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Abstract

Molecular dynamics (MD) is an important method underlying the modern field of
Computational Materials Science. Without requiring prior knowledge as inputs, MD
simulations have been used to study a variety of material problems. However, results
of molecular dynamics simulations are often associated with errors as compared with
experimental observations. These errors come from a variety of sources, including inac-
curacy of interatomic potentials, short length and time scales, idealized problem
description and statistical uncertainties of MD simulations themselves. This chapter
specifically devotes to the statistical uncertainties of MD simulations. In particular,
methods to quantify and reduce such statistical uncertainties are demonstrated using a
variety of exemplar cases, including calculations of finite temperature static properties
such as lattice constants, cohesive energies, elastic constants, dislocation energies, ther-
mal conductivities, surface segregation and calculations of kinetic properties such as
diffusion parameters. We also demonstrate that when the statistical uncertainties are
reduced to near zero, MD can be used to validate and improve widely used theories.

Keywords: molecular dynamics, molecular statics, uncertainty quantification, model
calibration, materials science, thermodynamics, kinetics

1. Introduction

In atomistic simulations, a material is represented by the positions of an assembly of atoms

whose energy is represented through a model of the interatomic forces. Molecular dynamics

(MD) simulations follow the motion of this collection of atoms. From these simulations, one

can extract information about the thermodynamics and kinetics of materials and key material

defects. As an example of an MD material simulation, Figure 1(a) shows an aluminium crystal

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



whose ½110�, [111], and ½ 1 12� crystallographic orientations are aligned respectively with the x-,

y- and z- coordinate directions. The initial atom coordinates can be assigned according to

structure, orientation and lattice constant of the crystal. To make the system interesting,

Figure 1(a) also contains two edge dislocations created by removing a ð110Þ plane as indicated

by the white vertical line. The width of the removed region, therefore, equals exactly the

Burgers magnitude b = |<110>a/2|. To close the gap of the missing plane, surrounding atoms

as indicated by the dark region are shifted towards the gap. The system can also possess a

temperature. This is achieved by assigning velocities to all atoms under the Boltzmann distri-

bution condition. Normally, periodic boundary conditions are used to remove free surfaces

and infinitely extend the system. This means that the system shown in Figure 1(a) is periodi-

cally repeated in the x-, y- and z- coordinate directions, with the periodic lengths equal to the

corresponding system dimensions Lx, Ly and Lz. Based on an interatomic potential model that

can be used to calculate system energy and interatomic forces [1], an MD simulation essentially

solves atom positions as a function of time from Newton’s equations of motion [2, 3].

The simplest MD simulations conserve energy and do not change system sizes Lx, Ly and Lz.

With such NVE (meaning that the number of atoms, system volume and system energy are

constant) simulations, constant target temperature and pressure usually cannot be maintained.

By using Nose-Hoover dragging forces [4] to increase or decrease atom kinetic energies

depending on if the temperature is lower or higher than the desired value, MD simulations

can be performed at a constant temperature. By using the Parrinello-Rahman algorithm [5] to

allow the periodic lengths Lx, Ly, and Lz to increase or decrease depending on if the pressure is

higher or lower than the desired value, MD simulations can also be performed at a constant

pressure.

Once an interatomic potential is given, the MD methods described above enable many mate-

rial problems to be computationally studied without any prior knowledge of these problems.

For example, MD reveals phonon vibration spectrum and thermal transport properties even

when applied to defect-free systems. When systems contain point defects, MD simulates the

diffusion of these defects. When systems contain dislocations, such as Figure 1(a), MD com-

putes dislocation core structures and core energies. When external forces/loads are applied to

the system, MD explores a variety of other problems including deformation, fracture and

Figure 1. Observation of MD uncertainties. (a) An aluminium crystal containing an edge dislocation dipole and (b) the

total energies of the dislocated aluminium crystal obtained from MD and MS simulations of 10 different samples.
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structure evolution. When adatoms are continuously added to a surface, MD shows the

structure evolution during vapour deposition synthesis processes. Due to the broad applica-

bility and high predictability of MD simulations, the problem of the uncertainty margin of MD

results is becoming increasingly important.

In principle, results of molecular dynamics simulations necessarily contain errors as compared

with experimental observations. These errors come from a variety of sources, including inac-

curacy of interatomic potentials, short length and time scales, idealized problem description

and statistical uncertainties of MD simulations themselves. This chapter focuses on quantifica-

tion and reduction of one important model uncertainty: statistical uncertainty of molecular

dynamics simulations.

