, xnþ1Þ denote a loss by

allocating the next patient at xn+1. Based on Bayesian Decision Theory, we want to find xn+1which

minimizes the posterior mean of Lðβ
!
, xnþ1Þ. If we let A denote an action space, a set of all

possible dose allocations for the next patients, the decision rule can be written as follows:

x�nþ1 ¼ argminxnþ1 ∈A
E
�

Lðβ
!
, xnþ1Þ j y

!

n

�

: ð19Þ

A choice of L has a substantial impact on the operating characteristics of a Phase I trial including

(i) the degree of under- and over-dosing in trial, (ii) the observed number of adverse events at the

end of a trial, and (iii) the quality of estimation at the end of a trial.

4.1. Parameter of interest: maximum tolerable dose

Let N denote an available sample size for a Phase I clinical trial. A typical sample size is N ≤ 30.

Let γ denote a target risk level, the probability of an adverse event. In a cancer study, a typical

target risk level γ is fixed between .15 and .35 depending on the severity of an adverse event.

Then, the dose corresponding to γ is called a maximum tolerable dose (MTD) at level γ, and

we denote it by θγ in the logarithmic scale. Under the logistic model in Eq. (18), it is defined as

follows

θγ ¼

log
γ

1� γ

� �

� β0

β1
:

ð20Þ

At the end of a trial (observing N responses), we estimate θγ by the posterior mean

θ̂γ,N ¼ Eðθγjy
!

NÞ for future patients.

4.2. Prior density function: conditional mean priors

A consequence of sequential decisions heavily depends on a prior density function f ðβ
!
Þ. In

particular, the first decision x1 must be made based on prior knowledge only because empirical

evidence is not observed yet. In addition, the later decisions x2, x3,… and the final inference of
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θγ are substantially affected by f ðβ
!
Þ as a Phase I study is typically based on a small sample. In

this regard, we want to carefully utilize researchers’ prior knowledge about β
!
, but it may be

difficult to express their prior knowledge directly through f ðβ
!
Þ. In this section, we discuss a

method of eliciting prior knowledge, which is more tractable than prior elicitation directly on β
!
.

Suppose a researcher selects two arbitrarily doses, say x�1 < x0. Then, the researcher may

express their prior knowledge by two independent beta distributions

πxi ¼
eβ0þβ1xi

1þ eβ0þβ1xi
� Betaðai, biÞ , j ¼ �1; 0:

ð21Þ

Using the Jacobian transformation from ðπx�1
,πx0Þ to β

!
¼ ðβ0, β1Þ, it can be shown that the

prior density function of β
!
is given by

f ðβ
!
Þ ∝ ðx0 � x�1Þ

Y

0

i¼�1

eβ0þβ1xi

1þ eβ0þβ1xi

� �ai 1

1þ eβ0þβ1xi

� �bi

: ð22Þ

It is known as conditional mean priors under the logistic model [7].

4.3. Posterior density function: conjugacy

For notational convenience, we let yi = ai and ni = ai + bi for i = �1,0. By conjugacy, the posterior

density function of β
!
can be concisely written as follows

f ðβ
!
jy
!

nÞ ∝
eβ0s1þβ1s2

Yn

i¼�1
ð1þ eβ0þβ1xiÞ

, ð23Þ

where s1 ¼
Xn

i¼�1
yi and s2 ¼

Xn

i¼�1
xi yi. After observing n responses, the decision rule for

the next patient is as follows

x�nþ1 ¼ argminxnþ1 ∈A

ð

Lðβ
!
, xnþ1Þ f ðβ

!
jy
!

nÞ dβ
!

: ð24Þ

4.4. Loss functions for individual- and population-level ethics

A loss function, which reflects the perspective of individual-level ethics, is as follows:

LIðβ
!
, xnþ1Þ ¼ ðxnþ1 � θγÞ

2
: ð25Þ

This loss function is analogous to the original continual reassessment method proposed by

O’Quigley et al. [17]. The square error loss attempts to treat a trial participant at θγ, and the

expected square error loss is minimized by the posterior mean of θγ.
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From the perspective of population-level ethics, Whitehead and Brunier proposed a loss

function, which is equal to the asymptotic variance of the maximum likelihood estimator for

