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Abstract

In this chapter, an environment‐friendly approach in synthesizing Au and Au@Ag metal 
nanoparticles using a microgel is demonstrated. Poly(N‐isopropyl acrylamide)/poly‐
ethyleneimine microgel was used as a multifunctional template to reduce metal ions to 
metal nanoparticles, stabilize and immobilize these metal nanoparticles, and regulate 
their accessibility within the template. Such multifunctional roles of microgel template 
were possible due to their unique properties (i.e., amino groups reducing capabil‐
ity, electrostatic and steric stabilizing properties, and swelling/deswelling properties). 
Characterizations of these metal/polymeric composite particles were also performed, 
such as scanning electron microscope (SEM), transmission electron microscope (TEM), 
Zeta‐potential, UV‐vis spectroscopy, X-ray Diffraction (XRD), and X‐ray photoelectron 
spectroscopy (XPS). To test the catalytic activities of both gold and gold@silver nanopar‐
ticles in the microgel template, a model reaction (i.e., reduction of p‐nitrophenol to p‐ami‐
nophenol) was performed. Results showed that bimetallic gold@silver gave 10 times higher 
catalytic activity compared to monometallic gold nanoparticles. With the simple one‐step 
synthesis, a highly scalable process is possible.

Keywords: green synthesis, gold nanoparticles, Au@Ag bimetallic nanoparticles, core‐
shell particles, smart microgel particles, smart materials

1. Introduction to metal/polymeric nanocomposite particles

Metal/polymeric nanocomposite particles are a combination of both metal particles and 

polymers in nanoscale. They come in different terms and play of words. But simply they are 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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 colloidal polymers with metal nanoparticles. Metal nanoparticles that can be incorporated 

into different colloidal polymeric systems are magnetic, semiconductor, and noble metals. 
On the other hand, colloidal polymers act as carriers of these metal nanoparticles. They are 

mostly referred to as polymer templates. These templates can either be soluble (i.e., colloi‐

dally soluble) or insoluble (i.e., solid or heterogeneous) polymers. Figure 1 displays the dif‐

ferent conformations of metal nanoparticles with polymeric templates. For example, metal 

nanoparticles are seen as core (Figure 1a and b [1–2]) or part of the polymeric template shell 

(Figure 1c [3]) or attached to both the core and shell of the composite (Figure 1d [4]).

Applications of metal/polymeric nanocomposites vary from the fields of chemistry (e.g., catal‐
ysis, sensors, and polymers), physics (e.g., optics and electronics), biology (e.g., detection and 

control of microorganism), and nanomedicine (e.g., drug development and immunoassay).

There are two general approaches in synthesizing metal nanoparticles: top‐down and 

bottom‐up. Top‐down methods comprise physical methods such as lithography and 

etching of bulk metals to nanoscopic scale. Bottom-up approaches are more common 
these days than the top‐down. The bottom‐up approach also has an advantage of gener‐

ating uniform nanoparticles with controlled size and shape.

Bottom-up approaches or commonly referred to as wet chemical methods were pioneered 
for more than a century ago [5]. In particular, Michael Faraday’s method used metal‐salt 

solution mixed with reducing agents (e.g., hydrogen, alcohol, hydrazine, or borohydride) 

Figure 1. TEM images of metal nanoparticles (dark dots) encapsulated within its polymeric templates: (a) PNIPAm‐b‐ 

PMOEGMA/Au [Taken from Ref. [1]], (b) PS‐co‐PGA/Au [Taken from Ref. [2]], (c) PS/poly (aminoethylmethacrylate HCl)/

gold particles PNIPAm‐co‐GMA/Au [Taken from Ref. [3]], and (d) PNIPAm‐b‐PMOEGMA/ Au with Ag [Taken from Ref. [4]].
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and later, stabilizing agents (e.g., ligands, polymers, or surfactants). Turkevich et al. [6] and 

Brust-Schiffrin et al. [7] were able to use this similar approach by synthesizing gold nanopar‐

ticles. Their synthetic route involved the reaction of a chloroauric acid with sodium citrate 

solution at boiling temperature (HAuCl
4
 + Na

3
C

6
H

5
O

7
 = Au0). Later on, Frens [8] was able to 

control the size formation of gold nanoparticles by varying the reducing agent to gold‐salt 

ratio during the reduction process. Furthermore, Yonezawa and Kunitake [9] used sodium 

3-mercaptopropionate to the prestabilized citrate gold nanoparticles. The Brust-Schiffrin’s 
method involves the reduction of gold‐salt solution using a thiol‐based organic solvent in a 

two‐phase system. The organic layer is separated, evaporated, and mixed with ethanol to 

get rid of excess thiol. The crude product is further dissolved in toluene and precipitated 

in ethanol. A modified Brust-Schiffrin process was carried out by Murray et al. [10] or 

commonly called as “place exchange” process. This process used various functionalities, 

such as bromine, cyanide, ferrocenyl, alcohol, formaldehyde, and anthraquinone, in replace‐

ment of a simple alkane group. Sulfur ligands such as xanthates [11], disulfides [12], di and 

trithiols [13], and resorcinarene tetrathiols [14] have also been utilized for gold nanoparticles 

(AuNPs) syntheses. Biphasic methods of AuNP synthesis can also use similar ligands such as 
phosphine [15], amine [16], carboxylate [17], isocyanides [18], citrate with acetone [19], and 

iodine [20]. Structures of these ligands are shown in Figure 2.