2. An overview perspective of uncertainty quantification methods

The ultimate goal of evaluating and reducing the statistical uncertainty of MD simulations is to

minimize differences between predictions and experimental observations. To establish a useful

context, we first briefly describe quantification methods for other uncertainties during

multiscale simulations of materials.

Uncertainties are commonly divided into two types: aleatoric uncertainty arising from ran-

domness and epistemic uncertainty arising from lack of knowledge. Examples of the aleatoric

uncertainty include head or tail when flipping a coin or a high precision length measured with

a coarse scale ruler. Typically, the aleatoric uncertainty can be described by a probability

distribution function. Increasing data can result in more accurate characterization of this

distribution, but cannot reduce its variance. Examples of the epistemic uncertainty include

prediction from an inaccurate (or incorrect) model, or the length measured by a low-quality

ruler. Usually, the epistemic uncertainty cannot be described by a probability distribution. This

uncertainly, however, can be reduced when additional data or knowledge are incorporated

(e.g., when the model is improved or the error of the ruler is calibrated). Note that sometimes

the epistemic uncertainty can be treated as the aleatoric uncertainty. For example, due to the

thermal expansion, rulers are usually associated with an epistemic error on a given day. This

epistemic uncertainty may become an aleatoric uncertainty if the measurements are made

throughout the entire year.

There are many issues that influence the comparison of MD results with experimental obser-

vations. The most commonly discussed approximation is the accuracy (epistemic uncertainty)

of the interatomic potential. Ideally, this represents the true energy of the arrangement of

atoms. In practice, a computationally convenient and physically motivated functional form of

the potential is assumed and parameterized to match either fundamental electronic structure

calculations or experimental data [1]. Only recently have systematic evaluations of these errors

begun to be performed [6, 7]. As one practical approach, Moore et al. [7] performed a param-

eter sensibility study where the parameter of an interatomic potential is varied one at a time

and its effects on properties (e.g., lattice constant, elastic constants, cohesive energy and

enthalpy of mixing) are determined using MD simulations. Such a study reveals the relative
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importance of each of the potential parameters. However, it does not provide information on

the accuracy of potential.

In principle, we can always image the existence of an ideal potential that will give the exact

solution to the problem of our interest, provided that this potential is fitted to the right values

of a list of properties {k1, k2, …, kn, u1, u2, …, um}, where k1, k2, …, kn are the list of properties

that are known to be important (e.g., lattice constant, elastic constants, cohesive energy, etc.),

and u1, u2, …, um are a sufficient list of important properties that will make the potential

accurate but are unknown to us as what these properties are due to the lack of knowledge. In

practices, however, we will never achieve such an ideal potential because not only we do not

know ui (i = 1, 2, …, m), but also no potential can be fitted exactly to the target values of all ki
(i = 1, 2, …, n). Based on this recognition, a relevant approach to quantify the epistemic

uncertainty of the potential is to create an ensemble of potentials that predict a distribution of

properties {k1, k2, …, kn} centring around the true experimental values and quantify the effects

of this distribution on the target properties computed with MD simulations. This approach

may still not yield a satisfactory quantification of the epistemic uncertainty of the potential

currently. However, the quantified epistemic uncertainty will continuously improve as more

and more ui properties are understood and become ki with improved knowledge.

There are additional issues associated with MD simulations. For the study of complex defects,

issues can arise from the boundary conditions imposed on the simulations and from the

structural idealizations often imposed. For example, in a recent study of faceting of grain

boundaries in Fe, there were qualitative differences between the MD-predicted facet length

and facet junction geometries and experimental observations [8]. The source of the disagree-

ment was the idealized geometry used in the MD simulations. The simulations assumed an

ideal coincident site lattice misorientation between the crystal lattices while the experiment

deviated slightly from this ideal misorientation. This deviation introduced interfacial disloca-

tions that fundamentally changed the faceting behaviour. The use of improved geometries,

often at the computational cost of using larger systems, can be used to estimate the related

epistemic uncertainty. Likewise, the time scales of MD simulations (on the order of nanosec-

onds) raise issues with processes that occur on longer time scales. For example, in simulations

of multi-component systems, diffusive processes of substitutional impurities often occur on

time scales beyond direct MD simulations, and simulations of mechanical deformation can be

strongly influenced by the high strain-rates required by MD simulation times. Increasing

simulation time can provide an estimate of the trends of the related epistemic uncertainty.

