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Abstract

The development of statistical theory for the energy-containing structure of turbulent
flows, taking the phenomenon of internal intermittency into account, is proposed, and
new differential equations for conditional means of turbulent and nonturbulent fluid
flow are established. Based on this fact, a new principle of constructing mathematical
models is formulated as the method of autonomous statistical modeling of turbulent
flows, ASMTurb method. Testing of the method is attained on the example of construct-
ing a mathematical model for the conditional means of turbulent fluid flow in a turbu-
lent mixing layer of co-current streams. Test results showed excellent agreements
between the predictions of the ASMTurb model and known experimental data.

Keywords: turbulence, statistical modeling, intermittency, ASMTurb method

1. Introduction

The Reynolds-averaged Navier-Stokes equations (RANS) method does not take the intermit-

tency of turbulent and nonturbulent fluid into consideration. As a result, this method allows us

to model only the unconditional averages of a turbulent flow and does not provide a descrip-

tion of the conditional averages for each of the intermittent region, taking place in a turbulent

stream. At the same time, the intermittency is an inherent property of such flows and that is

why the conditional average modeling is necessary, for example see [1–4]. The phenomenon of

intermittency (hydrodynamic intermittency) represents an interleaving process of the space-

time domains of the flow, hydrodynamic structures of which are different. As is known, such

domains contain so-called “turbulent” and “nonturbulent” fluid [1]. In this connection, the

turbulent fluid contains a hierarchy of all possible scales and amplitudes of the fluctuations

(pulsations) of hydrodynamic values, i.e., the whole spectrum of wavenumbers, while the
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nonturbulent fluid may contain only the large-scale fluctuations or absolutely does not contain

any ones (when the nonturbulent fluid is far away from the mixing layer). The main purpose of

this chapter is to justify a new method of statistical modeling of turbulent flows as the

ASMTurb method, which enables to construct mathematical models of such flows with a high

efficiency. The presented ASMTurb method, declared in [5], fundamentally differs from the

previously proposed (for example, see Refs. [6–8]) in that it is based on the conditional statis-

tical averaging of the Navier-Stokes equations, as applied to each of the intermittent region of

turbulent flow, while the generating process of the turbulent fluid begins in a thin superlayer

between turbulent and nonturbulent fluid and finishes in separate small areas, involved inside

the turbulent flow. The first attempts to substantiate such an approach [5] have been presented

previously [9, 10]. However, the deficiency of the mathematical body of statistical hydrody-

namics under the intermittency conditions makes such an approach vulnerable. In this regard,

we need primarily to develop a mathematical body for statistical modeling of turbulent flows.

2. Development of the statistical modeling theory

A spectacular example of the intermittent turbulent flow is the flow in the mixing layer of co-

current streams, Figure 1. With that at point x = x0, with the course of time, will be observed an

interleaving of the turbulent and nonturbulent fluid. The behavior of the instantaneous longi-

tudinal velocity u(x, t) in the flow range with strong intermittency at the point x0 is shown in

Figure 2. As it seen, the structure of the turbulent fluid flow is fundamentally different from

the structure of the nonturbulent fluid flow (the nonturbulent fluid involvement is shown with

the arrows in Figure 1). It is evident that the behavior of any other hydrodynamic variable

f(x, t) will be the same. It is important to note that the conditional averaging of variable f(x, t) is

interpreted as the result of the averaging operation, referring only to as the turbulent (r = t) or

nonturbulent (r = n) fluid, i.e., for the conditional time averaging

f ðx, tÞ
r
¼ lim

τ0!∞

1

τr

ðτr

0

f ðx, t; τ0Þdt, r ¼ t, n ð1Þ

Figure 1. A sketch of the turbulent and nonturbulent fluid in the mixing layer of co-current streams. Here Dt is the region

with the turbulent fluid and Dn– is the region with the nonturbulent fluid.

Turbulence Modelling Approaches - Current State, Development Prospects, Applications100



where f ðx, tÞ
r
� f rðx, tÞ

r
, f tðx, tÞ ¼ f ðx, tÞjI¼1, f nðx, tÞ ¼ f ðx, tÞjI¼0, I ¼ Iðx, tÞ is the intermittency

function and τ0 ¼ τt þ τn. At that the total average is

f ðx, tÞ ¼ γðxÞf ðx, tÞ
t
þ
�

1� γðxÞ
�

f ðx, tÞ
n

ð2Þ

and γðxÞ ¼ Iðx, tÞ is an intermittency factor. At the same time in the theory of statistical

modeling are used the statistical characteristics, i.e., instead of the averaging operation of

Eq. (1) is required the operation of statistical averaging.

To construct the mathematical model, first of all, it is necessary to determine what kind of

statistical characteristics are the most suitable for modeling. In the classical RANS method,

such characteristics are the unconditional means. In the methods, taking the intermittency into

consideration, such characteristics are the conditional means of each intermittent region of

Figure 2. Behavior of the instantaneous longitudinal velocity in different regions, interleaving at the preset point x = x0

in Figure 1: (a) unconditional velocity u = u(x, t), (x, t) ∈ G; (b) “cross-linking” of the velocity over the turbulent fluid

domain, ut ¼ utðx, tÞjIðx, tÞ¼1, ðx, tÞ∈Gt; (c) “cross-linking” of the velocity over the nonturbulent fluid domain, un ¼

unðx, tÞjIðx, tÞ¼0, ðx, tÞ∈Gn. Here, G = Gt + Gn, u is the total time average, ut and un is the conditional time means, ts is the

time point of observing the interfacial joint between the turbulent and nonturbulent flow domain in which cross-linking is

carried out.
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turbulent flow. But in this case, it requires the development of a theory of statistical hydrody-

namics under the conditions of intermittency.

The mathematical body of this theory may be developed from both the theoretical-

probabilistic approach, based on the N-th repetition of the turbulent flow experiment [4, 11],

and the theoretical-set approach [12, 13], which elementary events can be represented as a

some set in the generalized space of the specifically considered turbulent flow. The advantage

of the theoretical-set approach is that it can be implemented in the experimental research.

2.1. The mathematical body of statistical hydrodynamics

Getting started to the development of the mathematical body of statistical hydrodynamics in

terms of intermittency, first of all we need to create a probability space ðΩ, F , PÞ of a random

field of any hydrodynamic value as a random process in the generalized physical space of

turbulent flow, where Ω – is the sample space, F – is σ-algebra of subsets, P– is the probability

measure in F .

