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Abstract

In recent years, researchers have conducted many studies on the design and control of
prosthesis devices that take the place of a missing limb. Functional ability of prosthesis
hands thatmimic biological hand functions increases depending on the number of indepen-
dent finger movements possible. From this perspective, in this study, six different finger
movementswere given to a prosthesis handvia bioelectrical signals, and the functionality of
the prosthesis handwas increased. Bioelectrical signalswere recordedby surface electromy-
ography for four muscles with the help of surface electrodes. The recorded bioelectrical
signals were subjected to a series of preprocessing and feature extraction processes. In order
to create meaningful patterns of motion and an effective cognitive interaction network
between the human and the prosthetic hand, fuzzy logic classification algorithms were
developed. A five-fingered and 15-jointed prosthetic hand was designed via SolidWorks,
and a prosthetic prototype was produced by a 3D printer. In addition, prosthetic hand
simulatorwas designed inMatlab/SimMechanics. Pattern control of both the simulator and
the prototype hand in real time was achieved. Position control of motors connected to each
joint of the prosthetic hand was provided by a PID controller. Thus, an effective cognitive
communication network established between the user, and the real-time pattern control of
the prosthesiswas provided by bioelectrical signals.

Keywords: EMG, fuzzy logic classification, multifunctional prosthesis hand, pattern
recognition

1. Introduction

People lose limbs due to accidents and medical conditions. Robotic devices, which imitate the

shape and function of a missing limb, are manufactured for use by people who lose their limb in

such situations. In recent years, researchers have studied to design and control multifunctional

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



prosthetics hand [1–7]. The complexity of the movement, that is, the number of independent

movements, increases in proportion to the number of joints. There are 206 bones in the adult

skeletal system. The 90 bones of the skull and face are connected to each other by non-

immobilized joints, and the 33 bones of the spine are connected to each other by semi-movable

joints. Movable joints are only present between the bones (except the metacarpals bones) of the

arm (25) and leg (25). In light of this information, aside from the wrist joints, the human hand has

15 independent joints with three on each finger. Therefore, the biological hand movement

involves the control of these joints independently. Thus, control of the hand is quite complex.

Thus, of all the human parts, the hand is the most complicated in terms of kinetic analysis [8].

Two main factors enable the functional and visual prosthesis to be used like a biological hand:

• Prosthetic hand mechanical design and modeling [9, 10] and

• Perform the position and speed controls of each joint efficiently and precisely [11–19].

However, no matter how perfect the design and manufacture of the prosthetic hand may be, the

utility depends on the cognitive interaction, i.e., the control algorithm, being designed properly,

e.g., the type of movement and coordination between fingers. If information is not transferred to

the prosthetic hand rapidly enough, then the prosthesis will not assume the desired position.

Cognitive interaction is the most important factor for user to use effectively. There are many

studies about cognitive interaction between human and robotic devices [20–25].

All voluntary muscle movements in humans occur as a result of bioelectrical signals transmit-

ted from the brain through the muscle nerves. Bioelectrical electromyogram (EMG) signals

transmitted to the muscles carry information about the type of movement, speed, and degree

of muscle contraction or relaxation. The biological hand performs the basic tasks of holding

and gripping, which involve various finger movements. The wrist movements essentially

constitute the axis and assist in these gripping and holding movements. The main factor that

increases the functionality of the prosthetic hand is the movement of the fingers. As the

number of independent movements made by the prosthetic hand increases, it can mimic the

biological hand more successfully. This study realizes the design of the bioelectrical signal

control algorithm and the extension of the bioelectrical signal database with the purpose of

increasing the finger motion function of bioelectrical signal-controlled prosthesis hands.