In general, there are three classifications of approaches to prepare AuNPs: (1) nonchemical 
methods such as electrochemical [21] and thermal decomposition of a metal‐salt solution [22], 

photochemical [23], sonochemical [24], laser ablation synthesis [25], and microwave‐assisted 

technique [26]; (2) biological sources such as the use of plant extracts and microorganism‐

assisted formation of metal nanoparticles. Bio-reduction of metal ions involves both intracellu‐

lar and extracellular precipitations of metal nanoparticles within the microorganism (Figure 3) 

[27]. Biomolecules such as proteins are mainly responsible for the synthesis of gold nanopar‐

ticles while enzymes produced in the outer layer membrane of the microorganism are respon‐

sible for the reduction of gold ions. The biological pathways for metal nanoparticles synthesis 

Figure 2. Different ligand molecular structures that can be used for gold nanoparticle synthesis.
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can be carried out by a microorganism (e.g., bacteria [28], yeast (P. jadini), and fungal (V. luteo‐

album) cultures [29]), plants [30–32] and plant extracts [33]. In recent years, development of 

plant extract‐based synthesis of metal nanoparticles has been investigated. Using plant‐based 

synthesis results into more stable and faster rate of synthesis compared in the case of micro‐

organism [34]. (3) Use of a polymer as a template for metal nanoparticles (MNPs) generation 

is commonly called polymer‐mediated synthesis. This emerging type of approach was con‐

ceived to solve the issue on MNP aggregation.

1.1. Polymer‐mediated synthesis of metal nanoparticles

Polymers that have both reducing and stabilizing properties have been developed to syn‐

thesize metal nanoparticles. Such dual properties give pure and homogenous products. The 

main feature of this approach lies on its low cost, high efficiency, and environmentally benign 
nature. Several existing polymers, which display these dual properties (e.g., reducing and 

stabilizing metal nanoparticles), have already been used in the synthesis of MNPs such as 

poly(N‐vinyl‐2‐pyrrolidone) (PVP) [35], poly(allylamine) (PAAm) [36], poly(o‐phenylenedi‐

amine) (PoPD) [37], polyethyleneimine (PEI) [38], and poly(4‐styrenesulfonic acid‐co‐maleic 

acid) (PSSMA) [39]. Mechanisms have been studied in the reducing capacity of the PVP. These 

include a free radical mechanism, oxidation of the hydroxyl end groups [40] and the C=O 

double bond [41]. Other factors include an abundance of amino groups in the PAAm and PEI 

molecules that drive the reduction of gold ions into metal nanoparticles and strong bonding 

between the electrons donor, π orbitals donor, and the lone pair orbitals of amine groups of 
PoPD with the electron-deficient orbitals of gold nanoclusters providing efficient stabilizing 
effect. Due to the high impact polymer-assisted approach on the synthesis of metal nanopar‐

ticles, several studies came up with some concluded advantages.

Figure 3. Biosynthetic mechanism of metal nanoparticles using microorganism [Taken from Ref. [27]].
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(1) Only a small concentration of polymer is used. (2) The functional groups in the polymer 
can serve for dual properties. (3) Polymer template itself can control the size and morphology 

of MNPs and its resultant composite.

1.2. Core‐shell particles (CSP)

With the promising potential of the polymer‐assisted approach on the synthesis of 

metal nanoparticles, the authors make use of polymeric particles. Here, it is referred 

as core‐shell particles (CSP). Some of the commonly used polymers as templates and 

nanoreactors for metal nanoparticle formation are poly(glycidyl methacrylate‐co‐N‐isopro‐

pylacrylamide) [(poly(GMA‐co‐NIPAM))] [42], poly(N‐isopropylacrylamide)‐co‐poly(acrylic 

acid) (PNIPAM‐co‐PAA) [43], glycidyl methacrylate (GMA) and N‐ isopropyl acrylamide 

(NIPAM) [44], polystyrene (PS) core and a polyaniline (PANI) [45], (poly(N‐isopro‐

pylacrylamide‐acrylic acid) P(NIPAM‐AA) [46], long cationic polyelectrolyte chains of 

poly(2‐aminoethyl methacrylate hydrochloride) (PAEMH)) [47], and poly(ionic liquid) 

(PIL) [48].

Over the past decade, a metal‐salt reduction process is the most common method for 

 generating metal nanoparticles. This type of reaction has shown reliability and uniformity 

of metal nanoparticles produced. However, environmental concerns are not well addressed 

or worst not met. For example, the use of different forms of energy (e.g., photoirradiation, 
ultrasound irradiation, and high temperature boiling process) in both electrochemical and 

thermal decomposition methods is far way exploited [49] in addition to long and tedious 

synthetic procedures. And worst, giving low yields [50] with a high polydispersity of metal 

nanoparticles. Such high polydispersity is mostly observed in a reverse microemulsion of 

metal nanocomposite [51]. For metal nanoparticles bound ligands, the consequence of the 

difficulty in dispersing in water hinders the surface modification and functionalization for 
 further applications [7]. As a result of this water incompatibility, metal nanoparticle proper‐

ties are altered [52]. Also, some reducing agents such as sodium borohydride and hydrazine 

are considered toxic chemicals and not tolerable for future commercial scale‐up [53]. Else, 

defective products or impurities may arise from excess reducing agents [54]. As a result, 

impurities left behind may eventually affect the composite material’s functionality and its 
potential applications.