2.1.1. The introduction of the sample space into the body of statistics

For the introduction of the sample space Ω, we consider the behavior of the value of f(x, t),

measured by the sensor at the point x = x0 of statistically stationary turbulent flow with strong

intermittency, i.e., when γðxÞ ffi 0:5, see Figure 3. According to Figure 2, function f(x, t) forms a

random continuous field in the space G ¼ D� ½0, τ0 �. Hence it follows that at the point x0 ∈ D

we have a continuous random varying function of time f(x0, t). Let the measurements of f = f(x0, t)

were carried out in a fairly wide range (order to the averaged statistical value of this functionwas

stable) of the observation time t = [0, τ0]. It allows us to form an ensemble of valuesΩ as the one-

point countable set of elementary events f, if we split the range of values of function f(x0, t) at

Figure 3. Illustration of statistical averaging of the instantaneous hydrodynamic variable. Here f = {f(x, t)} is the range of

function f(x, t) at the point x = x0; 〈f 〉 is the total statistical average; 〈f 〉t and 〈f 〉n is the conditional statistical mean in each of

the intermittent media of the turbulent flow; f 0 ¼ f � 〈f 〉, f 0t ¼ f t � 〈f 〉t , and f 0n ¼ f n � 〈f 〉n are fluctuations (pulsations),

measured from its own statistical means; τ0 is the period of averaging time, sufficient to ensure sustainable statistical

mean of values f; Δτ* is the characteristic time of the superlayer observation, I = I(x, t) is the intermittency function of the

turbulent fluid domain.
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sufficiently small intervals Δf, and the range [0, τ0] at sufficiently small intervals Δt, Figure 2.

Having fixed a certain value of function fi in each of the selected intervals Δf we come to the

Lebesgue integral in terms of the set theory, formed in the physical space. Indeed, in the i-th layer

there areNi sampled values fi in the form of shaded elementary cells Δf Δt, Figure 2 (the selection

of one particular value fi from these cells plays no special role due to their small value). The

total number of cells N = τ0 / Δt and represented as the ensemble of values f, and also in the limit

Δf ! 0 and Δt ! 0 this set will be dense, and the numerical value of f will be an element of this

set, i.e., an elementary event.

In other words, for every fixed point x = x0, the total number of all sample values fi forms a

random continuous field of values f ∈ Ω in the physical space G = D � [0, τ0]. As a result, we

come to a random process in the Borel space, in which a random variable f(x, t) takes all values

of f = {f(x, t)}, which are the elements of continuous set

Ω ¼ ff : fmin ≤ f ðx, tÞ < fmax, Nj
x¼x0

¼ lim
τ0!∞

τ0=Δt, ðx, tÞ∈G g ð3Þ

So, from the physical space G with the hydrodynamic quantity f(x, t) we went to sample space

Ω, elements of which are a set of values of f = {f(x, t)}, i.e.

f ðx, tÞ ! f ¼ ff ðx, tÞg; f ðx, tÞjI¼1 ! f t ¼ ff ðx, tÞjI¼1g; f ðx, tÞjI¼0 ! f n ¼ ff ðx, tÞjI¼0g ð4Þ

f ðx, tÞ ! 〈f 〉; f ðx, tÞ
t
! 〈f 〉t, f ðx, tÞ

n
! 〈f 〉n ð5Þ

f 0ðx, tÞ ! f 0 ¼ ff ðx, tÞ � f ðx, tÞg; f 0rðx, tÞ ! f 0r ¼ ff rðx, tÞ � f ðx, tÞ
r
g ð6Þ

Now we need develop the apparatus of statistics together with the operations of statistical

averaging of the hydrodynamic quantities. For this we represent the apparatus of statistics

based on a formal using of the probability density function (one-point PDF) of some hydrody-

namic quantity f = {f(x, t)}. At that the intermittency function I = I(x, t) will be used to obtain

conditional one-point statistics.

2.1.2. The introduction of the algebra of events and PDFs

Let us introduce a one-point probability density function p(f) = p(f; x, t) into the body of

statistics. According to the Kolmogorov axioms [12], it can be carried out via the Lebesgue-

Stieltjes integral:

PðΩÞ ¼

ð
Ω

pðf Þdf ð7Þ

where pðf Þ ¼ lim
N!∞

pðf ; f ∈Ω, N Þ and

ð
Ω

pðf Þdf ¼ 1.

For introduction of the algebra of events, we suppose that the space Ω, defined by Eq. (3),

contains two independent subspaces (subsets)
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Ω1 ¼ ΩjJ 1¼1, Ω2 ¼ ΩjJ 2¼1 ð8Þ

i.e., the generalized set Ω =Ω1 + Ω2, and we have F as σ-algebra of the subsets. The indicators

of these subsets are the characteristic functions

J 1 ¼
1 if f ∈Ω1

0 otherwise
, J 2 ¼

1 if f ∈Ω2

0 otherwise

((

ð9Þ

at that the set of values f, belonging to the super-layer, is excluded. In the results, we have the

Borel algebra subsets of the set Ω with the Kolmogorov axioms, which according to the total

probability formula gives

PðΩÞ ¼
X

2

k¼1

PfΩjJ k¼1gPfJ k ¼ 1g ð10Þ

where PfJ k ¼ 0g ¼ 0 as an impossible event.

2.2. Statistical averaging of hydrodynamic quantities

2.2.1. Applied to the intermittent turbulent flows

For the intermittent turbulent flows, the sample sets, which we designated asΩt ¼ ΩjJ 1¼1 and

Ωn ¼ ΩjJ 2¼1, are the set of values of hydrodynamic variable, belonging to the turbulent

and nonturbulent fluid of turbulent flow. Indicators of these sets are the functions J 1 ¼ J t

and J 2 ¼ J n, while PfJ t ¼ 1g ¼ γt and PfJ n ¼ 1g ¼ γn are the measures of these sets with

the condition γt þ γn ¼ 1, and represent the intermittency factors as the probability of observ-

ing the turbulent and nonturbulent fluid at the point x of turbulent flow, i.e., γt ¼ γtðxÞ and

γn ¼ γnðxÞ. Now, according to Eq. (10),

PðΩÞ ¼ γtPðΩtÞ þ γnPðΩnÞ ð11Þ

where P(Ωt) и P(Ωn) – conditional random set of value f, belonging to the turbulent Ωt ¼ ff tg

and nonturbulent Ωn ¼ ff ng fluid at the point x; the values γt ¼ γtðxÞ and γn ¼ γnðxÞ, while

the one-point PDF

pðf Þ ¼ γtptðf Þ þ γnpnðf Þ ð12Þ

where ptðf Þ ¼ ptðf ;x, tÞ, ðx, tÞ∈Gt and pnðf Þ ¼ pnðf ; x, tÞ, ðx, tÞ∈Gn represent the conditional

one-point PDFs. As it turns out, a PDF may have or not to have an explicit dependence on x. In

actual fact, if the flow is intermittent, it has a dual structure [1] and in the generalized set we

have Ω = Ωt + Ωn so that the measures of sample sets γt and γn are depend on x; if the flow is

not intermittent (when the phenomenon of intermittency is not considered) it occurs in a

“single” space as a set of elementary events Ω = ΩR, the measure of which does not depend

on x. In the case of the explicit dependence, we denote the PDF p( f) in Eq. (7) as
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Pðf Þ ¼ lim
N!∞

p
�

f ; f ∈ ðΩt þΩnÞ, N, x
�

ð13Þ

and we call this function as the “total” PDF, and the flow—flow of the “intermittent” continuous

media with turbulent and nonturbulent fluid. In the absence of such dependence, we denote it as

pRðf Þ ¼ lim
N!∞

pðf ; f ∈ΩR, NÞ ð14Þ

and called the “unconditional” PDF pR(f), and the flow—flow of the “nonintermittent” continu-

ous medium, which is modeled by the RANS method. The explicit dependence of the PDF P(f)

Eq. (13) on the coordinates creates certain difficulties in its using in the statistical modeling and

also leads to the necessity of introducing in the theory of statistical hydrodynamics the condi-

tional PDF for the hydrodynamic characteristics of turbulent and nonturbulent media.