θγ [18]. The Fisher expected information matrix with a sample of size n + 1 is given by

Iðβ
!
Þ ¼

Xnþ1

i¼1
τi

Xnþ1

i¼1
τixi

Xnþ1

i¼1
τixi

Xnþ1

i¼1
τix

2
i

0

@

1

A, ð26Þ

where τi ¼ πxið1� πxiÞ. Then, the loss function (the asymptotic variance) is given by

LPðβ
!
, xnþ1Þ ¼ ∇h

!
ðβ
!
Þ

h iT

Iðβ
!
Þ

h i�1

∇h
!
ðβ
!
Þ

h i

, ð27Þ

where

∇h
!
ðβ
!
Þ ¼

∂θγ

∂β0
∂θγ

∂β1

0

B

B

@

1

C

C

A

¼ �
1

β1

1
θγ

� �

ð28Þ

is the gradient vector, the partial derivatives of θγ with respect to β0 and β1. Kim and Gillen

decomposed the population-level loss function as follows

LPðβ
!
, xnþ1Þ ¼

τnþ1ðxnþ1 � θγÞ
2 þ s

ð0Þ
n ðθγ � μnÞ

2 þ σ2n

h i

s
ð0Þ
n s

ð2Þ
n � s

ð1Þ
n s

ð1Þ
n

h i

þ s
ð0Þ
n τnþ1 ðxnþ1 � μnÞ

2 þ σ2n

h i , ð29Þ

where

s
ðmÞ
n ¼

X

n

i¼1

τix
m
i , m ¼ 0; 1; 2,

μn ¼
X

n

i¼1

wixi,

σ2n ¼
X

n

i¼1

wix
2
i �

X

n

i¼1

wixi

 !2

ð30Þ

with the weight defined as wi ¼
τi

Xn

i¼1
τj
[3]. Eq. (29) has the following important remarks. In

fact, LPðβ
!
, xnþ1Þ considers individual-level ethics by including LIðβ

!
, xnþ1Þ ¼ ðxnþ1 � θγÞ

2 in the

numerator. By including ðxnþ1 � μnÞ
2 in the denominator, where μn ¼

Xn

i¼1
wixi, the

population-level loss function reduces a loss by allocating the next patient further away from

the weighted average of previously allocated doses (i.e., devised from information gain). In

long run, LPðβ
!
, xnþ1Þ is devised from a compromise between individual- and population-level
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ethics, but the compromising process is rather too slow to be implemented in a small-sample

Phase I clinical trial [3].

4.5. Loss function for compromising the two perspectives

Kim and Gillen proposed to accelerate the compromising process by modifying LPðβ
!
, xnþ1Þ of

Eq. (29) as follows

LB,λðβ
!
, xnþ1Þ ¼

anðλÞ τnþ1ðxnþ1 � θγÞ
2 þ s

ð0Þ
n ðθγ � μnÞ

2 þ σ2n

h i

s
ð0Þ
n s

ð2Þ
n � s

ð1Þ
n

h i

þ s
ð0Þ
n τnþ1 ðxnþ1 � μnÞ

2 þ σ2n

h i , ð31Þ

where

anðλÞ ¼ 1þ n
N

� �

λ 1þ

Xn

i¼1
yi

Nγ

� �

ð32Þ

is an accelerating factor [3]. It has two implications. First, the compromising process is acceler-

ated toward the individual-level ethics as the trial proceeds (i.e., n increases). Second, the

compromising process toward the individual-level ethics is accelerated at a faster rate when

an adverse event is observed (i.e.,
Xn

i¼1
yi increases). The tuning parameter λ controls the rate

of acceleration. It imposes more emphasis on population-level ethics as λ ! 0 and more

emphasis on individual-level ethics as λ ! ∞. The choice of λ shall depend on the severity

level of an adverse event.

4.6. Simulation

To study the operating characteristics of LB,λ with respect to λ, we assume the logistic model

with β0 = �3 and β1 = .8 as a true dose-response relationship as shown in Figure 5 in the left

panel. The target risk level is fixed at γ = .2, so the true MTD is given by θ.2 = 2.02 in the

logarithmic scale. We consider three different priors based on the conditional mean priors

given in Eq. (22). For simplicity, we set a�1 = 1, b�1 = 3, a0 = 3 and b0 = 1 for all three priors.