To study material problems at engineering scales, multiscale approaches linking models of

different scales are needed. Beyond the specific uncertainties associated with MD simulations,

there are also initial studies of the broader question of how those uncertainties propagate

through a material modelling hierarchy [9–11]. To study how an aleatoric uncertainty of the

interatomic potential propagates through the MD to a continuum model, we can perform

many MD simulations using different interatomic potentials sampled from the aleatoric uncer-

tainty distribution. Results of each MD simulation are used as inputs to perform a separate

continuum simulation of the final material properties. Many continuum simulations then give

an aleatoric uncertainty distribution. To yield a highly converged continuous distribution of
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the final results, thousands or more MD simulations are needed. This is often computationally

impractical.

Assume that a continuum scale model requires a list of properties Pi, MD (i = 1, 2,…, N) from

MD calculations as inputs. If these properties are independent (e.g., thermal conductivities

obtained at different temperatures), then the direct Monte Carlo sampling [12] can be used to

propagate uncertainties efficiently. First, numerous MD simulations are performed to deter-

mine distribution of each Pi, MD. Because only distribution of one property is concerned, the

number of MD simulations needed to yield a smooth distribution of that property is signifi-

cantly reduced. Knowledge of distribution of each of the Pi, MD properties can then be used to

sample as many {P1, P2, …, PN} sets [12] as one may desire. These data sets can be used in

continuum simulations to yield a smooth distribution of the final results.

Experimentally, no samples can have exactly the same microstructure in terms of size and

population of grains, shape and volume fraction of phases, defect densities, chemical compo-

sition and purity. As a result, experimental measurements of mechanical properties of mate-

rials always involve uncertainties. Because microstructures obtained from the same processing

satisfy a certain distribution, such uncertainties are aleatoric. On the other hand, some proper-

ties such as diffusivities are difficult to measure. As a result, there are considerable disagree-

ments for the diffusivity data reported by different groups [13]. Such uncertainties can be

considered as epistemic. Note that experimental uncertainties are often the problem of interest,

but they are different from model uncertainties. It is possible to use multiscale modelling to

predict the experimental uncertainties. For example, MD simulations can be used to determine

the cohesive zone laws [14, 15] of different grain boundaries. These cohesive zone laws can be

incorporated in continuum models to simulation intergranular fracture. Through a continuum

simulation of the intergranular fracture from a large number of realizations of initial grain

structures, the experimental uncertainties due to the variation of grain microstructures can be

calculated. Because experimental uncertainties are superimposed on model uncertainties, it is

required that model uncertainties be reduced (or at least quantified) before experimental

uncertainties can be confidently studied. The quantification and reduction of the statistical

uncertainty of molecular dynamics simulations are therefore important.

3. Statistical uncertainty of molecular dynamics methods

Due to thermal noises, MD simulations are always associated with a statistical uncertainty. To

examine this problem, an MD simulation of the computational system shown in Figure 1(a) is

performed for a period of 20 ps at a temperature of 300 K using a previously developed Al-Cu

interatomic potential [16]. After the first 10 ps is ignored to enable a preliminary equilibration,

the total system energy is calculated every 1 ps for the remaining 10 ps. The total energies for

these 10 snapshot samples are shown in Figure 1(b) using the filled circles. It can be seen that

the total energies for the 10 samples are not exactly the same, but rather span a range of nearly

900 eV. Two types of uncertainties can be identified here. First, there is a general decreasing

trendwith sample number (corresponding to time). This systematic error arises from a continued
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equilibration with increasing simulation time. Second, there are some occasional fluctuations of
the results. This statistical error arises from thermal noises.

Molecular statics (MS) is another frequently applied computational method [2] to study mate-
rials. Rather than solving Newton’s equation of motion, MS determines equilibrium atom posi-
tions by minimizing the total potential energy of the system at the 0 K temperature (i.e., there is
no kinetic energy of atoms). To examine if MS simulations have the uncertainty issue when
studying dislocations, 10 MS simulations are performed on the configuration of Figure 1(a)

using different random number seeds. The 10 total system potential energies obtained from the
10 MS simulations are included in Figure 1(b) using unfilled circles. Interestingly, MS simula-
tions, which do not involve thermal noises, also involve large uncertainties. In fact, differences
among the 10 samples are comparable with the MD simulations (~800 eV or above). This MS
error, however, appears to be entirely statistical.