So, to perform the conditional averaging of the instantaneous characteristics of the flow, we

introduce into statistical body the conditional PDF, i.e., the CPDFs:

ptðf Þ ¼ pðf jI¼1Þ, pnðf Þ ¼ pðf jI¼0Þ ð15Þ

with the indicator (characteristic) function of the turbulent fluid

I ¼
1 if f ∈Ωt

0 if f ∈Ωn

�

ð16Þ

represents a probability of observing the turbulent flow at the given point x, i.e., it is the

intermittency factor γ = γ(x). Now the expression for the “total” PDF in Eq. (12), by virtue of

the fact that γn = 1 � γ, is transformed into

Pðf Þ ¼ γptðf Þ þ ð1� γÞpnðf Þ ð17Þ

with the explicit dependence on x, while the CPDF pt(f) and pn(f) obviously do not depend on x.

Now conduct the operations of statistical averaging of hydrodynamic quantities. These oper-

ations we will conduct with the help of a formal using of the PDFs, i.e., when a particular form

of this function does not necessarily need to know.

2.2.2. Operations of statistical averaging of the hydrodynamic quantity

The statistical averaging of the hydrodynamic quantity f(x, t) can be performed by a formal

using of the PDF. The results of statistical averaging operation are the conditional statistical

means when r = t for turbulent and r = n for nonturbulent fluid

〈f 〉r ¼

ð

Ωr

f prðf Þdf ,

r ¼ t, n

ð18Þ

and also the total statistical average
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〈f 〉 ¼

ð

Ω

f Pðf Þdf ð19Þ

which by virtue of the expression in Eq. (17) gives

〈f 〉 ¼ γ〈f 〉t þ ð1� γÞ〈f 〉n ð20Þ

At that by definition the value f t ¼ f jI¼1 and f n ¼ f jI¼0 and for the “pulsations” we have

f 0 ¼ f � 〈f 〉 ; f 0r ¼ f r � 〈f r〉r; f
0jI¼1 ¼ f 0t þ 〈f 〉t � 〈f 〉 ; f 0jI¼0 ¼ f 0n þ 〈f 〉n � 〈f 〉 ð21Þ

whence it follows that

〈f r〉r ¼ 〈f 〉r; 〈 f
0
rg

0
r〉r 6¼ 〈f 0g0〉r ð22Þ

As is evident that the total average in Eq. (20) represents the statistical characteristic of a rather

complex structure, while the unconditional mean, when in Eq. (18) we have r = R, is a

characteristic of the “simplified” flow without considering effects of intermittency. At that

〈f 〉R ffi 〈f 〉 because the total average 〈f 〉 does not contain the values of f belonging to the

superlayer [16].

2.2.3. Operations of statistical averaging of derivative of the hydrodynamic quantity

The statistical averaging of the derivative of hydrodynamic quantity ξ ¼ ∂f =∂x gives the

following. In point of fact, on the one side using the joint CPDF prðf , ξÞ we have

ðð

∂f

∂x
prðf ,ξÞdf dξ ¼

∂

∂x

ð

〈f jξ〉rprðξÞdξ ¼
∂〈f 〉r
∂x

ð23Þ

because that in accordance with [14]

prðf ,ξÞ ¼ prðf jξÞprðξÞ

and

ðð

�

∂f prðf , ξÞ=∂x� f ∂prðf ,ξÞ=∂x
�

df dξ ¼

ð

�

∂

�

ð

f prðf jξÞdf
�

=∂x
�

prðξÞdξ ð24Þ

where 〈f jξ〉r is the conditional mean values of f in turbulent (r = t) or nonturbulent (r = n)

medium for all possible fixed values of ξ. At that ∂prðf ,ξÞ=∂x ¼ 0 due to the fact that the

function (f, ξ) does not depend obviously on the coordinate x. On the flip side, we have

ðð

∂f

∂x
prðf , ξÞdf dξ ¼

∂f

∂x

� �

r

ð25Þ

because that
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ðð

ξprðξjf Þprðf Þdξdf ¼

ð

〈ξjf 〉rprðf Þdf ð26Þ

where 〈ξjf 〉r is the conditional mean of the gradient ξ ¼ ∂f =∂x in turbulent or nonturbulent

medium, given for all possible fixed values of f. As a result, we have

∂f

∂x

� �

r

¼
∂〈f 〉r
∂x

, r ¼ t, n ð27Þ

Thus, the operation of conditional statistical averaging of derivatives is permutational. So, we

have proved that the permutation of conditional averaging operation has a strict mathematical

justification.

It is appropriate to note that in the classical method of RANS, the operation of unconditional

statistical averaging of derivatives gives the same result. Actually, the unconditional joint PDF

pRðf , ξÞ of Eq. (14) does not depend on the coordinates obviously and therefore it is correctly

Eqs. (23)–(27) with index r = R, i.e.,

∂f

∂x

� �

R

¼
∂〈f 〉R
∂x

ð28Þ

that proves the rule of permutation of the operation of unconditional averaging of derivatives

in the method of RANS.

About the permutation of the operation of derivatives total averaging I must say the following. The

operation of total statistical averaging of partial derivatives of type ξ ¼ ∂f =∂x by Eq. (19) for

intermittent continuous media with turbulent and nonturbulent fluid cannot be a permuta-

tional. This operation is carried out similarly in Eqs. (23)–(27). Here, however, must keep in

mind that now the total PDF P(f) in Eq. (17) obviously depend on the coordinates due to

γ = γ(x). The legitimacy of such a permutation of the operation is easy to establish if we attract

Eq. (20) as applied to the partial derivatives. In this case

∂f

∂x

� �

¼ γ
∂f

∂x

� �

t

þ ð1� γÞ
∂f

∂x

� �

n

ð29Þ

and

∂〈f 〉

∂x
¼ γ

∂〈f 〉t
∂x

þ ð1� γÞ
∂〈f 〉n
∂x

þ ð〈f 〉t � 〈f 〉nÞ
∂γ

∂x
ð30Þ

after comparing of which, with regard to Eq. (27) we get

∂f

∂x

� �

¼
∂〈f 〉

∂x
� ð〈f 〉t � 〈f 〉nÞ

∂γ

∂x
ð31Þ

It follows that the permutation of the operation of total statistical averaging of derivatives is

not legitimate, i.e.,
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∂f

∂x

� �

6¼
∂〈f 〉

∂x
ð32Þ

With regard to the total statistical averaging of time derivatives, instead of expression (31) we

have 〈∂f =∂t〉 ¼ ∂〈f 〉=∂t because of ∂γ=∂t ¼ 0, i.e., for statistically stationary turbulent flows

such a permutation is possible. The same applies to the conditional averaging of derivatives.

So, we showed that the statistical modeling of turbulent flows, in the case of taking into

account the effects of intermittency, should be based on Eqs. (20), (27), and (32).