Then, we let x�1 ¼ �4 and x0 ¼ 4 for Prior 1; x�1 ¼ 0 and x0 ¼ 8 for Prior 2; and x�1 ¼ 4 and

x0 ¼ 12 for Prior 3. Figure 5 in the right panel shows an approximated f(θ.2) for each prior.

Prior 1 significantly underestimates the true θ
:2 ¼ 2:02 with prior mean Eðθ

:2Þ ¼ �1:70, Prior 3

overestimates the truth with Eðθ
:2Þ ¼ 5:38, and Prior 2 has a prior estimate relatively close to

the truth with Eðθ
:2Þ ¼ 1:40.

Let N = 20 be a fixed sample size. Let Yi = 1 denote an adverse event observed from the ith

patient (Yi = 0 otherwise), so
XN

i¼1
Yi denotes the total number of adverse events observed at

the end of a trial. The sum
Xn

i¼1
Yi is random from a trial to another trial, and we want

Xn

i¼1
Yi

to behave like Binomialð20; :2Þ which is the case when we treat N = 20 to the true MTD θ.2.

Figure 6 shows three simulated trials under the loss function LB,λ with λ = 0,1,5. When λ = 0,
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the up-and-down scheme has a high degree of fluctuation in order to maximize information

about θ.2. When λ = 1, the up-and-down scheme is stabilized after the first few adverse events,

and the stabilization occurs quickly when λ = 5 to treat trial participants near an estimated θ.2.

Let θ̂
:2 ¼ Eðθ

:2jy
!

NÞ, the posterior estimate of θ.2 at the end of a trial, so π
θ̂:2

implies the true

probability of an adverse event at the estimated MTD. We focus on the following criteria: (i)

Eðπ
θ̂:2

Þwhich we desire to be close to γ ¼ :2 for future patients, (ii) Vðπ
θ̂:2

Þwhich we desire to

be as low as possible for future patients, (iii) E½ðπ
θ̂:2

� :2Þ2� which we desire to be as low as

possible for future patients, (iv) Eð
X20

i¼1
YiÞ which we desire to be close to Nγ ¼ 4 for trial

participants and (v) Pð3 ≤
X20

i¼1
Yi ≤ 5Þ which we desire to be close to one for trial participants.
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Figure 5. The true dose-response relationship πx ¼ eβ0þβ1x

1þeβ0þβ1 x with β0 = �3 and β1 = .8 (where x is the dose in the logarithmic

scale) in the simulation (left panel) and the three prior distributions of θ.2 approximated by kernel density (right panel).
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Figure 6. Three simulated trials using the loss function LB,λ with λ ¼ 0 (left), λ ¼ 1 (middle) and λ ¼ 5 (right) with a

sample of size N = 20 and assumed parameter values β0 ¼ �3, β1 ¼ 8 and θ
:2 ¼ 2:02.
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Table 1 summarizes simulation results of 10,000 replicates for each prior. For all three priors,

we observe similar tendencies. First, Eðπ
θ̂ :2

Þ gets closer to θ = .2 as λ increases. Second,

Vðπ
θ̂ :2

Þ decreases as λ decreases to zero. The average square distance between π
θ̂:2

and

γ ¼ :2 measures a balance between jEðπ
θ̂:2

Þ � :2 j and Vðπ
θ̂ :2

Þ, and the superiority depends

on priors. Lastly, as λ ! 0, we have larger Pð3 ≤
X20

i¼1
Yi ≤ 5Þ and more robust Eð

X20

i¼1
YiÞ to

prior elicitation.

In summary, when we emphasize more on population-level ethics, we have a smaller variance

in the estimation for future patients (with a greater absolute bias, potentially due to Jensen’s

Inequality), and the distribution of
X

n

i¼1
Yi becomes more robust to prior elicitations. When we

emphasize more on individual-level ethics, we have a larger variance in the estimation, and the

distribution of
X

n

i¼1
Yi becomes more sensitive to prior elicitations.