The uncertainty discussed abovepertains to total energyof the system. The system considered in
Figure 1(a) contains 129,600 atoms.As a result, the relative error shown in Figure 1(b) is less than
900/129,600 = 0.007 eV/atom. It is important to note that theMS errors revealed in Figure 1(b) are
larger than one would normally see in literature. This is because literature simulations are
usually applied to either defect-free systems or much smaller system dimensions. When defects
relax (e.g., a perfect dislocation dissociates into two partials bounding a stacking fault as in the
present case), many local energy minimums occur and therefore MS results become uncertain
because there are really no robust methods available today to identify the global minimum
energy configuration. Furthermore, while current MS methods can achieve high accuracies for
relative properties (e.g., energy per atom), it is unrealistic to achieve small global errors for large
systems (unless accuracies of relative properties can be infinitely improved when system sizes
are increased). Global errors are important tomany applications. In Figure 1(a), for example, the
dislocation line energy is defined as the total system energy difference between dislocated and
perfect crystals, divided by total dislocation length 2Lz along the z direction. When Lz is not too
big, say, ~25 Å as in the present case, a total energy error of 900 eV will result in meaningless
dislocation line energy calculations considering that the line energies of dislocations are usually
less than 5 eV/Å [17]. In the following, we will discuss methods to quantify and reduce the
statistical uncertainty margin ofMD simulations as revealed here.

4. Methods for quantifying molecular dynamics statistical uncertainty

Experimentally measured properties are average behaviour of systems over the time scale of
the measurement, which is usually much longer than the MD time scales. To reflect experi-
mental properties, it is appropriate to calculate time-averaged properties during MD simula-
tions. Two different approaches can be used to perform statistical uncertainty quantification
for time-averaged MD simulations based on fundamental principles of statistics [18].

The first approach is based entirely on the statistical nature of MD results. Assume that an MD
simulation is performed for a total period of ttot. We can divide ttot into N segments with the
end point of each segment being ti = iΔt (i = 1, 2, …, N) where Δt = ttot/N. Any time-averaged
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property can be calculated for each of the time intervals Δti = ti – ti�1 = Δt, and as a result, each

MD simulation will produce N values of the property P. If we denote each estimate of P to be Pi

(i = 1, 2, …, N), the best estimate of the property can be calculated as

P ¼

X

N

i¼1

Pi

N
ð1Þ

The uncertainty of the samples Pi can be quantified by the sample standard deviation defined

as

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

ðPi � PÞ2

N � 1

v

u

u

u

u

t

ð2Þ

The best estimate P is also associated with an uncertainty σ. σ is reduced from σ through the

well-known relationship [18]

σ ¼ σ
ffiffiffiffi

N
p ð3Þ

Eqs. (1)–(3) are effective in determining the variation of the calculated properties. They do not

give direct indication of how physical the results are. In many applications, properties P, Q, R,

… are often related through some well-justified physical functions, say, F(P, Q, R, …) = 0. The

second approach is based on the deviation of the calculated properties from these functions. In

particular, a deviation parameter can be defined as ξ

ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

FðPi ,Qi ,Ri,…Þ2

N

v

u

u

u

u

t

ð4Þ

As a first example to calculate ξ, elastic constants of single cubic crystals satisfy C11 = C22 = C33,

C33 = C44 = C55, C12 = C13 = C21 = C23 = C31 = C32 and Cij (j = 4, 5, 6, i = 1, 2, …, j-1) = 0.