Figure 1 shows bioelectrical signals in the context of the activity of the muscle movements

(e.g., flexion, relaxation force), as seen from the block flow diagram. EMG can be used to detect

signals from the flexor pollicis longus, flexor carpi radialis, brachioradialis, extensor carpi

radialis, extensor digiti minimi, and extensor carpi ulnaris. Bioelectrical signals were recorded

with the help of four surface electrodes and subjected to a series of preprocessing and classifi-

cation operations to understand the relationships between EMG signals and hand and finger

movements. These signals were then applied to the prosthetic hand (space and simulator) as a

reference motion signal. With the designed controllers, the position of the prosthetic hand

finger joints can be controlled. Thus, a cognitive interface and communication network are

established between the user and the prosthetic hand. Briefly summarized, the study creates a

bioelectrical database of the activities of the hand muscles and the interaction network

between the human and prosthetic hand using this database and interface to design a simula-

tor and develop a control algorithm.
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2. Recording, preprocessing, and featured extractions of EMG signal

2.1. Recording of EMG signals

EMG signals were recorded from the forearm muscles (the flexor pollicis longus, flexor carpi

radialis, brachioradialis, extensor carpi radialis, extensor digiti minimi, and extensor carpi

ulnaris) with the help of four surface electrodes. Electrode placements are shown in Figure 2.

Electrode layout was chosen according to the protocol [26–28].

The signals, which support movements of the thumb, middle, ring, index, and pinkie fingers,

were recorded separately for each of the respective muscles. Channels and finger relations are

shown in Table 1.

2.2. Preprocessing of EMG signals

The recorded EMG signals also include various noise signals. It is necessary to separate the

noise signals from the EMG signals, so that the characteristics of the signal can be accurately
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Signal

Prosthetic hand
3D Model
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hand
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Extraction 
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Figure 1. Control of multifunctional prosthetic hand simulator and prototype with EMG signals.

Figure 2. Placement of surface electrodes.
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determined. For this reason, the raw EMG signal is first preprocessed. The block diagram of

the preliminary preparation stage, including the separation, rectification, and sampling of the

recorded EMG signals from noise, is shown in Figure 3.

2.2.1. Numerical sampling

EMGsignals are analogvoltage signals. Their amplitudes change constantlyover the voltage range.

Analog-to-digital conversion is the process by which the amplitude of the analog signal voltage is

represented by a number sequence at specific time points [29–31]. The EMGvoltage signals used in

this study are converted into a number sequence by samplingwith a period of 0.001 s.

2.2.2. Rectification process

Rectification is the evaluation of only the positive parts of the signal. This is done either by half-

wave or full-wave rectification of the signal. A full-wave rectification method was applied to

preserve the energy of the signal [25, 29–34], and the expression for themethod is given in Eq. (1).

X_training ¼ jx ðtÞj ð1Þ

2.2.3. Smoothing of signal

A bandpass filter (50–500 Hz) was designed to soften the signal by eliminating high-frequency

components.

2.2.4. Separate the signal into windows

Before the attributes of the obtained EMG signals are calculated, the frame is processed by the

method adjacent to the signal. Experiments in the study of Englehart [18, 19] for framing and

optimal framing values (R = 256, r = 32 ms) reached with calculations were used.

2.3. Featured extractions of EMG signal

The EMG signal is a non-stationary, time-varying signal that varies in amplitude by random

negative and positive values [25, 31, 32]. Bioelectrical signals have certain characteristic values,

i.e., information. Features in time domain have been widely used in medical and engineering

practices and researches. Time domain features are used in signal classification due to its easy

Figure 3. Preprocessing steps.

Channel 1 Channel 2 Channel 3 Channel 4

Pinkie finger muscle Ring finger muscle Middle finger muscle İndex finger muscle

Table 1. Channel finger relations.
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and quick implementation. Furthermore, they do not need any transformation, and the features

are calculated based on raw EMG time series. Moreover, much interference that is acquired

through the recording because of their calculations is based on the EMG signal amplitude.

However, compared to frequency domain and time-frequency domain, time domain features

have been widely used because of their performances of signal classification in low noise envi-

ronments and their lower computational complexity [29]. In this study, five time domain features

methods widely used in the literature have been utilized to obtain the features of the EMG signal.

2.3.1. Signal energy

Mathematically, the energy of the signal m (t) is calculated as in Eq. (2), where tj and ti denote the

lower and upper bounds of the part of the signal to be integrated, respectively. The above expres-

sion represents the area below the absolute value of the signal curve at time T = ti–tj [30–35].

E ¼

ðtj

ti

jmðtÞjdt ð2Þ

2.3.2. Maximum value of signal

The maximum value of the signal represents the largest of the sampled signal values in each

packet divided by windows [29].

2.3.3. Signal average value

Mathematically, the average of the signal m (t) is calculated as Eq. (3) [30, 31], where ti and tj
denote the upper and lower bounds of the part of the signal to be integrated, respectively. The

above expression represents the overall average of the signal at time interval T = ti�tj.