5. Consensus prior

In Bayesian inference, researchers are able to utilize information, which is independent of

observed data. It allows researchers to incorporate any form of information, such as one’s experi-

ence and existing literature, which may be particularly useful in a small-sample study. On the

Prior λ Eðπ
θ̂ :2

Þ Vðπ
θ̂ :2

Þ E½ðπ
θ̂ :2

� :2Þ2� Eð
X20

i¼1
Y iÞ Pð3 ≤

X20

i¼1
Y i ≤ 5Þ

1 0 0.0964 0.0019 0.0126 2.4353 0.4318

.5 0.1034 0.0024 0.0118 2.0997 0.2298

1 0.1082 0.0028 0.0113 1.8969 0.1714

2 0.1100 0.0031 0.0112 1.6929 0.1211

5 0.1157 0.0035 0.0106 1.3128 0.0596

2 0 0.1665 0.0054 0.0065 4.1217 0.9889

.5 0.1705 0.0056 0.0065 3.9598 0.9877

1 0.1727 0.0060 0.0068 3.9025 0.9670

2 0.1751 0.0066 0.0072 3.8707 0.9291

5 0.1763 0.0067 0.0073 3.8442 0.9068

3 0 0.2743 0.0048 0.0103 6.1875 0.1600

.5 0.2673 0.0048 0.0093 6.3954 0.1430

1 0.2606 0.0046 0.0083 6.6194 0.1165

2 0.2562 0.0045 0.0077 6.8035 0.1020

5 0.2499 0.0044 0.0068 7.0274 0.0760

Table 1. Simulation results of 10,000 replicates for λ = 0, .5, 1, 2, 5 and each prior.
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other hand, we concern subjectivity and prior sensitivity in sparse data. Furthermore, it is possible

to have disagreement among multiple researchers’ prior elicitations about a parameter θ.

Suppose there are K researchers with their own prior density functions, say f ðθjQkÞ for

k ¼ 1;…, K, and they have the same likelihood function f ðy
!
jθÞ. Each prior elicitation leads to

a unique Bayes estimator

θ̂ k
¼ Eðθjy

!
, QkÞ ¼

ð
θ f ðθjy

!
, QkÞ dθ , ð33Þ

where f ðθjy
!
, QkÞ ∝ f ðy

!
jθÞ f ðθjQkÞ is the posterior density function of θ given data y

!
and the

kth prior elicitation Qk. For posterior estimation, one reasonable approach to compromise is a

weighted average
XK

k¼1
wkθ̂k, where wk > 0 for k = 1,…,K and

XK

k¼1
wk ¼ 1. In this section, we

discuss two different weighting methods. The first method is to fix wk before observing data

(referred to as prior weighting scheme). The second method is to determine wkðy
!
Þ after

observing data y
!

so that wkðy
!
Þ increases when the kth prior elicitation Qk is better supported

by the observed data y
!
(referred to as posterior weighting scheme) [5].

For a prior weighting scheme, we denote wk ¼ PðQkÞ which quantifies the credibility of the kth

prior elicitation. For a posterior weighting scheme, we consider

wkðy
! Þ ¼ PðQkjy

!
Þ ¼

f ðy
!
jQkÞPðQkÞXK

j¼1
f ðy

!
jQjÞ PðQjÞ

¼
wk f ðy

!
jQkÞXK

j¼1
wj f ðy

!
jQjÞ

, ð34Þ

where f ðy
!
jQkÞ ¼

ð
f ðy

!
jθÞ f ðθjQkÞ dθ is the marginal likelihood from the kth prior elicitation.

This formulation is similar to the BMA method discussed in Section 3. It can be shown thatXK

k¼1
wkðy

!
Þ θ̂k is the Bayes estimator (the posterior mean of θ) when a consensus prior

f ðθÞ ¼
XK

k¼1
wk f ðθjQkÞ is used with wk ¼ PðQkÞ [5].

Samaniego discussed self-consistency when compromised inference is used through the prior

weighting scheme
XK

k¼1
wkθ̂k [4]. Let θ denote a parameter of interest and

EðθÞ ¼

ð
θ f ðθÞ dθ ¼ θ

� ð35Þ

be the prior expectation, the mean of the prior density function f ðθÞ. Let ~θ denote a sufficient

statistic, which serves as an unbiased estimator for θ. When we satisfy Eðθj~θ ¼ θ
�Þ ¼ θ

�, it is

called self-consistency [4].