With the existing and emerging technologies in the synthesis of metal/polymeric nanocom‐

posites, there is still a great challenge to the concept of Green Chemistry. This concept aims at 

the development of methods for the synthesis of metal/polymeric in this case, with the least 

impact on humans and environment as a whole. The challenges in creating novel metal/poly‐

mer nanocomposites are: (1) to create a unique template that is an all-in-one platform that can 
reduce metal ions to nanoparticles, immobilize the resultant nanoparticles, and stabilize the 

composite particle; (2) to regulate the accessibility of the metal nanoparticles through control‐

ling external stimuli such as pH, temperature, and electrolyte; (3) to immobilize other organic 

and biological molecules for protection and deliveries; (4) to easily be purified and recovered; 
(5) to efficiently scale up process for commercialization.
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2. Core‐shell microgel template and metal/polymeric nanocomposite 

synthesis

A novel approach was developed with a simple yet versatile synthesis of a variety of amphi‐

philic core‐shell particles [55]. This approach enables to synthesize a broad range of core‐

shell particles with different chemical structure, composition, size, and functionality. The 
process uses aqueous‐based Chemistry, which is environmentally benign, and the particles 

are easy to synthesize in high solids content (up to 30%) in the absence of surfactant. A 
novel feature of this synthetic approach is that it combines graft copolymerization, in situ 

self‐assembly of the resulting amphiphilic graft copolymers and emulsion polymerization in 

a one‐step synthesis. In this chapter, core‐shell microgels were used in the synthesis of mono 

(Au) and bimetallic (Au@Ag) nanoparticles. Briefly, the mechanism involved in the core-shell 
microgel synthesis combines graft copolymerization of vinyl monomer from a water‐soluble 

polymer containing an amino group and self‐assembly of the resulting particle. Graft polym‐

erization of vinyl monomer in water happens when amino radicals are formed. The electron 

transfer and loss of proton form amino radicals during the interaction of alkyl hydroper‐

oxide (ROOH) with the amino group of the polymer backbone (i.e., PEI is mostly used). 
Alkoxyl radicals (RO) are inevitably produced during this interaction. The resulting amphi‐
philic macroradicals undergo self‐assembly forming micelle‐like microdomains, where they 

become loci for the further polymerization of the monomers. The generated RO·radical on 
the other hand initiates homopolymerization of the vinyl monomer or creates radicals for 

further graft polymerization. This process results in well-defined core-shell particle structure 
with a hydrophilic shell and a hydrophobic core.

2.1. Synthesis of AuNPs in PNIPAm/PEI microgel template

The preparation of the Au nanocomposite (Au/(PNIPAm/PEI)) particles was carried out based 

on a previous method [56] developed by Tan et al., performed via the addition of hydrogen 

tetrachloroaurate(III) trihydrate (HAuCl
4
·3H

2
O) solution into the as‐prepared PNIPAm/PEI. 

The mixture was continuously stirred and carried out at different temperatures and pHs for 
2 hours and heated at 60°C for about an hour. The resulting gold loaded microgels were then 
purified by centrifugation.

Gold nanoparticle formation in a microgel template is shown in a schematic diagram (Figure 4). 

Such formation from its ionic form is considered to be thermodynamically stable, which does 

not need any activation energy to form gold nanoparticles even at room temperature. Two 

successive reactions occur to complete the gold generation. First is the interaction between 

the negatively charged gold chloride ions (AuCl
4
−) and the cationic microgels. Once the gold 

ions are attracted into the microgel, a subsequent redox reaction occurs between the gold 
ions and available amine groups in the microgel template. As a result, gold ions are reduced 

while the amine groups are oxidized. Amine oxidation allows transfer of electrons from the 

amine to the gold ions, thus, generating zero‐state AuNPs. Such reaction was reported by 

Lala et al. [57], wherein they have proposed that the AuCl
4
− ions are  electrostatically bound to 
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the  protonated amine group and simultaneously reduced by the unprotonated amine group. 

AuNPs clusters were allowed to grow by further heating or manipulating their temperature 

or pH conditions.

2.2. Synthesis of Au@Ag/core‐shell PNIPAm/PEI microgel composite particles

Au@Ag bimetallic nanoparticle synthesis was carried out through a progressive reduction 

of Au and Ag metal ions as performed previously by Tan et al. [58]. Gold metal ions were 

first reduced to the shell component of the microgel. These gold metal nanoparticles were 
then used as a seed for the successive reduction of the silver ions to silver nanoparticles. 

Appropriate molar ratios of Au3+ and Ag1+ ions were used and mixed for 30 minutes to reduce 
the silver ions to metal nanoparticles further, followed by heating at 60°C for 30 minutes.