2.2.4. The statistical averaging of hydrodynamics equations

The Navier-Stokes equations for an incompressible fluid together with the continuity equation

are accepted as the basis of the hydrodynamic equations system [11]. When the external forces

are absent, this system has the following form:

∂ui
∂t

þ
∂

∂xk
uiuk þ

pδik
ρ

� σik

� �

¼ 0, i ¼ 1, 2, 3

∂uk
∂xk

¼ 0

8

>

>

<

>

>

:

ð33Þ

where σik ¼ μð∂ui=∂xk þ ∂uk=∂xiÞ is the tensor of viscous stress, μ is the dynamic factor of

viscosity, p is the pressure, and ρ is the density. Our primary goal is to conduct an operation

of statistical averaging of the SE (33) so as to obtain a system of equations for the conditional

mean 〈ui〉t. At the beginning, we will conduct an operation of conditional statistical averaging

of the continuity equation in SE (33). For this, we introduce the joint CPDF

prðui, ξiÞ ¼ prðu1, u2, u3, ξ1, ξ2,ξ3Þ ð34Þ

with index r = t for turbulent and r = n for nonturbulent fluid, ξ1 ¼ ∂u1=∂x1 , ξ2 ¼ ∂u2=∂x2,

ξ3 ¼ ∂u3=∂x3, and use the procedure of conditional averaging (23). As a result, we reach the

following averaging procedure:

ð

::

ð

∂uk
∂xk

prðui,ξiÞdu1,…, dξ3 ¼

ð

::

ð

∂ukprðui, ξiÞ

∂xk
du1,…, dξ3 ¼

∂

∂xk

ð

::

ð

ukprðui, ξiÞdu1…, dξ3 ¼ 0

ð35Þ

because that the function prðui,ξÞ does not depend on xk, i.e., ∂prðui, ξiÞ=∂xk ¼ 0 and

prðui,ξiÞ∂uk=∂xk ¼ ∂ukprðui, ξiÞ=∂xk. From here toward k = 1 in Eq. (35), we deduce

∂

∂x1

ð

u1prðu1Þdu1 ¼
∂〈u1〉r
∂x1

ð36Þ

as prðuiÞ ¼
Ð

…

Ð

prðu1, u2, u3, ξ1, ξ2, ξ3Þdui�1, duiþ1::dξ3, du0 = 1, for example, prðu1Þ ¼
Ð

…

Ð

prðu1, u2, u3, ξ1, ξ2, ξ3Þdu2…dξ3. The same operation is carried out for k = 2, 3 using pr(u2) and
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pr(u3). Now then, the conditionally averaged continuity equation for each of the intermittent

media of turbulent flow has the form

∂〈uk〉r
∂xk

¼ 0, r ¼ t, n ð37Þ

To conduct the operation of conditional statistical averaging of the Navier-Stokes SE (33), we use

the CPDF pr ¼ prð ξ1, ξ2Þ, where ξ1 ¼
∂ui
∂t , ξ2 ¼

∂

∂xk
uiuk þ

pδik
ρ � σik

� �

with the summation over

k = 1, 2, 3. Then, according to Eq. (25) for the momentum equation in SE (33) we obtain
ðð

ξ1prð ξ1, ξ2Þdξ1dξ2 ¼ 〈∂ui=∂t〉r. Similarly, it conducted the averaging operation of the value ξ2:

ðð

ξ2prð ξ1, ξ2Þdξ1dξ2 ¼
∂

∂xk
uiuk þ

pδik
ρ

� σik

� �� �

r

ð38Þ

Applying the rule of permutation (27) and using the Reynolds development f r ¼ 〈f 〉r þ f r
0, we

deduce 〈uiuk〉r ¼ 〈ui〉r〈uk〉r þ 〈u0iru
0
kr〉r in view of Eq. (22). As a result of the above-performed

operation of statistical averaging of SE (33) now for the statistically stationary turbulent flow,

we have the system of equations with two autonomous subsystems for the flow’s conditional

means of each of the intermittent media with turbulent and nonturbulent fluid:

∂〈ui〉r
∂t

þ
∂〈ui〉r〈uk〉r

∂xk
þ

〈u0iru
0
kr〉r

∂xk
þ

∂〈ð pδik � σikÞ=ρ〉r
∂xk

¼ 0

∂〈uk〉r
∂xk

¼ 0, r ¼ t, n

8

>

>

<

>

>

:

ð39Þ

where the fluctuating velocity of the turbulent or nonturbulent fluid flow u0ir ¼ uir � 〈uir〉r and

〈ui〉r � 〈uir〉r, but the one-point covariances 〈u0iru
0
kr〉r 6¼ 〈u0iu

0
k〉r according to Eq. (22). Besides,

∂〈ui〉r=∂t ¼ 0 for statistically stationary turbulent flows. Each SS (39) with index r = t or r = n is

statistically independent and is determined by the fact that the one-point correlation of the

hydrodynamic quantities of turbulent and nonturbulent media is absent, i.e., 〈f tf n〉 ¼ 0. These

subsystems allow the conditional means modeling of each of the intermittent media with

turbulent and nonturbulent fluid independently from the each other.

The derivation of the turbulent kinetic energy budget equation by the RANS method is well

known [1, 4]. The procedure of the budget equations derivation for conditional means of

kinetic energy fluctuations in each of the intermittent medium of the turbulent flow will be

the same. In the approximation of a free boundary layer, these equations have the following

form:

∂〈Er〉r
∂t

þ 〈uk〉r
∂〈Er〉r
∂xk

þ
∂〈ðEr þ p0r=ρÞv

0
r〉r

∂xk
þ 〈u0iru

0
kr〉r

∂〈ui〉r
∂xk

þ 〈εr〉r ¼ 0 ð40Þ

Hereinafter Er ¼ 0:5ðu
02
r þ v

02
r þ w

02
r Þ and 〈Er〉r ¼ 0:5ð〈u

02
r 〉r þ 〈v

02
r 〉r þ 〈w

02
r 〉rÞ.
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3. The ASMTurb method

The new principle of constructing mathematical models of the energy-containing structure of

turbulent flows (the large-scale turbulent motion) is as follows: (1) as the main statistical

characteristics of modeling are chosen the conditional averages of hydrodynamic quantities

of the turbulent and nonturbulent fluid; (2) to describe the conditional means of hydrodynamic

quantities are used two statistically independent (autonomous) systems of differential equa-

tions; (3) each of the autonomous systems for the conditional averages is closed by its own

closure hypothesis; and (4) the total average of hydrodynamic quantities is obtained by the

algebraic relations of statistical hydrodynamics, which bind the total and conditional means

through the mediation of the intermittency factor. To realize this principle, the mechanism of

the turbulent fluid formation in a turbulent flow is proposed. This is achieved by the introduc-

tion of the “superlayer” between turbulent and nonturbulent fluid, where shear rate and

pressure fluctuations in the turbulent fluid generate the pressure fluctuations in the

nonturbulent fluid. This process leads to the so-called “nonlocal” transfer of the impulse and

initiates the occurrence of velocity fluctuations (for particulars see in [15, 16]). The formulated

principle of constructing mathematical models is called the ASMTurb method [5].