AVR ¼
1

tj � ti

ðtj

ti

jmðtÞjdt ð3Þ

2.3.4. Effective value of the signal

Effective value is a commonly used signal analysis method in the time domain, such as average

rectification [29–32]. The effective value of the m(t) signal is calculated as Eq. (4).

RMS ¼
1

T

ðt

0

m2ðtÞdt

� �

1
2

ð4Þ

2.3.5. Variance of signal

The variance value of the signal represents the amount of deviation from the mean of the

sampled signal values in each packet divided by windows [30]. p(t) is the variance of the signal

to represent the probability density function of t:

VAR ¼
1

T

ðt

0

ðx�ORTÞ2pðtÞdt

� �

ð5Þ

EMG-Controlled Prosthetic Hand with Fuzzy Logic Classification Algorithm
http://dx.doi.org/10.5772/intechopen.68242

325



3. Pattern recognition with fuzzy logic algorithm

A classifier’s function should be able to map different patterns, match them appropriately, and,

in this case, select different hand grip postures. The extracted features were then fed into the

fuzzy logic (FL) classifier for the developed control system. FL developed by Lofty Zadeh [35–41]

provides a simple way to arrive at a definite conclusion based solely on imprecise input infor-

mation. A summary of the feature extraction process from the forearm muscles is shown in

Table 2 according to motion.

In total, there are 20 features of EMG signal for four channels. In order to make relations easier, a

featured function, which occurs at RMS, AVR, MAX, VAR, and E values, is defined for each

channel. Finally, the number of inputs is reduced by four. The featured function is calculated as

follows in Eq. (6).

Fi ¼ Ei þ AVRi þMAXi þ VARi þ RMSi ð6Þ

For the FL classification analysis, the triangular shape of the membership function (MF) for the

inputs (Fi) and output and the centroid method for defuzzification are used. The rules are created

Signal Hand

closure

Hand

opening

Index-thumb

touch

Middle-thumb

touch

Ring-thumb

touch

Pinky-thumb

touch

Energy Channel 1 16,41091 9,949203 5,853087 5,405963 5,354211 12,84222

Channel 2 12,48169 10,92331 7,334108 6,46115 13,25441 5,029002

Channel 3 12,02946 9,254157 8,313991 12,82708 7,183281 4,252198

Channel 4 14,59524 7,548085 11,22431 6,920272 9,376161 4,381767

Maximum value Channel 1 2,378095 1,398911 0,822295 0,61429 0,725287 2,255524

Channel 2 1,674114 1,183987 1,126519 0,961061 1,90971 0,609637

Channel 3 1,606747 1,351835 1,163335 1,60762 1,147475 0,666139

Channel 4 1,990469 0,844166 1,437937 0,906574 1,485923 0,532234

Average value Variance 0,656436 0,397968 0,234123 0,216239 0,214168 0,513689

Channel 1 0,499268 0,436932 0,293364 0,258446 0,530176 0,20116

Channel 2 0,481178 0,370166 0,33256 0,513083 0,287331 0,170088

Channel 3 0,58381 0,301923 0,448973 0,276811 0,375046 0,175271

RMS value Channel 4 0,474695 0,273057 0,163739 0,134428 0,148438 0,387735

Channel 1 0,325763 0,25909 0,207215 0,173207 0,370618 0,124443

Channel 2 0,316673 0,25826 0,223731 0,339657 0,213173 0,122159

Channel 3 0,383453 0,188114 0,295885 0,180392 0,269928 0,10675

Variance Channel 4 0,72476 0,223357 0,08254 0,045411 0,066981 0,508143

Channel 1 0,293061 0,15076 0,133987 0,086676 0,422607 0,038505

Channel 2 0,281122 0,204654 0,145503 0,326644 0,150682 0,047588

Channel 3 0,410777 0,089351 0,246002 0,089669 0,232966 0,027352

Table 2. Summary of the feature extraction process from the forearm muscles.
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based on information from the states of contraction. FLC rules are shown in Table 3. Recorded

SEMG signals have been used to initial testing. Then real time data implemented to Prosthetic

hand model.

