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1. Introduction

An emulsion is a dispersion of droplets of one liquid in a second immiscible liquid. The droplets 

are termed the dispersed phase, while the second liquid is the continuous phase. To stabilize an 

emulsion, a surfactant or co‐surfactant is added such that the droplets remain dispersed and do 

not separate out as two phases. Depending on the phase, there are two types of microemulsions: 

water‐in‐oil (w/o) and oil‐in‐water (o/w). As the name implies, water is the dispersed phase in 

w/o emulsions, whereas oil is the dispersed phase in o/w emulsions [1, 2]. One of the main 

differences between macroemulsions and microemulsions is that the size of the droplets of the 
dispersed phase of microemulsions is between 5 and 100 nm, while that of macroemulsions is 
>100 nm. Microemulsions are thermodynamically stable systems, whereas macroemulsions are 
kinetically stable systems [2]. Also, microemulsions are translucent and of low viscosity, while 

macroemulsions are opaque and of relatively high viscosity. Due to these unique properties of 

microemulsions, these systems have become indispensible in numerous important fields.

2. Characterization

Microemulsions, at the molecular scale, are a finely balanced system where the energetics of 
entropy and surface energies are opposing each other. The entropy of the system is increased 

by having a higher number of droplets dispersed, while the surface areas, and correspond‐

ingly surface energies are increased with more droplets. Slight changes in the chemical com‐

position or conditions can shift this balance and may, therefore, lead to dramatic changes in 

the behavior of the system.

The expansion and integration of microemulsions into various applications (see Section 3) 

have imbued microemulsions with industrial and commercial importance. To optimize for‐

mulations and predictive models, adequate characterization is essential. Because microemul‐
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sions are essentially a subset of the broader class of emulsions, techniques which pertain to 

general emulsions also play a part in this regime. However, techniques which are specific to 
microemulsions have also emerged.

2.1. Phase behavior

Characterization of microemulsions necessarily begins with the elucidation of the phase 

behavior, where, in the most simple form, oil, water, and surfactant are mixed in different 
molar ratios, and the formed phases are tracked [3]. A generic phase diagram resulting from 

such analysis is shown in Figure 1. In several regions of the phase diagram, single phases 

exist in one end where spherical oil droplets are dispersed in water (o/w emulsions) and the 

other where spherical water droplets are dispersed in oil (w/o emulsions). Between these two 

extremes, depending on the ratio of components, the droplet shapes may change from spherical 

to cylindrical, to worm‐like micelle, to bicontinuous [4]. Traditionally methods of microscopy, 

rheology, conductivity, and nephelometry have been used in the study of microemulsions, 

while instrumental techniques such as dynamic light scattering, neutron scattering, X‐ray scat‐
tering, electron micrography, nuclear magnetic resonance, electron paramagnetic resonance, 

and their derivatives are widely used at present. Although detailed treatise of these myriad 

techniques is outside of the scope of this chapter; here, we briefly discuss the physical proper‐

ties important to characterize microemulsions, and the techniques able to quantify them.

The phase behavior of the system can be characterized by several techniques. Other than 

using visual inspection, optical microscopy using polarized light is commonly used [5] to 

detect the presence of a singular phase, or the presence of separate phases. Simple electrical 

conductivity (EC) measurements can be used to identify whether the oil/water or both phases 

are continuous [5, 6]. The EC of a w/o emulsion increases with the addition of water. After the 

maximum amount of water that water in oil emulsion can hold is exceeded, the emulsion col‐

Figure 1. Example of a ternary phase diagram of oil/water/surfactant system. Here, the formation of oil‐in‐water (o/w) 

emulsions or water‐in‐oil (w/o) emulsions is determined by the molar ratio of the components. Adapted from Archarya 

et al. [3].
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lapses and the EC decreases. On the other hand, for o/w emulsions, the EC is steady until the 

concentration of oil droplets increases and an effectively infinite conductive pathway arises 
leading to dramatic increases in measurements [6]. Microscopic techniques such as scanning 
electron microscopy (SEM) or transmission electron microscopy (TEM) have adequate resolu‐

tion to image individual droplets or the morphology of a larger region. However, dehydration 

required for conventional sample preparation can severely affect the native structure [3, 7, 8].