Accordingly, we can define four deviation parameters as

ξ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

i¼1

½Cii � ðC11 þ C22 þ C33Þ=3�2

3

v

u

u

u

u

t

ð5Þ

ξ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

j¼1

X

3

i ¼ 1;
i 6¼ j

½Cij � ðC12 þ C13 þ C21 þ C23 þ C31 þ C32Þ=6�2

6

v

u

u

u

u

u

t

ð6Þ

Uncertainty Quantification and Reduction of Molecular Dynamics Models
http://dx.doi.org/10.5772/intechopen.68507

95



ξ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

6

i¼4

½Cii � ðC44 þ C55 þ C66Þ=3�
2

3

v

u

u

u

u

t

ð7Þ

ξ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

6

j¼4

X

j�1

i¼1

ðCij
2 þ Cji

2Þ

24

v

u

u

u

u

t

ð8Þ

If we want to determine how physical our overall results are, the best MD estimates of Cij can
be used in Eqs. (5)–(8) to calculate ξ1 – ξ4. This simply means that Cij are averaged over the
entire simulation time ttot rather than the short time interval Δt. We can also use Cij obtained
within different time intervals (multiple of Δt) to examine time convergence of the calculated
properties towards the true physical values.

As another example to calculate ξ, diffusivity D is related to pre-exponential factor D0 and

activation energy barrier Q through the Arrhenius equation, D ¼ D0exp �Q
kT

� �

or ln D0 �
Q
kT�

ln D ¼ 0, where k and T are respectively Boltzmann constant and temperature. If MD can be
used to calculate diffusivities Di at different temperatures Ti (i = 1, 2, …, N), then we can fit the
Arrhenius equation to get D0 and Q. We can then define a deviation error parameter for the
calculated diffusivities from true values as

ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

ln D0 �
Q

kTi
� ln Di

� �2

N

v

u

u

u

u

t

ð9Þ

Note that although the error parameter ξ can validate models, it does not directly measure the
uncertainty margin of a property. However, ξ is related to the direct uncertainty margin σ (or
σ) because ξ ! 0 necessarily leads to σ ! 0 (or σ ! 0). In the following, we demonstrate
specific examples on how to quantify σ (or σ) and ξ in MD simulations.

5. Lattice constant and cohesive energy

We now quantify the uncertainty margins of the finite temperature lattice constant and cohe-
sive energy of aluminium calculated using MD simulations based on a literature interatomic
potential [16]. The periodic computational system includes 5 � 5 � 5 unit cells of a face-
centred-cubic (fcc) crystal. The initial lattice is intentionally strained in the x-, y- and z- direc-
tions by 0.01, �0.01 and 0.02, respectively, and all atoms are randomly disturbed from their
lattice sites subjecting to a maximum displacement of 0.05 Å. A zero pressure NPT (number of
atoms, pressure, and temperature are constant) MD simulation is then performed at 300 K
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using a time step size of 0.004 ps. Since the lattice constants (ax, ay and az) in the three

coordinate directions are not the same initially, their geometric mean a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

axayaz3
p

is used as

the overall lattice constant. Here, geometric mean is used instead of arithmetic mean to

conserve volume. The short-term average lattice constant and cohesive energy (per atom) are

calculated every 10 time steps (i.e., Δt = 0.04 ps). The best estimates (refer to running averages

here) of these properties are calculated using Eq. (1) as a function of simulation time ttot. The

results of these best estimates are shown in Figure 2(a). Figure 2(a) indicates that despite the

initial disturbed crystal that biases the average calculations towards a non-equilibrium struc-

ture at short time, the finite temperature lattice constants and cohesive energy calculated from

MD approaches convergence rapidly. After 15 ps simulation, both lattice constant and cohesive

energy essentially become constant, and as a result, there is no significant uncertainty associ-

ated with this simulation.

Note that we do not explicitly show the standard deviation defined by Eq. (3). However, the

information is implicitly revealed in Figure 2(a), because the standard deviation must

approach zero when the calculated properties become constant. On the other hand, cubic

crystal lattice constants satisfy a relation ax = ay = az. This allows us to define a deviation

parameter ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðax� ffiffiffiffiffiffiffiffiffi

axayaz3
p Þ 2þðay� ffiffiffiffiffiffiffiffiffi

axayaz3
p Þ 2þðaz� ffiffiffiffiffiffiffiffiffi

axayaz3
p Þ 2

3

q

to measure how physical the results are. ξ is

calculated as a function of ttot, and the results are shown in Figure 2(b). Considering the small

scale in the vertical axis, the non-cubic deviation is very small. This further confirms that the

calculated values have extremely small uncertainty margin.

This example indicates that the uncertainty margin of time-averaged MD simulations can be

easily reduced to a negligible level when calculating simple properties, such as lattice constant

and cohesive energy. This is because these quantities are relative properties (i.e., per unit cell

for lattice constant and per atom for cohesive energy), do not involve defects (i.e., no large

number of local energy minimums) and can be obtained from small systems. More challenging

cases will be presented below.