Self-consistency can be achieved under simple models. For example, let Y
!
¼ ðY1,…, YnÞ be a

random sample, where Yi � BernoulliðθÞ, and assume θ � Betaða, bÞ for prior. It can be shown
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that the maximum likelihood estimator ~θ ¼ 1
n

Xn

i¼1
Yi is a sufficient statistic and an unbiased

estimator for θ. The posterior mean is a weighted average between θ
* and ~θ as follows

Eðθj~θ ¼ θ
�Þ ¼ cθ� þ ð1� cÞ ~θ , ð36Þ

where c ¼ aþb
aþbþn. If we observe ~θ ¼ θ

�, we can achieve the self-consistency because

Eðθjθ̂ ¼ θ
�Þ ¼ θ

�. In words, when prior estimate and maximum likelihood estimate are iden-

tical, the posterior estimate must be consistent with the prior estimate and the maximum

likelihood estimate. The self-consistency can be also achieved in the prior weighting scheme

under certain conditions as illustrated in the following example.

5.1. Binomial experiment

Let Yi � BernoulliðπÞ for i ¼ 1;…, n and assume Y1,…, Yn are independent. Suppose the kth

researcher specifies the prior distribution πjQk � Betaðak, bkÞ for k ¼ 1;…, K. For the prior

weighting scheme, let wk ¼ PðQkÞ, the prior probability for the kth prior elicitation (fixed before

observing data). Since EðπjQkÞ ¼
ak

akþbk
and the expectation E (�) is a linear operator, the average

of “consensus prior” is

EðπÞ ¼

ð1

0

π f ðπÞ dπ ¼

ð1

0

π

�

X

K

k¼1

f ðπjQkÞ PðQkÞ
�

dπ ¼
X

K

k¼1

wk

�

ð1

0

π f ðπjQkÞ dπ
�

¼
X

K

k¼1

wk EðπjQkÞ :

ð37Þ

Let EðπÞ ¼ π
� and suppose the K researchers observed the consistent result ~π ¼ 1

n

Xn

i¼1
Yi ¼ π

�.

The individual-specific Bayes estimator is as follows

π̂k ¼ Eðπj~π ¼ π
�, QkÞ ¼ ck EðπjQkÞ þ ð1� ckÞ π

� , ð38Þ

for the kth researcher, where ck ¼ akþbk
akþbkþn. The compromised Bayes estimator is as follows

Eðπj~π ¼ π
�Þ ¼

X

K

k¼1

wk π̂k ¼
X

K

k¼1

wk ck EðπjQkÞ þ ð1� ckÞπ
�½ � : ð39Þ

If we allow individual-specific prior elicitation ak and bk with the restriction ak + bk = m for all K

researchers (i.e., the same strength of prior elicitation), the value ck ¼ m
mþn is constant over all

researcher. By letting the constant ck = c,

Eðπj~π ¼ π
�Þ ¼ c

X

K

k¼1

wk EðπjQkÞ

 !

þ ð1� cÞπ�
X

K

k¼1

wk

 !

¼ c EðπÞ þ ð1� cÞπ� ¼ π
� , ð40Þ

so the self-consistency is satisfied.
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For the posterior weighting scheme given data y
!
¼ ðy1,…, ynÞ, the marginal likelihood from

the kth prior elicitation is as follows

f ðy
! jQkÞ ¼

ð1
0

f ðy
!
jπÞ f ðπjQkÞ dπ ¼

Γðak þ bkÞ

ΓðakÞΓðbkÞ

Γðak þ sÞΓðbk þ n� sÞ

Γðak þ bk þ nÞ
, ð41Þ

where s ¼
Xn

i¼1
yi is an observed sufficient statistic. Then, the posterior weighting scheme

becomes
XK

k¼1
wkðy

!
Þ π̂k with

wkðy
!
Þ ¼

wk f ðy
!
jQkÞXK

j¼1
wj f ðy

!
jQjÞ

,

π̂k ¼
ak þ s

ak þ bk þ n
:

ð42Þ

If we desire an equal strength from each researcher’s prior elicitation, we may fix ak þ bk ¼ m

and wk ¼ 1
K. In the posterior weighting scheme, it is difficult to achieve the self-consistency.