2.2. Droplet size

Apart from the existence of the unitary phase, the size of droplets of the dispersed phase of a 

microemulsion is a primary characteristic, since it determines much of the physical behavior and 

functionality. Conventionally, the term, ‘microemulsion’ refers to a thermodynamically stable, 

isotropic emulsion with a droplet size of 1–100 nm. For macroemulsions, both sound (acoustics, 
electroacoustics) and visible light (turbidimetry, nephelometry, laser diffraction) can be used to 
characterize the droplet size. However, for emulsions of which the droplet size is less than 1 μ, 
the intensity of acoustic attenuation and diffuse light scattering decreases with droplet size. This 
leads to a useful property that microemulsions are not only transparent but also requires differ‐

ent techniques to characterize them.

In the domain of microemulsions, size (and shape) dependant scattering of visible light, X‐
Rays, electrons, and neutrons can be interrogated to yield useful information. Dynamic light 

scattering (DLS or PCS) is a widely used for characterizing particle size and shape anisotropy 
[3]. Here, the measurement is the fluctuation of scattered laser light intensity, which is related 
to the Brownian motion of particles (droplets) in the medium. Fitting the autocorrelation of 
the scattered light intensity to models of particles in specific media can lead to determining 
the diffusion constant, particle size distribution, and in some cases, shape anisotropy [9–11].

In the case of X‐rays, because oil and water scatter X‐rays to different extents, small angle 
X‐ray scattering (SAXS) can also be used to obtain the size of the dispersed phase [3, 12]. 

Neutrons can also be used as the primary beam, and the variation in scattering intensity by 
different nuclei gives rise to small‐angle neutron scattering (SANS). SANS data give access to 
both the droplet size and dynamic properties; however, the relative cost and data collection 

time limit the applicability of this technique [3].

Apart from scattering techniques, nuclear magnetic resonance (NMR) and related techniques 
are widely used in the characterization of microemulsions [3, 13]. Here, both relaxation [14] 

and self‐diffusion experiments [15] are used to probe the emulsion systems [13, 16].

2.3. Droplet size distribution

It follows that most techniques which give a measure of the droplet size of microemulsions 

will also have access to the size distribution or polydispersity. Scattering techniques such as 
DLS, time‐averaged light scattering, and SANS can characterize size distribution. However, 
due to the confluence of particle size variation and shape anisotropy, analyzing, and deconvo‐

luting, these data may not always be straightforward. SANS is particularly versatile and can 

characterize the structure, and interactions of colloidal systems with a wide range of interac‐

tions as well as differences in orientation and droplets with non‐spherical shapes [17].
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2.4. Diffusion constant

Similarly, because most techniques use the motion of aggregates (droplets) to elucidate the 

sizes of dispersed droplets, light scattering techniques have access to the diffusion rates as 
well. However, it is important to note that fluorescence correlation spectroscopy (FCS) [3] 

can be used to measure the diffusion constants (in addition to particle size and size distribu‐

tion [18]), particularly useful in dilute solutions and other conditions where light scattering 
techniques fail [3]. However, when the droplet sizes of the emulsions become comparable to 

the incident beam focus size, the FCS is not reliable leading to the technique being used as a 
complementary method to DLS [3].

Nuclear magnetic resonance and derivatives of the technique can be used to measure the self‐

diffusion constants of oil, water and the surfactants in microemulsions [3]. Microemulsion 
structure is best investigated by NMR relaxation and self‐diffusion studies. Bicontinuity in 
equilibrium microemulsions can be obtained by self‐diffusion studies. NMR relaxation is very 
sensitive to the droplet size but is insensitive to interactions allowing accurate droplet size 

measurements [13].