3.1. Mathematical tools of the ASMTurb method

3.1.1. General system of equations for conditional means

According to the ASMTurb method, we have two autonomous subsystems (SS) of the differ-

ence equations corresponding to Eqs. (39) and (40) in the form of

∂〈ui〉t
∂t

þ
∂〈ui〉t〈uk〉t

∂xk
þ

∂〈u0itu
0
kt〉t

∂xk
þ

∂〈ð ptδik � σtikÞ=ρ〉t
∂xk

¼ 0

∂〈uk〉t
∂xk

¼ 0

∂〈Et〉t
∂t

þ 〈uk〉t
∂〈Et〉t
∂xk

þ
∂〈ðEt þ p0t=ρÞv

0
t〉t

∂xk
þ 〈u0itu

0
kt〉t

∂〈ui〉t
∂xk

þ 〈εt〉t ¼ 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð41Þ

and

∂〈ui〉n
∂t

þ
∂〈ui〉n〈uk〉n

∂xk
þ

∂〈u0inu
0
kn〉n

∂xk
þ

∂〈ð pnδik � σnikÞ=ρ〉n
∂xk

¼ 0

∂〈uk〉n
∂xk

¼ 0

∂〈En〉n
∂t

þ 〈uk〉n
∂〈En〉n
∂xk

þ
∂〈ðEn þ p0n=ρÞv

0
n〉n

∂xk
þ 〈u0inu

0
kn〉n

∂〈ui〉n
∂xk

þ 〈εn〉n ¼ 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð42Þ

that describe the conditional mean flow characteristics of each of the intermittent media with

the turbulent (r = t) and nonturbulent (r = n) fluid. Let us note that each of the SS (41) and SS

(42) is statistically independent, in terms of the one-point correlations 〈f tf n〉 ¼ 0, so after the
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completion of these subsystems using the corresponding expressions for 〈u0 iru
0
kr〉r, 〈ðErþ

p0r=ρÞv
0
r〉r and 〈εr〉r as the closure hypothesis we obtain mathematical models for the flow of

the turbulent and nonturbulent fluid.

3.1.2. The closure hypothesis

The closure hypothesis for SS (41) and SS (42) we will choose in the form of a simple expression

gradient relation [16]:

�〈u0rv
0
r〉r ¼ νr

∂〈u〉r
∂y

ð43Þ

Er þ
p0r
ρ

� �

v0r

� �

r

¼ �νr
∂〈Er〉r
∂y

, 〈εr〉r ¼ c�
νr〈Er〉r

L2r
ð44Þ

where νr is the coefficient of turbulent viscosity, expressed by the “second” Prandtl formula

νr ¼ krðu1 � u2Þx ð45Þ

It is clear that the use of Eq. (45) allows us to solve our “dynamic task” (i.e., the continuity and

momentum equations in SS (41) and (42)) without distinction of “fluctuating task” (i.e.,

turbulent-kinetic-energy budget equations in SS (41) and (42)). This approach greatly sim-

plifies the modeling process.

3.1.3. Modeling of the total averages

To calculate the total statistical averages, we will use the statistical ratio (20). For example, for

the velocity components

〈ui〉 ¼ γ〈ui〉t þ ð1� γÞ〈ui〉n ð46Þ

To determine the total averages for correlations of velocity pulsations (the covariances), we will

use the ratios of the type

〈u0v0〉 ¼ γ〈u0tv
0
t〉t þ ð1� γÞ〈u0nv

0
n〉n þ γð1� γÞð〈u〉t � 〈u〉nÞð〈v〉t � 〈v〉nÞ ð47Þ

This equation can be obtained according to our theory. In actual fact, for the velocity pulsations

we have ui
0jI¼1 ¼ 〈ui t〉t þ ui

0
t
� 〈ui〉 and ui

0jI¼0 ¼ 〈uin〉n þ ui
0
n
� 〈ui〉 according to Eqs. (21) and

(22) whence it follows from Eq. (47), since 〈u0v0〉 ¼ γ〈u0v0〉t þ ð1� γÞ〈u0v0〉n and 〈u0r〈vr〉r〉r ¼ 0,

〈〈u〉〉t ¼ 〈u〉 and so on. Eq. (47) aligns with the expression in [4, 17].

The fluctuating structure modeling is determined by the separate terms of equations for kinetic

energy of the velocity fluctuations in each of the intermittent media, i.e., the turbulent kinetic

energy budget equations in SS (41) and (42). In addition, the expression for the total average of

turbulent energy is the same as Eq. (47), viz.,
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〈E〉 ¼ γ〈Et〉t þ ð1� γÞ〈En〉n þ Ed ð48Þ

where

Ed ¼ 0:5γð1� γÞ½ð〈u〉t � 〈u〉nÞ
2 þ ð〈v〉t � 〈v〉nÞ

2 þ ð〈w〉t � 〈w〉nÞ
2� ð49Þ

Let us note that Eq. (48) can also be obtained as Eq. (47). According to Eq. (47), wherein u0 ¼ v0,

we have

〈u02〉 ¼ γ〈u02t 〉t þ ð1� γÞ〈u02n 〉n þ ud, ud ¼ γð1� γÞð〈u〉t � 〈u〉nÞ
2 ð50Þ

To calculate the total averages, as is evident from the foregoing, distribution of the intermit-

tency factor γ is required. To model the intermittency factor γwewill use the expression in [16]:

γ ffi 〈εt〉t=〈ε〉 ð51Þ

4. Testing of the ASMTurb method

The ASMTurb method has been tested in [15, 16] on the example of constructing the mathe-

matical models for self-similar turbulent shear flows such as: I, the two-stream plane mixing

layer; II, the outer region of the boundary layer on the wall; III, the far wake behind a cross-

streamlined cylinder; and IV, the axisymmetric submerged jet. Test results were presented in

the form calculating the main conditional and total statistical averages applied to a self-similar

region of turbulent flows. A comparison was performed between the predictions and known

experimental data for the energy-containing structure of turbulent flow, and excellent agree-

ments were noted. By this means, it was shown that these ASMTurb models are more accurate

and more detailed than the RANS models.

In view of the fact that construction of each mathematical model requires a significant volume,

here we will present without details only testing results the ASMTurb method on the example

of constructing a mathematical model for the turbulent fluid flow in a self-similar mixing layer.

It is doing because all turbulence processes existing only into turbulent fluid. Calculations of

the main “dynamic” and “fluctuating” characteristics we will compare with known experi-

mental data. More detailed of this model see in [16].