Fi Featured functions were inputs to the FL. The limits of F were set to [0, 20]. The three linguistic

variables used were Small (S), Medium (M), and Big (B). The outputs of FL were Hand closure,

Hand opening, Index-thumb contact, Middle-thumb contact, Ring-thumb contact, and Pinky-

thumb contact. Figure 4 shows the flow diagram of FL classification process from four SEMG

signals for six hand patterns [35].

Rules F1 F2 F3 F4 Result

1 BIG BIG BIG BIG Hand closure

2 MEDIUM MEDIUM MEDIUM MEDIUM Hand opening

3 MEDIUM MEDIUM MEDIUM BIG Index-thumb touch

4 MEDIUM MEDIUM BIG MEDIUM Middle-thumb touch

5 MEDIUM BIG MEDIUM MEDIUM Ring-thumb touch

6 BIG MEDIUM MEDIUM MEDIUM Pinky-thumb touch

7 SMALL SMALL SMALL SMALL Relax-no motion

Table 3. FL rules.

Figure 4. The flow diagram of the control system with FL classification components.
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Performance of FL tested 200 hand motions. Classification performance value for the six

motions is shown in Table 4.

In the medical decision-making process, ROC analysis method is used to determine the dis-

crimination of the test or classification algorithm. In this study, performance of FLC algorithm

for six motion class are demonstrated in Table 5 via ROC analysis.

Performance values calculated as Eqs. (7)–(10) for each hand motion

AccuracyðACCÞ ¼ ΣTrue positiveþ ΣTrue negative=ΣTotal population ð7Þ

Positive predictive valueðPPVÞ, Precision ¼ ΣTrue positive=ΣTest out comepositive ð8Þ

True positive rateðTPRÞ, Sensitivity ¼ ΣTrue positive=ΣCondition positive ð9Þ

False positive rateðFPRÞ ¼ ΣFalse positive=ΣCondition negative ð10Þ

Hand pattern Pattern

number

Tested total number

of motion (A + B)

Number of true

classified motion (A)

Number of wrong

classified motion (B)

Average

percentage of

success (%)

Hand closure MOTION 1 84 84 0 100

Hand opening MOTION 2 84 84 0 100

Index-thumb touch MOTION 3 84 76 8 90.476

Middle-thumb touch MOTION 4 84 66 18 78.57

Ring-thumb touch MOTION 5 84 72 12 85.714

Pinky-thumb touch MOTION 6 84 76 8 90.476

Table 4. Classification achievement percentages.

ROC analysis Motions

Classification

algorithm result

Hand

closure

Hand

opening

Index-thumb

touch

Middle-thumb

touch

Ring-thumb

touch

Pinky-thumb

touch

Hand closure 84 0 0 0 0 0

Hand opening 0 84 0 0 0 0

Index-thumb touch 0 0 76 6 6 4

Middle-thumb touch 0 0 1 66 2 0

Ring-thumb touch 0 0 4 10 72 3

Pinky-thumb touch 0 0 2 0 1 76

No motion 0 0 1 2 1 1

Table 5. ROC analysis.
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The four outcomes can be formulated in a 2 · 2 contingency table. All contingency matrixes

for each motion are shown in Table 6.

4. 3D modeling and manufacturing of prosthetic hand

4.1. 3D modeling of prosthetic hand via SolidWorks

In order to develop a multifunctional prosthetic hand model, the structural characteristics of

the human hand must first be determined. In other words, it is necessary to determine the

number of joints, the number of links, the fingers and the length and width parameters of each

finger. In order to obtain a prosthetic hand the same size as a human hand, the hand charac-

teristics of an adult male were recorded as in Table 7 for the purposes of this study [42–44].

Hand closure Hand opening Index -thumb touch

TP=84 FN=0 84

FP=0 TN=420 420

84 420 504

TPR= 1.00

FPR= 0.00

PPV=1.00

ACC=1.00

TP=84 FN=0 84

FP=0 TN=420 420

84 420 504

TPR= 1.00

FPR= 0.00

PPV=1.00

ACC=1.00

TP=76 FN=16 92

FP=8 TN=404 412

84 420 504

TPR= 0.826

FPR= 0.0194

PPV=0.904

ACC=0.952

Middle -thumb touch Ring -thumb touch Pinky -thumb touch

TP=66 FN=4 70

FP=18 TN=416 434

84 420 504

TPR= 0.942

FPR= 0.041

PPV=0.785

ACC=0.956

TP=72 FN=17 89

FP=12 TN=403 415

84 420 504

TPR= 0.808

FPR= 0.028

PPV=0.857

ACC=0.942

TP=76 FN=4 80

FP=8 TN=416 424

84 420 504

TPR= 0.95

FPR= 0.018

PPV=0.904

ACC=0.976

Table 6. Contingency matrixes.