Generating bimetallic nanoparticles in a microgel template is shown in a schematic diagram 

(Figure 5a). After the synthesis of microgel template through graft copolymerization, gold 

clusters were first generated on the shell layers of the templates. Such generation is possible 
due to hyperbranched PEI in the shell region, which contains amine groups that are known to 

have reducing ability to generate metal nanoparticles [59]. And through the chelating proper‐

ties of the same amino groups, PEI can also complex with metal ions and metal nanoparticles 

[60]. The preformed gold nanoparticles acted as seeds or nucleation sites for further bimetallic 

nanocrystals formation. Such formation of Au seeds occurred after 30–40 minutes of reaction at 
room temperature which was evident by the change of the solution color from turbid white to 

light pink. The transition of the solution color also signifies the change in ionization potential 
and electron affinity values of Au atoms. Au atoms’ ionization potential becomes higher than 
those of Ag atoms. Such shift results to a larger electronegativity value for Au, wherein signifi‐

cant charge transfer may occur from silver to gold atoms [61]. Simultaneously, silver metal ions 

(Ag+) were reduced to silver nanoparticles through under‐potential deposition mechanism 

[62], or noble metal induced reduction (NMIR) method [63]. Further, illustration of this mecha‐

nism is displayed in Figure 5b. It is shown that gold nanoparticles used as a seed for further 

reduction of silver ions to silver nanoparticles. The AuNP with a bigger size attracts the silver 
ions resulting to a bimetallic alloy nanoparticle. Further heating was necessary to improve the 

crystallinity of the bimetallic nanoparticles. Consequently, heating of these composite particles 

removes partially the template resulting in the naked exposure bimetallic nanoparticles.

Figure 4. Schematic diagram on the synthesis of gold nanoparticles (AuNPs) using PNIPAm/PEI microgel as a template.
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3. Multifunctional roles of PNIPAm/PEI microgel

3.1. Microgel as a nanoreactor

Transmission electron microscope (TEM) images of both the empty PNIPAm/PEI microgel 

template and the gold nanoparticle-filled composite particles are shown in Figure 4. Herein, 

the empty PNIPAm/PEI microgel particles show a core‐shell structure (Figure 6a), while 

AuNP-filled microgel template (Figure 6b) shows darks spots around its perimeter. The gold 

nanoparticles within the microgel template look like clusters of small gold nanoparticles. 

When heated to 60°C for an hour, the gold nanoparticles further crystallized and became 
clearer. The size of the gold nanoparticles was roughly estimated at an average of 17.60 ± 2.34 
nm with a narrow size distribution.

Figure 5. (a) Schematic diagram on the synthesis of bimetallic nanoparticles from Au/PNIPAm/PEI composite particles, 

(b) mechanism on the formation of Au@Ag nanoparticles from Au/PNIPAm/PEI nanocomposites.
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The kinetics of the formation of gold nanoparticles was monitored through the UV‐vis absor‐

bance at 525 nm wavelength with time. Such adsorption at 525 nm wavelength is one charac‐

teristic of AuNPs. In Figure 7, the increase of the absorbance was fast in the first 30 minutes 
of reaction and became slower after that, until the third hour of reaction. The reaction started 

to cease after 3 hours, and no significant change of absorbance was further observed. This 
data concludes that both electrostatic interaction and reduction of gold ions to nanoparticles 

simultaneously occurred at a fast rate. This graph further proves that there is a rapid nucle‐

ation during the initial stage of gold‐ion reduction, resulting in numerous Au clusters. It was 

further concluded that the reduction of gold ions to AuNPs using microgel was 625 times 

faster than the naked hyperbranched PEI (linear curve with hollow points).

3.2. Microgel as a stabilizer of AuNPs in composite particles

There are two kinds of stabilization that holds both the AuNPs and the composite material in 

suspension. Such stabilization is due to the microgel template’s property to provide electro‐

static interaction between composite particles and steric effect of the PEI shell.

Electrostatic interaction between the composite particles and the gold nanoparticles within 

the template is the primary contributor to its stabilization. When Au nanoparticles are formed 

and immobilized in the particle template, the overall size of the composite particle becomes 

smaller than the pure template itself. This shrinkage is due to the formation of gold/amine 

complexes resulting in the contraction of the PEI shell. Such contraction of PEI shell reduces 

metal nanoparticles leaking from its template or its individual network‐cage‐like structure. 

Consequently, continuous leaking of naked AuNPs will form aggregates within the template. 

On the other hand, the same repulsion force acts between composite particles. Such force 

prevents them from getting attracted to each other preventing them from forming precipitates 
eventually.

Steric contribution to the stabilization of the AuNPs comes from the hyperbranched structure 

of the PEI‐shell component in the microgel template. This type of stabilization is known in a 

lot of amphiphilic graft copolymers [64]. Such property of amphiphilic copolymers is due to 

the hydrophobic‐hydrophilic interaction of the copolymers involved. This interaction is very 

Figure 6. TEM images of the (a) PNIPAm/PEI microgel template, (b) Au/(PNIPAm/PEI) composite particles synthesized 

at 25°C and pH 7.30, and (c) heated Au/PNIPAm/PEI composite particles.
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significant on the stability of the microgel template itself and in the formation of Au/microgel 
composite particles. When this interaction happens in the microgel template, the PEI shell 

anchors in the gold nanoparticles, while the PNIPAm core is kept together away from the 

shell. With such action, both the shape and stability of the composite particles are achieved.