Whether self-consistency is satisfied, the practical concern is the quality of estimation such as

bias, variance and mean square error. Assuming K = 2 researchers have disagreeing prior

knowledge and a sample of size n = 10, let us consider three cases. Suppose two researchers

express relatively mild disagreement as ða1, b1Þ ¼ ð1; 3Þ and ða2, b2Þ ¼ ð3; 1Þ in Case 1, relatively

strong disagreement as ða1, b1Þ ¼ ð2; 6Þ and ða2, b2Þ ¼ ð6; 2Þ in Case 2, and even stronger dis-

agreement as ða1, b1Þ ¼ ð3; 9Þ and ða2, b2Þ ¼ ð9; 3Þ in Case 3. For each case, Figure 7 provides the

relative bias, variance and mean square error (MSE) for comparing the posterior weighting

scheme
X3

k¼1
wkðy

!
Þ π̂k to the prior weighting scheme

X3

k¼1
wk π̂k. When a relative MSE is

smaller than one, it implies a smaller MSE for the posterior weighting scheme. As the true

value of π is well between the two prior guesses EðπjQ1Þ ¼ :25 and EðπjQ2Þ ¼ :75, the poste-

rior weighting scheme shows a greater MSE due to greater variance. When the true value of π

deviates away from either prior guess, the posterior weighting schemes show a smaller MSE

due to smaller bias. The tendency is stronger when the two disagreeing prior elicitations are

stronger (i.e., stronger prior disagreement). The bottom line is a clear bias-variance tradeoff
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Figure 7. Comparing prior and posterior weighting schemes for different degrees of disagreements.
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when we compare the two weighting schemes.
X3

k¼1
wkðy

!
Þ π̂k is able to reduce bias when there

is strong discrepancy between “consensus prior” and data, but it has larger variance than
X3

k¼1
wk π̂k because wkðy

!
Þ depends on random data.

5.2. Applications to Phase I trials under logistic regression model

In this section, we apply the prior weighting scheme and the posterior weighting scheme to

Phase I clinical trials under the logistic regression model. We consider the three priors consid-

ered in Section 4.6. We denote Prior 1, 2 and 3 by Q1, Q2 and Q3, respectively. The three priors

had the same hyper-parameters a�1;k ¼ 1, b�1;k ¼ 3, a0;k ¼ 3, b0;k ¼ 1, but they were different by

x�1;k ¼ �4; 0; 4 and x0,k ¼ 4; 8; 12 for k ¼ 1; 2; 3, respectively. By the use of the conditional mean

prior in Eq. (22), the prior density function of β
!
for prior Qk is given by

f ðβ
!
jQkÞ ∝ ðx0;k � x�1;kÞ

Y

0

i¼�1

eβ0þβ1xi

1þ eβ0þβ1xi

� �ai,k 1

1þ eβ0þβ1xi

� �bi,k

: ð43Þ

The prior means were Eðθ:2jQ1Þ ¼ �1:70, Eðθ:2jQ2Þ ¼ 1:40 and Eðθ:2jQ3Þ ¼ 5:38 for Priors 1, 2

and 3, respectively.

For simulation study, we consider three simulation scenarios with sample size N = 20. In

Scenario 1, we assume β0 = �5 and β1 = .6, so the true MTD is θ:2 ¼ 6:02, which deviates

significantly from all of the three prior means. In Scenario 2, we assume β0 = �3 and β1 = .8 as

in Section 4.6, so θ:2 ¼ 2:02 is well surrounded by the three prior means. In Scenario 3, we

assume β0 = �1 and β1 = 1.2, so θ:2 ¼ �:32 is close to the most conservative prior mean

Eðθ:2jQ1Þ ¼ �1:70. We consider the loss function LIðβ
!
, xnþ1Þ ¼ ðxnþ1 � θ:2Þ

2 discussed in Sec-

tion 4.4, which focuses on individual-level ethics. We use the uniform prior probabilities

wk ¼ PðQkÞ ¼ 1=3 for k ¼ 1; 2; 3 for implementing both prior and posterior weighting scheme.