First link Second link Third link

Length (mm) Width (mm) Length (mm) Width (mm) Length (mm) Width (mm)

Thumb 70 30 45 30 40 30

Index 55 30 40 25 30 25

Middle 55 30 50 25 40 25

Ring 55 30 40 25 30 25

Pinky 30 30 40 25 30 25

Palm 130 120

Table 7. Part of the hand.

EMG-Controlled Prosthetic Hand with Fuzzy Logic Classification Algorithm
http://dx.doi.org/10.5772/intechopen.68242

329



Using the parameter values in Table 5, the prosthetic hand 3D model is designed with the help

of the SolidWorks program as shown in Figure 5.

4.2. Manufacturing of prosthetic hand via 3D printer

The prototype of the prosthetic hand was produced with the help of the EDISON 3D printer

manufactured by 3D Design Company. The necessary adjustments for the production (e.g.,

resolution, amount of fullness, amount of support) were made using the Simplify 3D program,

which was offered by the same company as the software program. After a hand of 16 parts was

produced, it was assembled as shown in Figure 6.

5. Prosthetic hand simulator design

5.1. Mechanical design of prosthetic hand simulator via SimMechanics

SimMechanics used in the realization of simulations of mechanical systems [45, 46]. By trans-

ferring the 3D CAD model of the prosthetic hand developed in the SolidWorks program to the

Matlab SimMechanics program, a chain structure containing each joint and link of the pros-

thetic hand was obtained as shown in Figure 7. Five fingers connected to the palm, three rotary

hinges forming each finger, and three connecting links are arranged in series to form the hand

SimMechanics model.

Figure 5. SolidWorks images of prosthetic hand.

Figure 6. Prototype hand.
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As shown in Figure 7, when SolidWorks solid model is transferred to Matlab Program, a chain

structure composed of revolute and link parts is obtained.

5.2. Modeling of the DC motor

In this study, it was decided to use a DC servo motor for movement of each joint in the

prosthetic hand. The equivalent circuit of the DC servo motor is given in Figure 8 [47–49].

Modeling equations of DC motor were expressed in terms of the Laplace variable s as Eqs.

(11)–(13).

sðJsþ BÞθðsÞ ¼ KtIðsÞ ð11Þ

ðLsþ RÞIðsÞ ¼ VðsÞ � KesθðsÞ ð12Þ

We arrive at the following open-loop transfer function by eliminating I(s) between the two

equations above, where the rotation is considered the output and the armature voltage is

considered the input.

θðsÞ

VðsÞ
¼

K

s
�

ðLsþ RÞðJsþ bÞ þ K2
� ð13Þ

Using the mathematical model of the DC servo motor, the Matlab/Simulink model is

constructed as shown in Figure 9.

Figure 6. 15 serbestlik dereceli protez elin SimMechanics modeli

Figure 7. Prosthetic hand SimMechanics model.
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6. Controller design

Position of ultra-nano DC servomotors connected to joints is controlled using a PID controller.

The controller’s proportional gain coefficient (Kp), integral gain coefficient (Ki), and derivative

gain (Kd) values are determined by Genetic Algorithm [11, 50–52] to ensure that the system

quickly reaches a steady state without overshooting as shown in Table 8. The PID controller

has an input-output relationship with input e (t) and output u (t) [53–55].

uðtÞ ¼ Kp � eðtÞ þ Ki �

ðt
0

eðτÞ:dτþ Kd:

deðtÞ

dt
ð14Þ

7. Graphical and numerical results

Electromyography is used to measure EMG signals, which are extracted from the forearm

muscles and classified with the help of four surface electrodes. The type of motion that one

wishes to perform is the perceived and designed three-dimensional prosthetic hand simulator

Figure 9. DC motor Matlab/Simulink model.

Figure 8. DC motor electrical and mechanical model.