2.5. Morphology

Although all of the techniques discussed so far give information about the morphology, elec‐

tron microscopy provides a robust method to directly visualize the nanoscale structure and 

morphology of microemulsions. For conventional TEM images, a thin (∼102 nm) specimen is 
required, while for SEM, deposition and fixation on a solid substrate are usually required. 
In each of these cases, the sample preparation requires dehydration which, in the case of 

microemulsions, can severely affect their native structure [3]. To alleviate this problem, cryo‐

electron microscopy (cryo‐EM) techniques have been utilized where emulsions are frozen in 
their native hydrated states. From this point, preparing samples through freeze‐fracture or 
freeze‐etching [7, 8] can reveal rich and unique insight into the systems.

2.6. Rheology

The rheological properties of microemulsions are often crucial in their application because 

they will affect the processability, and kinetics, and stability under various conditions [19]. 

Microemulsions show varying rheology depending on the phase point. For example, o/w 
and w/o microemulsions show Newtonian behavior over a wide range of shears, while the 

bicontinuous phase may undergo breakage upon medium shear forces, leading to thinning 

[3]. Although the effect of the molecular structure of emulsions has a large impact on the 
behavior of microemulsions [20], the characterization techniques are generally the same as 

their macroscopic counterparts [21, 22].

3. Applications

The applications of microemulsions are plenteous and span in areas including drug delivery, 

cosmetics, food, fuel, lubricants and coatings, detergents, agrochemicals, analytical chemistry, 
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nanoparticle synthesis, biotechnology, and chemical reactors [23]. Exhibiting a pseudo bipha‐

sic behavior, these systems allow solubilization of highly hydrophilic substances in oil‐based 

systems and highly hydrophobic substances in water‐based systems. Further, ultralow inter‐

facial tension, the presence of nanosized droplets of dispersed phase, slow release and protec‐

tion of encapsulated material, and the ability to penetrate through biological membranes are 

some attributes that make the microemulsions find significant applications in various sectors. 
A brief description of the applications of microemulsions in selected fields is given below.

3.1. Pharmaceutics

Emulsions are opaque gels or creams in which a drug is dispersed for topical application. 

The effect of the drug released from the gel depends on the permeability of the drug through 
the skin barrier. Microemulsions considering the small size of the droplets can serve as better 
delivery vehicles thereby improving the drug solubility, penetrability, and shelf life [24]. An 

advantage of these systems is their ability to deliver both hydrophobic and hydrophilic drugs 

efficiently via o/w or w/o emulsions, respectively [25]. It has been shown that penetrability 

of hydrophobic drugs is improved by encasing the drug in a lipid vesicle [26]. Therefore, it is 

apparent that the smaller the size of the droplet, the better the delivery of a hydrophobic drug. 
Drug diffusion was shown to follow kinetics related to models such as Higuchi model result‐
ing in the slow release of the drug [27]. In this case, the permeation was shown to increase 

when glycolipids were incorporated into the microemulsion indicating that they could out‐

perform macroemulsions in topical drug delivery. Poorly soluble drugs such as cyclosporine 
and paclitaxel have shown improved oral bioavailability in microemulsion systems and have 

been patented along with other drugs such as ritonavir and saquinavir [28].

3.2. Cosmetics

Cosmetics and cosmeceutics currently utilize microemulsion systems and demonstrate the 

enormous potential of using these systems for various products. Skin care products, hair care 

products, and perfumes are the main types of microemulsion products available in the market. 

The surfactants, co‐surfactants, and oils used in cosmetic microemulsions are either natural 

or synthetic. The surfactants are either ionic or nonionic [23]. Bioactive agents, including anti‐

oxidants and skin whitening agents, have been incorporated in and delivered to the skin via 

microemulsion cosmetic products [29, 30]. Interestingly, antioxidant and moisturizing effects 
of olive oil, which can be utilized as the main ingredient in microemulsions, increase upon 

incorporation in microemulsions thus making such systems apt for cosmetic applications [31]. 

In addition to delivering nutrients and increasing moisturizing effects, microemulsions have 
been identified as promising systems for removing oily make‐up cosmetics from the skin [32].