3.3. Microgel as AuNP immobilizer

The generated gold nanoparticles using microgel template were immobilized through the 

template PEI shell’s properties. Primarily, the weak bonding between the amino group and 

the gold nanoparticles is the primary source of immobilization [65, 66]. Such immobilization 

strongly supported by the hyperbranched nature of the PEI [67], which helps to shield AuNPs 

into a network‐cage like structure. Such construction provides bulkiness and prevents the 

AuNPs from aggregating with neighboring AuNPs or composite particles. Furthermore, PEI‐

shell structure can also link the gold nanoparticles intact [68] within its boundary template.

There are five pieces of evidence to demonstrate the microgel acting as an immobilizer of 
gold nanoparticles: (1) In Figure 6b, AuNPs are seen as fuzzy gray dots embedded within the 

circumference of the microgel, attached in the shell region. (2) There was a decrease in the 
size of the pure microgel template when loaded with AuNPs. The decrease in size was due 

to the encapsulation of the gold metal ions attracted to the template. Absorption of the gold 
metal ions leads to the shrinking of the composite material. (3) There was a decrease in the 

zeta-potential from 30 to 15 mV from a pure microgel to Au-loaded template, respectively. 
Such decrease of the zeta-potential is attributed to the partial consumption of the cationic 

Figure 7. Time courses of the absorbance monitored at 525 nm during the formation of gold nanoparticles in the presence 

of PNIPAm/PEI microgel particles (25°C, at pH 5.6).
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 ammonium ions during the gold‐ion adsorption stage. (4) X‐ray photoelectron spectroscopy 

(XPS) (Figure 14) result further shows proof of the immobilization of AuNP in microgel tem‐

plate. This result verifies the location of AuNPs which are found within 2—10 nm deep from 
the surface of the microgel template. (5) The ligand role of the PEI shell (i.e., complexation of 

the water-soluble PEI with metal ions) plays a significant part of the immobilization of AuNPs. 
This ligand role property results in some advantages of the composite material such as water 

solubility, high capacity for metal uptake, easy separation of polymer complexes, high flex‐

ibility of the molecular conformation, and good chemical and physical stability [69–71].

3.4. Microgel as a smart controller of AuNP accessibility

One of the best features of PNIPAm/PEI microgel template is its ability to regulate its size. Such 

ability is useful in the accessibility of the gold nanoparticles generated within the microgel 

template. This ability of the microgel comes from the stimuli‐responsive nature of the PNIPAm 

or some refer them to smart materials. In the case of PNIPAm/PEI microgel, such sensitivity 

is based on both sensitive pH and temperature. The core part of the microgel, PNIPAm is 

temperature sensitive, while the PEI shell is pH sensitive. The response of this soft template to 

temperature or pH affects its conformational structure. The changes in the structure of the tem‐

plate result in the controlled accessibility of AuNPs as demonstrated in Figure 8. Herein, the 

microgel template loaded with AuNPs is in different sizes under different pH or temperatures. 
At low pH, the template gets protonated and swells. Such swelling exposes the encapsulated 

AuNPs. However, when pH increases, the microgel becomes deprotonated and deswelling 

of the template occurs. By this action of the microgel template, AuNPs embedded within are 
trapped. The same action also controls that degree of plasmon coupling of AuNPs. Such cou‐

pling property originates from the dipole interaction among gold nanoparticles, which allows 

the control of the interparticle distance between gold nanoparticles [72].

On the other hand, when the temperature of the microgel system reaches beyond the lower 

critical solution temperature (LCST) point of the core part, PNIPAm (i.e., 32°C), the entire 
template shrinks. Such shrinking leads to the trapping of AuNPs within the template. But 
when the temperature goes below the LCST of PNIPAm, the template is more open and loose 

than the original condition. This looseness results in easy accessibility of the AuNPs within 

the template.

Microgel particles were subjected to different temperature conditions at 29°C, 45°C, and back 
to 29°C in aqueous solution to demonstrate the smart properties of the template. Their cor‐

responding structural changes of the microgel particles under different temperatures were 
captured with AFM analysis. Original microgel template at 29°C in a fluid mode is shown in 
Figure 8a with sizes ranging from 100 to 150 nm with quasi-spherical morphologies. When 
the temperature was raised to 45oC (Figure 8b), the templates decreased in size showing 

porous surfaces. Such phenomenon is attributed to the shrinking of the templates as it goes 
beyond its volume phase transition temperature (VPTT). However, when restored to 29°C 
(Figure 8c), the smooth morphology and size of the templates were restored. Such restoration 

demonstrates that the conformational changes of the template triggered by the response to 

temperature are reversible.
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4. Measurements and characterization

4.1. Particle size and surface charge

Dynamic Light spectrophotometer measured the sizes of both pure and gold‐loaded micro‐

gels. Synthesized PNIPAm/PEI microgels have an average hydrodynamic diameter of 402 nm 
while the gold‐microgel composite particles were measured at 298 nm as shown in Figure 9a. 

The polydispersity indices on both unloaded and gold-loaded particles were 0.050 and 0.055, 
respectively. As anticipated, the particle size of the gold‐loaded microgel is smaller than the 

pure microgel. This decline in size is due to the incorporation of the counterions into the 

microgel template during the metal ion absorption and reduction stages. Furthermore, when 

AuNPs are formed, the microgel network immobilizes in‐situ generated AuNPs by capturing 

them on its network-like structure, providing a steric effect on the metal nanoparticles.