Kp Ki Kd

All DC motors connected the each finger joints 0.42176 0.75724 0.0048566

Table 8. PID parameters.
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and the five-fingered and 15-jointed hand. These movements were made in real time on the

prototype. Each joint of the prosthetic hand is moved with one ultra-nano servomotor, and the

position control of the motors is provided by the designed PID.

The prosthetic hand was made with hand closure, hand opening, thumb-index touch, hand

opening, thumb-middle touch, hand opening, thumb-ring touch, hand opening, thumb-pinkie

touch, and hand opening movements. The hand opening movement is performed after the

hand closing movement and touch movement.

1. EMG signals were taken from four channels, four groups of muscles simultaneously, as

shown in Figures 10–13, and preprocessed. First, the signal amplitude was scaled from

0 to 10 V and then filtered.

Figure 10. Preprocessing step graphics of EMG signal recorded Channel 1.

Figure 11. Preprocessing step graphics of EMG signal recorded Channel 2.

Figure 12. Preprocessing step graphics of EMG signal recorded Channel 3.

Figure 13. Preprocessing step graphics of EMG signal recorded Channel 4.
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2. As shown in Figures 14–17, the energy, maximum, effective, mean, and variance attribute

values of the respective signals were calculated.

3. Motion pattern was determined by motion classification algorithm.

4. The specified type of motion information was input to the simulator and the prototype.

5. According to the recognized hand pattern, the reference joint angles in Table 9 were

applied as the control input signal, and the closed loop position control of the DC servo-

motors was performed according to feedback information from sensors connected to the

simulator joints.

Position control of the finger joints for six hand patterns was provided by the PID controllers as

shown in Figures 18–23.

For all finger joints, PID performance is shown in Table 10.

Figure 14. Features graphics of EMG signal recorded Channel 1.

Figure 15. Features graphics of EMG signal recorded Channel 2.
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Figure 17. Features graphics of EMG signal recorded Channel 4.

Index Middle Ring Pinkie Thumb

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

1 Motion 1 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

2 Motion 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 Motion 3 90 30 30 0 0 0 0 0 0 0 0 0 70 15 5

4 Motion 4 0 0 0 90 25 25 0 0 0 0 0 0 87 5 5

5 Motion 5 0 0 0 0 0 0 90 25 10 0 0 0 105 15 5

6 Motion 6 0 0 0 0 0 0 0 0 0 90 30 5 125 15 5

Table 9. Reference value for each finger joints.

Figure 16. Features graphics of EMG signal recorded Channel 3.
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Figure 18. PID response graphics of five fingers for hand close and prosthetic hand photograph.

Figure 19. PID response graphics of five fingers for hand opening and prosthetic hand photograph.

Figure 20. PID response graphics of five fingers for thumb-index touch and prosthetic hand photograph.
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Figure 21. PID response graphics of five fingers for thumb-middle touch and prosthetic hand photograph.

Figure 22. PID response graphics of five fingers for thumb-ring touch and prosthetic hand photograph.

Figure 23. PID response graphics of five fingers for thumb-pinkie touch and prosthetic hand photograph.

Finger Joint no Motion 1 Motion 2 Motion 3 Motion 4 Motion 5 Motion 6

Thumb finger 1 Overshoot (deg.) 2.835 0.2932 2.137 2.936 3.025 3.655

Steady state time (s) 9.8084 13.413 8.8084 9.988 10.8084 12.8084

Steady state error (deg.) 0.046 0.041 0.037 0.027 0.021 0.024

2 Overshoot (deg.) 2.755 0.3265 0.652 0.252 0.652 0.652

Steady state time (s) 4.415 2.883 1.952 0.752 1.952 1.952

Steady state error (deg.) 0.0052 2.6e-3 0.0001 0.0001 0.0001 0.0001

3 Overshoot (deg.) 2.754 0.2696 0.357 0.357 0.357 0.357

Steady state time (s) 4.524 1.972 0.956 0.956 0.956 0.956

Steady state error (deg.) 0.0053 1.5e-3 1.5e-3 1.5e-3 1.5e-3 1.5e-3
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Finger Joint no Motion 1 Motion 2 Motion 3 Motion 4 Motion 5 Motion 6