4.1. Construction of the model for two-stream plane mixing layer

The mathematical ASMTurb model for two-stream mixing layer (see [18, 19], etc.), formed as a

result of turbulent mixing of two co-current streams with identical fluid and ρ = Const, moving

with different velocities u1 = umax and u1 = umin, includes two subsystems SS (41) and SS (42) for

conditional means of each of the intermittent media of the turbulent and nonturbulent fluid. In

this case, first of all, we use the SS (41) that was written in approximation of a free boundary

layer and reduced to a nondimensional form after the introduction of nondimensional vari-

ables. The task of modeling only the velocity field of turbulent flow has been called as

“dynamic task.”
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4.1.1. Modeling of the turbulent fluid flow

So, the dynamic task for modeling the velocity field of the turbulent fluid is reduced to solving

the following system of equations

〈u〉t
∂〈u〉t
∂x

þ 〈v〉t
∂〈u〉t
∂y

þ
∂〈u0tv

0
t〉t

∂y
¼ 0

∂〈u〉t
∂x

þ
∂〈v〉t
∂y

¼ 0

8

>

>

>

>

<

>

>

>

>

:

ð52Þ

with boundary conditions, which initially assuming as asymptotical, namely

〈u〉t ¼
u1, y ! ∞

u2, y ! �∞
, ðx, tÞ∈Gt

(

ð53Þ

At that the closure hypothesis in Eqs. (43) and (45) take the form of

�〈u0tv
0
t〉t ¼ νt

∂〈u〉t
∂y

, νt ¼ ktðu1 � u2Þx ð54Þ

where νt is the coefficient of turbulent viscosity, kt ¼ ktðmÞ, m ¼ u2=u1). For transformation of

the SE (52) to the self-similar mode in order to deduce the self-similar solution of our task, let

us introduce dimensionless variables

〈u〉t
u1

¼ F0tðηÞ, η ¼
y

x
ð55Þ

where F0t ¼ ∂Ft=∂η with transformation ∂=∂x ¼ �η=xd=dη, ∂=∂y ¼ 1=xd=dη. The boundary

conditions (53) take the form of

F0tðηÞ ffi
1, η ! ∞

m, η ! �∞

�

ð56Þ

The nondimensional transverse velocity is defined after integrating the continuity equation in

SE (52):

〈v〉t
u1

¼ ηF0t � Ft ð57Þ

the while correlation in Eq. (52) is

�
〈u0tv

0
t〉t

u21
¼ ktð1�mÞF00t ð58Þ

As a consequence, the momentum equation in SE (52) takes the form of ordinary differential

equation
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F000t þ 2σt
2FtF

00
t ¼ 0 ð59Þ

where σt is a first empirical parameter of the model, the value of which is determined by the

condition of the best agreement of calculated and measurements of the longitudinal velocity.

We now represent a function Ft(η) as a power series in the small parameter (m � 1):

Ft ¼
X

∞

i¼0

ðm� 1ÞiFit ¼ F0t þ ðm� 1ÞF1t þ ðm� 1Þ2F2t þ… ð60Þ

If we substitute this expression into Eq. (59) and compare the components at the same powers

of parametric value (m � 1)i, we obtain a system of sequentially interconnected ordinary

differential equations (here we confine ourselves to the second approximation of our task):

F
0 0 0

0t þ 2σt
2F0tF

0 0

0t ¼ 0, i ¼ 0

F
0 0 0

1t þ 2σt
2ðF0tF

0 0

1t þ F1tF
0 0

0tÞ ¼ 0, i ¼ 1

F
0 0 0

2t þ 2σt
2ðF0tF

0 0

2t þ F1tF
0 0

1t þ F2tF
0 0

0tÞ ¼ 0, i ¼ 2

8

>

>

>

<

>

>

>

:

ð61Þ

From the boundary conditions (56) it follows that

F00t ¼ 1 , F01t ¼ 0, F02t ¼ 0 as η ! ∞

F00t ¼ 1 , F01t ¼ 1, F02t ¼ 0 as η ! �∞

(

ð62Þ

where we get after integration

F00t ¼ 1, F0t ¼ η� η0t ð63Þ

where η0t ¼ η0tðmÞ is the displacement of the symmetry plane of the mixing layer η = 0. Now

the SE (61) takes the form of

~F
0 0 0

1t þ 2ϕ~F
0 0

1t ¼ 0

~F
0 0 0

2t þ 2ϕ~F
0 0

2t ¼ �2~F1t
~F

0 0

1t

8

<

:

ð64Þ

where ~F
0

t ¼ ∂~F=∂ϕ , ~F
00

t ¼ ∂2~F=∂ϕ2, etc. and

~FtðϕÞ ¼ σtFtðηÞ, ϕ ¼ σtðη� η0tÞ ð65Þ

To determine the value η0t will use the known Karman’s condition, namely

〈vð∞Þ〉t þm〈vð�∞Þ〉t ¼ 0 ð66Þ

The boundary conditions (56) because of 〈u〉t=u1 ¼ F0tðηÞ ¼
~Ft

0ðϕÞ are converted in accordance

with the boundary conditions (62) to the form
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~F
0
0t ¼ 1, ~F

0
1t ¼ 0, ~F

0
2t ¼ 0 as ϕ ! ∞

~F
0
0t ¼ 1, ~F

0
1t ¼ 1, ~F

0
2t ¼ 0 as ϕ ! �∞

(

ð67Þ

The solution of the dynamic task in the first approximation is easy to obtain in an analytical

form [16]. At that according to momentum equation in SE (64) we have

〈u〉t
u1

¼ ~F
0
t ¼ 1þm� 1

2
ð1� erfϕÞ ð68Þ

while the transverse velocity in Eq. (57) and correlation in Eq. (58) take the following form

〈v〉t
u1

¼ ðϕþ ση0tÞ~F
0
t � ~Ft

σt
ð69Þ

� 〈u0tv
0
t〉t

ΔU2
¼

~F
00
t

2σtð1�mÞ2
ð70Þ

where ΔU ¼ u1 � u2 and the flow function (65) is

~Ft ¼ ϕþm� 1

2
ϕ� ϕerfϕ� 1

ffiffiffiffi

π
p e�ϕ2 þ 2c1t

� �

ð71Þ

Now,we can calculate both the longitudinal velocity profile by Eq. (68) and the correlation profile

by Eq. (70) to evaluate the accuracy of our model in the first approximation. These calculations

showed that the velocity profile in Eq. (68) coincides with the known experimental data at

σt = 18.0, while the correlation profile of fluctuating velocities in Eq. (70) greatly overestimated

(see Figure 4b where according to (47) we have to have 〈u0v0〉 ¼ 〈u0tv
0
t〉t as γ = 1). Therefore, for

specification of our model, we must consider the second approximation of our task.

Figure 4. (a) The self-similar profile of the normalized conditional mean longitudinal velocity 〈U〉t ¼ 〈u〉t=u1 over the

turbulent fluid. (b) Profiles of the normalized conditional mean shear stress 〈τ〉t ¼ �〈u0tv
0
t〉t=ΔU

2: 1, calculation 〈τ〉t
corresponding to the solution of the dynamic task in the first approximation, σt1 ¼ 18:0,; and 2, calculation 〈τ〉t
corresponding to the solution of the dynamic task in the second approximation, σt ¼ 21:5. Symbol o is the measurements

of the total average 〈τ〉 ¼ �〈u0v0〉=ΔU2 (measurements 〈τ〉t of [20] are absent). From now on the curves—our calculations,

symbols—experimental data [20] in the self-similar mixing layer at the parameter m = 0.305.
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The solution of the dynamic task in the second approximation was found in such a manner. The

solution of the second equation in SE (64)

~F
000

2t ¼ e�ϕ2

ðc0 �

ð

~F1t
~F

0 0

2te
�ϕ2

dϕÞ ð72Þ

was found by numerical calculation. At that according to Eq. (60), function ~Ft in the second

approximation contains two constants of integration c1t и c2t. To determine these constants, the

integral relation was involved (for example, see [16]):

lim
ϕ1,ϕ2!∞

ðϕ1

�ϕ2

ð ~Ft
0 0 0

þ 2 ~Ft
~Ft

0 0

Þdϕ ¼ 0 ð73Þ

Hence, the values of the constants are defined with the help of numerical calculation,

c1t ffi 0:4, c2t ffi �0:1. To determine the value η0t ¼ η0tðmÞ in the expression of the dimension-

less coordinates ϕ ¼ σtðη� η0tÞ we will use Eqs. (69) and (66).