The gold‐loaded microgel particles were further characterized based on its surface charge 

expressed in zeta‐potential. Gold‐loaded composite particles have an average zeta‐potential 

of 15 mV at pH 7.00 in an aqueous medium. At this state, composite particles were stable with 
no aggregation or precipitation occurred. However, zeta-potential can be affected by the pH 
solution in a colloidal system. To demonstrate this effect, Figure 9b demonstrates the change 

of the surface charge as a function of pH. In the same figure, gold-loaded microgels can be 
grouped into a three-phase behavior regarding zeta-potential versus pH solution. The first 
phase shows a constant zeta‐potential behavior at a pH range of 2–6.5. The second phase 

is between pH 6.5 and 9.0, which shows a noticeable decrease of zeta-potential. The third 

Figure 8. Left side: conformational changes of microgel template from stimuli response to pH solution and temperature. 

Right side: AFM micrographs of PNIPAM/PEI microgel particles measured in a fluid mode at different temperatures: (a) 
29°C; (b) 45°C; and (c) Cooled from 45 to 29°C. Scale bar: 200 nm.
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phase between pH 9.0 and 11.5 gives a slight change of zeta-potential values. The constant 
zeta-potential in the first phase is attributed to the saturation of microgel template with AuNP 
at this certain range of pH. However, increasing the pH affects the composite material and 
decreases its surface charge surpassing the isoelectric point (i.e., pH 9.2). Further increase of 

pH at this stage may supersaturate the microgel template and then again give a very minimal 

or no effect on its zeta-potential.

To demonstrate the effect of temperature on its surface charge, Figure 10 shows that vary‐

ing solution temperatures from 25 to 40°C strongly affect the zeta-potential of both the pure 
and gold‐loaded microgel particles. An abrupt change of surface charge in the temperature 

range between 29 and 34°C is obvious. This region crosses the VPTT region of the microgels. 
However, prior and after this temperature range, the zeta‐potential was more or less constant. 

Such behavior is attributed to the increase in the surface charge density of the composite par‐

ticles with the decrease in size. Smaller particles result in higher surface charge density, result‐

ing in the shrinking of the composite particles, as also observed in the work of Ou et al. [73].

4.2. Scanning electron microscope (SEM) and transmission electron microscope (TEM) 

images

SEM and TEM images of the AuNP/(PNIPAm/PEI) composite particles are both shown in 

Figure 11. Figure 11a shows uniform spherical morphologies of the composite particles. 

Such morphologies are identical to that of the original microgel template (Figure 11a inset). 

However, partial agglomeration of the particles is also observed which may have occurred 

during the drying of the SEM sample treatment. Figure 11b shows the TEM image of the 

gold‐loaded microgel which shows clearly the location of the AuNPs within the microgel 

template. Specifically, AuNPs reside around the circumference of the microgel attached in the 
shell region. Apparently, these images also show the effectiveness of the immobilization of 
the gold nanoparticles within the microgel network.

Figure 9. (a) Particle size and size distribution of pure microgel template and Au/(PNIPAm/PEI) composite particles 

synthesized at optimum conditions of 25°C and pH 7.30. (b) Zeta-potential profile of gold-loaded microgel (solid points) 
and pure microgel template (hollow points) in different pH solution.
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4.3. UV‐vis spectroscopy

The formation of gold nanoparticles in the presence of microgel template was monitored by 

a UV‐vis spectroscopy as a function of time. In this case, gold nanoparticle formation was 

evident at the absorbance wavelength of 525 nm as shown in Figure 12. Gold formation starts 

Figure 10. Zeta-potential profile of gold-loaded microgel composite particles (solid points) and pure microgel template 
(hollow points) in different temperature conditions.

Figure 11. (a) SEM image of Au/ (PNIPAm/PEI) composite particles, inset is the original microgel template, (b) TEM 

image of Au/ (PNIPAm/PEI) composite particles. The particles were synthesized at 25°C and pH 7.30.
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after 20 minutes of reaction together with the change in color from turbid white to light pink. 
An increase of absorbance happens as further reaction occurs for gold nanoparticle formation. 

This also gives rise on the concentration of gold nanoparticle at higher absorbance. After 4 

hours of reaction, it was observed that there were no more significant changes in the absor‐

bance intensity, which signify that gold nanoparticles have ceased to grow or gold ions have 

ultimately been reduced to nanoparticles. Wavelength absorbance of gold nanoparticles rang‐

ing from 520 to 525 nm is a characteristic of Au nanoparticles with spherical shape with sizes 
ranging from 15 to 30 nm [74].

4.4. High‐resolution TEM (HRTEM) and X‐ray diffraction

To get a closer look at the image of AuNPs immobilized within the PNIPAm/PEI microgels 

template, an HRTEM analysis was performed as shown in Figure 13a. This image reveals a 

five-fold twinned Au nanocrystal with a diameter of 22.5 nm. Top inset of Figure 13a displays 

the selected-area of electron diffraction (SAED) pattern of AuNPs examined, which reveals 
ring patterns indexed as (111), (200), and (222) of a face-centered cubic (FCC) gold lattice. 
Furthermore, this five-fold twinned boundary at the center of an Au nanocrystal can suggest 
formation of a multiply twinned particle (MTP) close to an icosahedral gold nanostructure. 