Index finger 1 Overshoot (deg.) 2.835 0.3299 2.835 0 0 0

Steady state time (s) 9.915 9.71 9.915 0 0 0

Steady state error (deg.) 0.045 10e-4 0.045 0 0 0

2 Overshoot (deg.) 2.835 0.0368 2.349 0 0 0

Steady state time (s) 9.915 4.555 7.0725 0 0 0

Steady state error (deg.) 0.047 0.0183 0.0219 0 0 0

3 Overshoot (deg.) 2.835 0.348 0.377 0 0 0

Steady state time (s) 9.915 4.535 7.429 0 0 0

Steady state error (deg.) 0.047 0.0202 0.0255 0 0 0

Middle finger 1 Overshoot (deg.) 2.8356 0.3244 0 2.8368 0 0

Steady state time (s) 10.5022 10.279 0 10.52 0 0

Steady state error (deg.) 0.0474 1e-3 0 0.0475 0 0

2 Overshoot (deg.) 2.8356 0.3244 0 2.812 0 0

Steady state time (s) 10.5022 10.279 0 3.437 0 0

Steady state error (deg.) 0.0474 1e-3 0 0.0036 0 0

3 Overshoot (deg.) 2.8356 0.3244 0 2.7812 0 0

Steady state time (s) 10.5022 10.279 0 3.9265 0 0

Steady state error (deg.) 0.0474 1e-3 0 0.0036 0 0

Ring finger 1 Overshoot (deg.) 2.8356 0.3244 0 0 2.8368 0

Steady state time (s) 9.922 9.907 0 0 9.914 0

Steady state error (deg.) 0.047 1e-3 0 0 0.047 0

2 Overshoot (deg.) 2.8356 0.3244 0 0 2.781 0

Steady state time (s) 9.915 9.9075 0 0 3.412 0

Steady state error (deg.) 0.047 1e-3 0 0 0.0035 0

3 Overshoot (deg.) 2.8357 0.3244 0 0 2.545 0

Steady state time (s) 9.9055 9.906 0 0 1.884 0

Steady state error (deg.) 0.047 1e-3 0 0 0.0005 0

Pinkie finger 1 Overshoot (deg.) 2.8356 0.3244 0 0 0 2.8368

Steady state time (s) 9.9094 9.9122 0 0 0 9.29

Steady state error (deg.) 0.0475 1e-3 0 0 0 0.0475

2 Overshoot (deg.) 2.8357 0.3244 0 0 0 2.7883

Steady state time (s) 9.9094 9.9122 0 0 0 4.8174

Steady state error (deg.) 0.0475 1e-3 0 0 0 0.0052

3 Overshoot (deg.) 2.8357 0.3244 0 0 0 2.636

Steady state time (s) 9.9094 9.9122 0 0 0 1.3391

Steady state error (deg.) 0.0475 1e-3 0 0 0 0

Table 10. PID performance value for each joint.
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8. Conclusion

The main factor in increasing the functionality of the prosthetic hand to the extent of imitating
biological hand functions is themovement of the fingers. The greater the number ofmovements the
fingers can do independently of each other, the greater the ability of the prosthetic hand to move
and the more successfully it can mimic the biological hand. Within the scope of this thesis, the
function of the prosthetic hand is improved by six different fingermovements. Bioelectrical signals
of two separate users were recorded from the forearm muscles (the flexor pollicis longus, flexor
carpi radialis, brachioradialis, extensor carpi radialis, extensor digiti minimi, and extensor carpi
ulnaris) with the help of four surface electrode groups. Thus, a broad bioelectrical signal database
was created. The recorded bioelectrical signals were subjected to a series of preprocessing and
feature extractionprocesses to calculate themaximum, effective,mean, variance, and energyvalues
of the EMG signals. An FL classification algorithm was developed to create an effective cognitive
interaction network, and 90% classification success was obtained from these algorithms. The
identified bioelectrical signalswere applied to thedesigned three-dimensional prosthesis handheld
simulator. The five-fingered and15-jointedprosthetic handprototypes producedwith a 3Dprinter,
and the positional control of the prosthetic finger joints was performed with the designed control-
lers. Each finger of the prosthetic hand was moved by an ultra-nano DC motor, and the position
controls of themotorswere provided by the designed PID. Thus, a cognitive interface and commu-
nication networkwere established between the person and the prosthetic handwith great success.
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