The results of calculations of conditional means of this dynamic task for the mixing layer with the

parameterm = 0.305 in comparison with the experimental data of [20] are shown in Figure 4. In

this case, according to our model the calculated value η0t = �0.0181 when σt = 21.5 (in [20]

empirical value η0S = �0.02, i.e., we have a good accuracy for η0t ffi η0S). Hereinafter curves –

our calculations, symbols —measurements are mentioned [20].

Solution of the “fluctuating” task was found in such a manner. The equation of kinetic energy of the

velocity fluctuations in SS (41) for the statistically stationary flow of the turbulent fluid, now in

the approximation of a free boundary layer, has the following form:

〈u〉t
∂〈Et〉t
∂x

þ 〈v〉t
∂〈Et〉t
∂y

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Convt

þ
∂〈ðEt þ p0t=ρÞv

0
t〉t

∂y
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Turb Dt

þ 〈u0itu
0
kt〉t

∂〈u〉t
∂y

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Prodt

þ 〈εt〉t
|ffl{zffl}

Disst

¼ 0 ð74Þ

For completion of Eq. (74) was used the known expressions (43)–(45) with index r = t. Trans-

formation of Eq. (74) taking into account to an automodel form gives

d2〈Et〉�t
dϕ2

þ 2 ~Ft
d〈Et〉�t
dϕ

� 2νEt〈Et〉�t ¼ �
~Ft

0 0 2

ð1�mÞ2
ð75Þ

Here 〈Et〉�t � 〈Et〉t=ΔU
2,ΔU ¼ u1 � u2, Lt ¼ a0tx; the second empirical parameter of themodel is

νEt ¼
c�

2ða0tσtÞ
2

ð76Þ

and is determined by the condition of the best agreement of calculated and experimental data

of turbulent kinetic energy. The separate components in Eq. (75) correspond to Eq. (74) and

have a definite physical meaning:
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Convt ¼ ~Ftd〈Et〉�t=dϕ ! 〈u〉t∂〈Et〉t=∂xþ 〈v〉t∂〈Et〉t=∂y—convective transfer ð77Þ

TurbDt ¼ 0:5d2〈Et〉�t=dϕ
2 ! ∂〈ðEt þ p0t=ρÞv

0
t〉t=∂y—diffusion through the velocity fluctuations

ð78Þ

Prodt ¼ ~Ft
0 0 2
=2ð1�mÞ2 ! 〈u0itu

0
kt〉t∂〈u〉t=∂y—production of the energy fluctuations ð79Þ

Disst ¼ �νEt〈Et〉�t ! 〈εt〉�t—dissipation rate of the energy fluctuations ð80Þ

Eq. (75) was solved with boundary conditions in the form

d〈E〉�t
dϕ

¼ 0 , ϕ ¼
1:65
�1:65

�

ð81Þ

To calculate separate components of intensity (variance) of fluctuating velocity, we will use

approximate ratios:

〈u02t 〉t ffi 〈Et〉t, 〈v
02
t 〉t ffi 〈w02

t 〉t ð82Þ

Eq. (75) was solved by the numerical method (mathematical package MathCad was used).

Interestingly, the solution of Eq. (75) with using asymptotic boundary conditions 〈Et〉�t ! 0

as ϕ ! �∞ gives the bad calculation data. In this regard for the flow of the turbulent fluid have

been used the hard boundary conditions in the form (for m = 0.305)

〈u〉t
u1

¼
0:99, ϕ1 ¼ 1:65
0:32, ϕ2 ¼ �1:65

�

ð83Þ

and

d〈E〉�t
dϕ

¼
0, ϕ1 ¼ 1:65
0, ϕ2 ¼ �1:65

�

ð84Þ

The results of our calculations of conditional means of this “fluctuating” task are presented in

Figure 5. Figure 5a shows the calculation 〈u02t 〉t ⁄ΔU
2 corresponding to Eqs. (75) and (82).

Figure 5b shows the turbulent kinetic energy budget according to Eqs. (77)–(80). At that value

of the parameter νEt ¼ 2. It is worth noting that only Eq. (75) gives the hard edges

�0:075 ≤ η� η0S ≤ 0:079 (the same (84)) for the flow of the turbulent fluid due to the fact that

the solution of Eq. (75) loses its physical sense outside these boundaries (see Figure 5a). So, we

got the hard edges only to the flow of the turbulent fluid.

4.1.2. Modeling of the nonturbulent fluid flow

Solution of the dynamic task for the flow of a nonturbulent fluid was defined in such a manner.

Modeling of this flow was carried out according to the SS (42) and was related to modeling of

the flow of a turbulent fluid by means of statistical ratios in the central field of the mixing layer.

It appeared that division of this subsystem into two with high velocity and low velocity
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regions Gn1 þ Gn2 ¼ Gn gives more precise results of modeling. The flow of a nonturbulent

fluid in one of these regions has not only its own parameters (σn1 ¼ 51:44, η0n1 ¼ �0:015;

σn2 ¼ 36:4, η0n2 ¼ �0:016) but also boundary conditions: asymptotic ones in external regions

and hard ones inside the mixing layer. A butting of the obtained solutions was carried out on

the line η� η0s ffi 0:009 where the condition 〈u〉t ffi 〈u〉n1 ffi 〈u〉n2 is satisfied. Solution of the

fluctuating task for the flow of a nonturbulent fluid was defined in such a manner. In this case,

the solution of the fluctuating kinetic-energy budget equation in SS (42) was found the same as

task for the flow of turbulent fluid. Here, however, boundary conditions were given as asymp-

totic ones. The results of the modeling are presented in Figures 7 and 8a.

4.1.3. Modeling of the total averages

The total averages calculation is required a distribution of the intermittency factor γ. Modeling

of this factor can be performed with the help of the statistical ratio (51) in view of the

dissipation rate 〈ε〉 ¼ γ〈εt〉t þ ð1� γÞ〈εn〉n and 〈ε〉n ffi 0. In this case, the value 〈εt〉t is in the

process of modeling of turbulent fluid by Eq. (74). To calculate the total average of the

dissipation rate 〈ε〉, we propose to use the assumption on its equality to the unconditional

mean, which is found from the RANS model constructed for the mixing layer. At that the

empirical constants σR ¼ 29:0 and η0R ¼ �0:0134 are chosen only from the condition of agree-

ment of the intermittency factor γ calculation with the experimental data. Figure 6 presents the

Figure 5. (a) The profile of the normalized conditional mean intensity of longitudinal velocity fluctuations

〈u02t 〉�t ¼ 〈u02t 〉t=ΔU
2. (b) The turbulent kinetic energy budget over the turbulent fluid: 1, Convt; 2, TurbDt, 3, Prodt,; 4,

Disst. The calculated parameter νEt ¼ 2. Measurements in [20] are absent.