The fuzzy portion observed on TEM image is attributed to the composite particle’s sensitiv‐

ity to misorientation and distortion of the ideal icosahedrons. Aside from the twin boundary 

observed, the Au nanostructure is mainly composed of (111) planes with a d-spacing of 0.236 
nm as shown in Figure 13b. The lattice plane is separated by a twin boundary indicated as 
a white line on the image. The crystallinity of AuNPs embedded in the microgel template is 

Figure 12. UV-vis spectra profile for reduction of gold ions to nanoparticles using a PNIPAm/PEI microgels versus time 
(minute). Experiment was performed at 25°C, pH 5.6, 200 rpm, with N/Au molar ratio of 28.5.

Environment-Friendly Approach in the Synthesis of Metal/Polymeric Nanocomposite Particles and Their Catalytic...
http://dx.doi.org/10.5772/intechopen.68388

105



analyzed through an X-ray diffractometer in Figure 13c. Au nanocrystals formed have lattice 
arrangements of (111), (200), and (220) at corresponding angles of 38, 44, and 65o. This result 
is consistent with the previous SAED analysis except for the (220) lattice with a dominant 
(111) arrangement.

4.5. Surface composition using X‐ray photoelectron spectroscopy

To further investigate the formation of AuNPs using a microgel template, X‐ray photoelectron 

spectroscopy (XPS) analysis at a depth of 10 nm was used. Results shown in Figure 14 reveal 

an XPS spectra with binding energies of different elements present in the composite particles. 
The binding energies correspond to elements of C, O, N, and Au. Convoluted C1s spectra were 
fitted with peaks at 285.0 and 287.9 eV, assigned to C-C/C-H and C-O bonds, respectively. N1s 
peak fitted at 399.3 assigned to amines coordinated with AuNPs. O1s at 531.2 eV corresponds 
to the carbonyl functional group of the microgel. Zero‐valent AuNPs are observed from its 

two peak characteristics at 84.3 and 88 eV, consistent with literature [75]. Other characteristic 

of AuNP is its XPS spectra peak‐to‐peak distance of 3.7 eV on the Au 4f doublet which further 

gives a standard measure of the Au0 oxidation state [76]. As the AuNPs attached to the amino 
groups, detection of N1s in the XPS analysis weakens due to the overlapping of AuNPs on the 
amine group [77], eventually strengthening the Au signal. This amine‐gold interaction was 

also observed in the work of Kumar et al. [78] and similar to Manna et al. [79]. Nitrogen peak 

was also curve fitted into two components at 399.3 and 401.2 eV. The first one corresponds to 
the amine (free and coordinated to gold) and the other corresponds to the protonated amine 

or ammonium. With the presence of these two peaks, AuNP binding to the amine group is 

more on metal‐ligand coordination (metallic gold atom and amine) than electrostatic interac‐

tion (between ammonium and the negative charges on the surface of the particles).

Further study on the same XPS spectra indicates that there was no significant change of O1s to 
C1s ratio before and after gold loading. Such insignificant change further proves the presence 
of the carbonyl functional group, PNIPAm, in the microgel. The XPS spectra also mean that at 

a depth of at most 10 nm, PNIPAm is present within the shell region partially overlapping the 

Figure 13. (a) HRTEM image of Au nanoparticle embedded within a microgel template, inset is the selected-area electron 
diffraction (SAED) pattern, (b) (111) planes of Au nanocrystal with a d-spacing of 0.236 nm, and (c) XRD spectra of Au/
PNIPAm/PEI composite particles.
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core. With this overlapping of shell component to the core makes the whole microgel system 

shrink whenever PNIPAm shell becomes sensitive to temperature. Such phenomenon further 

verifies our claim that the amine group residing in the PEI shell l is mainly responsible for the 
formation and binding of the AuNPs.

5. Catalytic activities of gold/microgel and gold@silver/microgel 

nanocomposite particles

To demonstrate the catalytic activity of gold and gold@silver nanoparticles in a microgel 

template, a catalytic reduction first order kinetic model (i.e., p‐nitrophenol reduction by 

sodium borohydride) was chosen. Silver and gold metal nanoparticles have a wide absorp‐

tion band in the visible region of the electromagnetic spectrum. Thus, they are easy to 

characterize and with a wide availability of related literature. These metal nanoparticles 

have also been involved in many catalytic organic reactions and synthesis in both pure and 

alloyed form. Previous study suggests that silver preserves the overall spherical morphology 

of the resultant bimetallic eventually prevents the tendency to phase segregate [85]. These 

are the primary reasons why these two metals have been chosen to demonstrate the metal 

nanoparticle forming capabilities of the microgel (i.e., PNIPAm/PEI) template. The p‐nitro‐

phenol solution exhibits a typical absorption peak at around 320 nm under neutral or acidic 
condition. When sufficient amount of NaBH

4
 is added, the nitrophenolate ions become the 

dominant species and reduce to aminophenol. Such conversion causes the absorption peak 

to shift to 400 nm. In the absence of any catalyst, the reduction of p-nitrophenol by NaBH
4
 

Figure 14. XPS spectra of AuNP embedded in PNIPAm/PEI microgel template. Inset is the Au 4f core‐level spectra.
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cannot proceed based on a control experiment. And theoretically, this is because the E
o
 value 

for the reduction of p‐nitrophenol to p-aminophenol was −0.76 V and that of H
3
BO

3
/BH

4
− 

was −1.33 V versus the standard hydrogen electrode (NHE). However, when a reduction of  
p‐nitrophenol starts, a new peak appears at about 310 nm, which corresponded to the typi‐
cal absorption peak of p‐aminophenol Physical change on the solution color is also obvious 

during the reaction [80]. For the case of gold@silver metal nanoparticle as catalyst, it only 

took 2 minutes to complete the catalytic reaction (Figure 15a). When using monometallic 

Au catalyst, catalytic reactions were completed in 15 minutes and 3.5 minutes using dif‐
ferent amine to gold ratios (i.e., 28.2 and 14.09, respectively). The catalytic activity of the 
bimetallic catalyst is obviously higher than that of the monometallic catalyst using the 

same template.