Table 2 provides the simulation results of 10,000 replicates for each scenario under the prior

weighting scheme and under the posterior weighting scheme. Since the posterior weighting

scheme adaptively updates wkðy
!
Þ based on empirical evidence, it can reduce bias, but it has

greater variance in the estimation of θ2. As a consequence, when the true MTD was close to one

extreme prior estimate (Scenarios 1 and 3), the use of the posterior weighting scheme yields a

smaller E ðπ
θ̂ :2

� :2Þ2
h i

, Eð
X20

i¼1
YiÞ closer to Nγ ¼ 4, and Pð3 ≤

X20

i¼1
Yi ≤ 5Þ closer to one when

compared to the use of the prior weighting scheme. In Scenario 3, the average number of adverse

events was 4.6 for the posterior weighting scheme, but it was as high as 7.1 in the prior weighting

scheme. On the other hand, when the true MTD was well surrounded by the three prior

estimates (Scenario 2), the use of the prior weighting scheme yielded more plausible results.

The simulation results are analogous to the simpler model in Section 5.1. When the true

parameter is not well surrounded by prior guesses, the posterior weighting scheme is prefer-

able with respect to mean square error due to smaller bias. When the true parameter is well

surrounded by prior guesses, the prior weighting scheme is beneficial with respect to mean

square error due to smaller variance.
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As a final comment, we shall be careful about the strength of individual prior elicitations when

we implement the posterior weighting scheme in Phase I clinical trials. The strength of indi-

vidual prior elicitations depends on (i) the hyper-parameters ai,k and bi,k, (ii) the prior weight

wk ¼ PðQkÞ as well as (iii) the distance between the two arbitrarily chosen doses x0;k � x1;k. It

can be seen through the expression

f ðβ
!
Þ ¼

X

K

k¼1

f ðβ
!
jQkÞPðQkÞ ∝

X

K

k¼1

wk ðx0;k � x�1;kÞ
Y

0

i¼�1

eβ0þβ1xi

1þ eβ0þβ1xi

� �ai,k 1

1þ eβ0þβ1xi

� �bi,k

: ð44Þ

When researchers determine consensus prior elicitations before initiating a trial, the multiplicative

termwk ðx0;k � x�1;kÞ shall be carefully considered togetherwith thehyper-parameters ai,k and bi,k [5].

6. Concluding remarks

In this chapter, we have discussed Bayesian inference with averaging, balancing, and compromis-

ing in sparse data. In the cancer risk assessment, we have observed that low-dose inference can be

very sensitive to an assumed parametric model (Section 3.1). In this case, the Bayesian model

averaging can be a useful method. It provides robustness by using multiple models and posterior

model probabilities to account for model uncertainty. In the application of Bayesian decision

theory to Phase I clinical trials, we have observed that the sequential sampling scheme heavily

depends on a loss function. A loss function, which is devised from individual-level ethics, focuses

on the benefit of trial participants, and a loss function, which is devised from population-level

ethics, focuses on the benefit of future patients. It is possible to balance between the two

conflicting perspectives, and we can adjust a focusing point by the tuning parameter (Sections

4.5 and 4.6). Finally, the use of a weighted posterior estimate can be a compromising method

when two or more researchers have prior disagreement. We have compared the prior and

posterior weighting schemes in a small-sample binomial problem (Section 5.1) and in a small-

sample Phase I clinical trial (Section 5.2). The prior weighting scheme (data-independent weights)

outperforms when prior estimates surround the truth, and the posterior weighting scheme (data-

dependent weights) outperforms when the truth is not well surrounded by prior estimates. One

method does not outperform the other method for all parameter values, so it is important to be

aware of their bias-variance tradeoff.

Scenario Method Eðπ
θ̂ :2

Þ Vðπ
θ̂ :2

Þ E½ðπ
θ̂ :2

� :2Þ2� Eð
X20

i¼1
Y iÞ Pð3 ≤

X20

i¼1
Y i ≤ 5Þ

1 Prior weighting 0.0967 0.0014 0.0121 1.1090 0.0398

Posterior weighting 0.1853 0.0073 0.0075 2.7304 0.5900

2 Prior weighting 0.2018 0.0059 0.0059 3.8432 0.9042

Posterior weighting 0.2048 0.0110 0.0110 4.2848 0.8920

3 Prior weighting 0.2929 0.0071 0.0157 7.1090 0.0568

Posterior weighting 0.1951 0.0133 0.0133 4.6036 0.8646

Table 2. Simulation results of 10,000 replicates for the prior and posterior weighting schemes.
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