3.3. Food

Numerous attributes of microemulsions render these systems excellent to be used in the food 
sector. Among such attributes, their ability to protect, slowly release, and enhance the activity 
of the encapsulated material, and the possibility of formulating microemulsions using edible 

substances, stand out. According to a recent study, garlic essential oils encapsulated in water‐

based microemulsions have exhibited antimicrobial activity indicating its potential use in the 
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food industry [33]. Further, the bioactive compounds—crocin, safranal, and picrocrocin—of 
saffron encapsulated in multiple emulsions have shown enhanced slow release properties 
and greater stability in gastric conditions [34]. Moreover, microemulsions encapsulating step‐

pogenin have shown to be effective in reducing enzymatic browning of apple juice. Co‐encap‐

sulation of vitamin C with steppogenin greatly enhances this antibrowning effect [35]. The 

number of studies on applications of microemulsions in food is plenteous and is still growing.

3.4. Enhanced oil recovery

Microemulsions are used in enhanced oil recovery, and approximately 20% enhanced oil 
recovery has been reported. The high interfacial tension between the crude oil and reservoir 

brine keeps the residual oil in the reservoir. The interfacial tension can be lowered via the 

preparation or introduction of microemulsions, and thus, this area is actively investigated. 

A surfactant formulation is injected into the reservoir in the surfactant‐polymer flooding 
process. The surfactants stimulate the formation of a microemulsion in the porous reservoir 

between reservoir brine and crude oil, which reduces the interfacial tension between the two. 

Hence, the oil recovery is enhanced [36]. A more recent trend is to utilize more cost‐effective 
microbes to produce microbial products including biosurfactants in place of chemical mix‐

tures [37, 38]. Also, numerous studies have been conducted to evaluate the use of ionic liquids 

as green chemicals in place of surfactants in microemulsions in enhancing oil recovery [39].

3.5. Fuels

Microemulsions have been used as fuels with many attractive properties. These fuels are used 
to decrease the emission rates of gases such as nitrogen oxides and carbon monoxide, and 

particles (soot) [40]. Although alcohols frequently used in microemulsion biofuels decrease 

the cetane number. The incorporation of cetane improvers has significantly increased the 
cetane number thus improving the properties of microemulsion fuels [41]. Moreover, water 
in the microemulsion‐based fuel reduces the combustion temperature and heat released. Due 

to the increased surface area, the air‐fuel contact is improved. Overall, the fuel efficiency is 
improved as microemulsion‐based fuels are used [42].

3.6. Lubricants, cutting oils and corrosion inhibitors

Microemulsion systems are frequently used as lubricants. Microemulsions prepared using 
ionic liquids and copper nanoparticles are some recent advances in this field [43, 44]. As cut‐

ting oils, microemulsions serve as lubricants and absorbers of the heat of friction [45]. As 

corrosion inhibitors, microemulsions may show many mechanisms of action. The corrosion 

causing factors may be soluble in the microemulsion so that those factors may be unavailable 

for the metal surface. Also, the hydrophobic coating on the metal may prevent corrosion [46].

3.7. Coatings and textile finishing

Microemulsion‐based resins exhibit superior properties than solvent‐based resins. Mainly, 
flammability hazards, health problems, and pollution problems are much less associated 
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with microemulsion‐based coatings. Further, microemulsion coatings are better than emul‐
sion coatings with respect to scrub resistance, stain resistance and color intensity [23, 47, 48]. 

The suitability of microemulsions in textile finishing has also been demonstrated by many 
researchers. In fact, microemulsions have shown better properties than both conventional 
textiles finishing aids and normal emulsions [23, 49].

3.8. Nanoparticle synthesis

Microemulsions have been commonly used as means of preparing nanoparticles. Recently, 
bimetallic nanocatalysts comprising Cu and Ni were formed using reserved microemulsions 

where they altered the microemulsion composition to obtain different sizes of bimetallic par‐

ticles [50]. Narrow size distribution and regular shape are two other important attributes 
of metallic nanoparticles synthesized using the reversed microemulsion method [51–53]. In 

addition to inorganic nanoparticles, organic nanoparticles such as cholesterol and rhovanil 

have been prepared successfully using microemulsions. Also, the properties of nanoparticles 

may, in certain instances, be modulated by changing the physicochemical properties of micro‐

emulsions [54].
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