Figure 6. (a) Profiles of the dissipation rate of the energy fluctuations εr ¼ Dissr: 1, DissR ¼ �νER〈ER〉�R and 2,

Disst ¼ �νEt〈Et〉�t at the calculated parameter νER ¼ νEt ¼ 2. (b) The profile of the intermittency factorγ of the turbulent fluid.
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calculation. As RANS models give a good result only in the regions with insignificant inter-

mittency, such a method for determination of the intermittency factor should be considered

only as an approximate one. The results of the modeling of the total averages are presented in

Figures 7 and 8. The some results of the unconditional means, obtained by the RANS model,

are presented in Figure 9. As it seen that the RANS model does not give good results.

5. Conclusion

The new differential equations for the conditional means of turbulent flow are the theory result

of this chapter. On the basis of these equations, the method of autonomous statistical modeling

ASMTurb of such flow was justified. The main feature of this method is that it allows us to

construct the mathematical models for the conditional means of each of the intermittent media

taking place into a turbulent stream autonomously, i.e., independently. The main advantage of

this method is that the system of differential equations for the conditional means does not

contain the source terms. According to this method, the process of transformation the

Figure 8. (a) Profiles of normalized conditional and the total average intensity of longitudinal velocity fluctuations

〈u
02〉�r ¼ 〈u02

r
〉r=ΔU

2: 1-Δ-〈u
02〉�t ; 2-□-〈u

02〉�n1, 3-□-〈u
02〉�n2; 4-o-〈u

02〉�; 5 – ud=ð1�mÞ2. (b) Profiles of normalized total

average turbulent-kinetic-energy 〈E〉� ¼ 〈E〉=ΔU2 and intensity of longitudinal velocity fluctuations 〈u
02〉� ¼ 〈u

02〉=ΔU2:

1-o-〈E〉�; 2–Δ–〈u
02〉�; 3 – ud=ð1�mÞ2. 4 – Ed=ð1�mÞ2.

Figure 7. (a) Profiles of normalized conditional and total average longitudinal velocity 〈U〉r ¼ 〈u〉r=u1: 1-Δ-〈U〉t; 2-□-

〈U〉n1; 3-□-〈U〉n2; 4-o-〈U〉. (b) Profiles of normalized conditional and total average shear stress 〈τ〉r ¼ �〈u
0

r
v
0

r
〉r=ΔU

2: 1–〈τ〉t;

2–〈τ〉n; 3–o–〈τ〉 (measurements of 〈τ〉t and 〈τ〉n in [20] are absent).
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nonturbulent fluid in the turbulent fluid (as a generator of the turbulent fluid) occurs in the

superlayer. Even more, the ASMTurb method allows us to construct the model only for the

turbulent fluid flow, without considering the nonturbulent fluid flow. As far as all the mixing

turbulent processes (and, as consequence, the processing modeling of turbulent heat and mass

transfer) take place only into the turbulent fluid, this peculiarity essentially simplifies the

modeling of such processes. Especially it refers to the turbulent combustion processes, in

which modeling is attended by difficulties. It is important to note that ASMTurb SS (41) and

(42) for conditional means of the turbulent and nonturbulent fluid differ from the known ones

(for example [7]). It should be emphasized that the presented model contains only two empir-

ical parameters σt and νEt. With regard to these parameters, it must be said that their appear-

ance is due to the fact that we do not know neither the expansion rate of the turbulent fluid

downstream nor the maximum value of the turbulent energy generated by the shear rate.

We now make several important remarks.

On the operation of conditional statistical averaging. Sometimes the value 〈Y1jY2〉 is also called

“conditional” mean that makes some confusion in comparison with the conditional means

〈Y1jY2〉r, r = t or r = n. Indeed, variable 〈Y1jY2〉 ¼ γ〈Y1jY2〉t þ ð1� γÞ〈Y1jY2〉n where 〈Y1jY2〉t
and 〈Y1jY2〉n are the conditional means of the characteristics for the turbulent and

nonturbulent fluid, respectively. So, the value of 〈Y1jY2〉 actually is the total average of the

random variable Y1, obtained under the condition of the variable Y2.

On the source terms. The known equations for conditional means contain the source terms,

which are intended to describe the increase in volume of the turbulent fluid downstream.

Here, it is interesting to discover the reasons of such source terms appearance. For this, we

consider the procedure of statistical “unconditional” averaging of the continuous equation,

premultiplied by the intermittency function

∂uk
∂xk

¼ 0 ! I
∂uk
∂xk

! I
∂uk
∂xk

� �

¼ γ
∂uk
∂xk

� �

t

¼ 0 ð85Þ

However, the permutation of averaging and differentiation operations, used in the approach,

gives

I
∂uk
∂xk

� �

¼
∂Iuk
∂xk

� uk
∂I

∂xk

� �

!
∂〈Iuk〉

∂xk
� uk

∂I

∂xk

� �

!
∂γ〈uk〉t
∂xk

� uk
∂I

∂xk

� �

¼ 0 ð86Þ

i.e., gives rise to the appearance of the source terms of a singular type. It stands to reason that

the appearance of such source term is only due to the accepted commutation of the averaging

operation of the partial derivates and has no physical justification.

On the mathematical model for the turbulent fluid flow. The ASMTurb method allows us to con-

struct a model for the turbulent fluid flow without considering the nonturbulent fluid flow. As

far as all mixing turbulent processes take place only in the turbulent fluid, this peculiarity

essentially simplifies the modeling. Even more, this approach allows us to take into account

the source term, using one of the semi-empirical parameters of the mathematical model. To

solve the “pulsation” task we use the turbulent-kinetic-energy budget equation. To distribute

the intensity of the longitudinal velocity pulsations we use the ratio 〈u02r 〉r ffi 〈Er〉r.
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What gives the ASMTurb method. The results of testing the ASMTurb method showed a “surpris-

ing” precision for the turbulent flows modeling—calculations of the conditional and total

averages of statistical characteristics practically completely agreed with the known measure-

ments [20] (see Figures 7 and 8 where curves—our calculation, symbols—experimental data

are mentioned[20]).

What gives the RANSmethod. The some results of the unconditional means, obtained by theRANS

model, are presented in Figure 9. As can be seen, the RANSmodel does not gives good results.

So, the ASMTurb differential equations for the conditional averaged characteristics of the

turbulent and nonturbulent fluid flows coincide with each other in external view. Moreover,

the RANS differential equations have the same external view. However, the boundary condi-

tions and closure hypothesis for the turbulent and nonturbulent fluid flows in the ASMTurb

models may be different. It is this circumstance allows us to construct highly efficient ASMTurb

models of turbulent flows. The RANSmethod does not have this property and thus a searching

for the “satisfactory” closure hypotheses for the RANS models will not give good results.
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