The kinetic rate constant, which is proportional to its overall kinetic rate in a first order reac‐

tion, was estimated from its slope. The control sample has a rate constant of 5.4 × 10−3 s−1. 

However, when monometallic gold nanoparticles (N/Au = 28.20 mole ratio) was used as a 
catalyst, the reaction proceeded approximately 10 times faster (i.e., with a rate constant of 
2.44 × 10−2 s−1) than without catalysts. Moreover, when bimetallic gold@silver nanoparticles 

were used as a catalyst, the reaction rate was significantly enhanced. The enhancement in 
catalytic activity is attributed to the synergistic effects and the flexible design between the 
two metal nanoparticles [81], in this case gold and silver nanoparticles. The electronic and 

geometrical properties of the synthesized bimetallic nanoparticles can also affect the catalytic 
activity. Similar studies suggest that the increase in the number of low coordination number, 

edge and corner sites can also enhance catalytic activity [82]. Surface science studies conclude 

that the surface electronic structure can be modified by the interactions between the two kinds 
of atoms in the bimetallic alloy owing to ligand [83] and strain effects [84]. Figure 15b shows 

comparison of the different catalytic reaction rates constants by plotting ln (C
t
/C0)  versus 

Figure 15. (a) UV-vis spectroscopy profile for the reduction of p‐nitrophenol to p‐aminophenol using Au@Ag/(PNIPAm/

PEI) composite particle as a catalyst. The different colored-curves refer to the different 30 second time intervals, (b) plot 
of ln (C

t
/C0) as a function of time for the reaction catalyzed by Au/PNIPAm/PEI in different N/Au mole ratios and Au@Ag 

bimetallic nanoparticles in PNIPAm/PEI template. Inset is the reaction scheme of the catalytic reaction model used (i.e., 

reduction of p‐nitrophenol to p‐aminophenol).
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reaction time for the reduction of p‐nitrophenol. The results demonstrate that the increase or 

incorporation of different metal nanoparticles can significantly increase the reduction rate.

5.1. Modification of AuNP to Au@Ag bimetallic NP and its effect on catalysis

The main goal in making bimetallic nanoparticles is to enhance the catalytic activity in the 

reduction of p‐nitrophenol to p‐aminophenol. Through the introduction of silver ions into the 

as-prepared seed gold nanoparticles, surface modification was achieved in the resultant bime‐

tallic Au@Ag nanoparticles. This modification affects the electronic properties of the resultant 
bimetallic nanoparticles affecting the catalytic activities. Thus, the role of the Ag in the bime‐

tallic structure is a co‐catalyst able to promote the ligand effect [85].

Ligand effect suggests that with the presence of a co-catalyst, Ag is important for the redox 
reaction (i.e., reduction of p‐nitrophenol) occurring on Ag@Au interfaces [86]. These Ag@Au inter‐

faces are the main actors in improving the catalytic activities. Figure 16 demonstrates an Ag@Au 

interface with different work functions (i.e., Au (~5.3 eV) and Ag (~4.7 eV)). Since Ag has a lower 
work function compared to Au, electrons leave from the Ag atom side of the interface toward 

the Au side through a depleted region (Region D). As a result, the Au becomes an electron-rich 
region (Region E). The abundance of electrons on the Au side initiates the uptake of electron from 
the reactants (i.e., p‐nitrophenol) on top of the usual uptake from the depleted region. Thus, the 

more interfaces there are the more depletion and surplus of electron exist, resulting to increase 

the adsorption of reactants to be reduced on top of the interfacial regions. Such mechanism is 

consistent with the study of Zhang et al. [87] wherein the increasing electronegativity of Au with 

Figure 16. Diagram on the transport of electron from an Ag‐Au interface bimetallic NP [Adopted from Ref. [87]].
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respect to Ag facilitates adsorbate binding, increasing the electron transfer to p‐nitrophenol. As a 

result, this reduces the activation energy barrier, thus increasing the catalytic activity.

6. Conclusion

Environment‐friendly approach on the synthesis of metal/polymeric nanocomposite particles 

was demonstrated in this chapter through the fabrication of Au and Au@Ag nanoparticles 

using a microgel template (i.e., PNIPAm/PEI). PNIPAm/PEI microgel template plays a crucial 

role in the reduction of metal salts, stabilization, and immobilization of the resulting metal/

polymer nanocomposites. Furthermore, it can also act as a regulator of metal nanoparticles. 

Catalytic activities of the Au and Au@Ag metal nanoparticles in microgel template were also 

demonstrated in the reduction of p‐nitrophenol to p‐aminophenol.
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