Figure 2. Effect of simulation time on uncertainty of MD calculation of lattice constant and cohesive energy of an fcc

aluminium crystal. (a) Lattice constant and cohesive energy and (b) deviation of lattice constant from the cubic relations.
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6. Elastic constants

Compared with lattice constant and cohesive energy, calculations of finite temperature elastic

constants encounter a bigger uncertainty problem. This is because elastic constants are defined

by Cij ¼ ∂σi=∂εj, where σi and εj are the stress and strain components in the Voigt notation.

Within the finite difference method, elastic constants are calculated as Cij ¼ δσi=δεj, where δσi
is a small change of stress in responding to a small imposed strain δεj. Accurate calculations

can only be achieved when the uncertainty margin of the δσi calculation is significantly smaller

than a very small δεj value. We now explore this problem using fcc palladium as an example.

The simulations employ the literature interatomic potential [19].

First, the equilibrium finite temperature palladium lattice constant that accounts for thermal

expansion is calculated using the approach described above. This equilibrium lattice constant is

then used to create an fcc palladium crystal containing 4 � 4 � 4 unit cells. Positive and negative

small strains of the jth component � δεj = 10�4 (j = 1, 2, …, 6) are separately applied to the

system. MD simulations using an NVT (number of atoms, volume and temperature are constant)

ensemble are performed for 100 ns to relax both the positively and negatively strained systems.

An NVT ensemble is needed to maintain the imposed strain. After discarding the first 20 ns,

time-averaged stresses σi (i = 1, 2, …, 6) are calculated for the remaining ttot = 80 ns. The MD

elastic constants Cij are then calculated using a finite-difference scheme

Cij ¼
σiðδεjÞ � σið�δεjÞ

2δεj
ð10Þ

By repeating the same process for all i, j = 1, 2, …, 6, we determine all elastic constants. These

elastic constants are converted to average values based on the cubic relations, i.e., the bulk

modulus B = (C11 + C22 + C33 + 2C12 + 2C13 + 2C23)/9, shear moduli C’ = (C11 + C22 + C33 � C12 �

C13 � C23)/6 and C44 = (C44 + C55 + C66)/3. If we divide the 80 ns into 80 segments, B, C’ and C44

are calculated for each segment, and the results are shown in Figure 3(a), where data points are

values for some selected segments and lines represent running averages. It can be seen that the

uncertainty margin of the averaged elastic constants is very small especially for the running

averages, which are virtually constant in the scale of the figure. Note that the data shown in

Figure 3. Effect of simulation timeonuncertainty ofMDcalculations of finite temperature elastic constants of an fcc palladium

crystal. (a) Cubic-averaged elastic constants and (b) deviation of individual elastic constants from the cubic relations.
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Figure 3(a) have been averaged based on the cubic relations. Individual elastic constants Cij

may deviate from these relations. The four error parameters ξ1 � ξ4 for individual elastic
constants to deviate from the cubic relations are calculated using Eqs. (5)–(8). If individual
elastic constants are calculated as running averages over the entire ttot, then results for ξ1 � ξ4

are shown in Figure 3(b) as a function of ttot. Figure 3(b) further reveals that at average time
below 20 ns, the calculated elastic constants might have relatively large uncertainties as they
have not fully converged to physical values. However, satisfactorily converged results can be
achieved when the average time exceeds 20 ns or above.

7. Dislocation energy

Dislocation relaxation causes a large number of local energy minimums, the long elastic field
of dislocations requires the use of large systems and dislocation energies are related to total
system energies rather than per-atom energy. All of these contribute to large uncertainties as
can be seen in Figure 1(b). As a result, reducing uncertainty margin during MD calculations of
dislocation energies becomes extremely important. Here, we illustrate this by calculating core
energies of edge type of misfit dislocation in zinc-blende CdS [20] using the literature
interatomic potential [21]. We also calculated dislocation energies for aluminium using exactly
the same geometry as shown in Figure 1(a), and the same results were obtained [22].

The crystals used for the calculations contain nx (101) planes in x-, ny (010) planes in y- and
ð101Þ nz planes in z-. At a fixed nz = 6 (Lz ~ 25 Å), 10 system dimensions of nx � ny = 24 � 86, 26
� 92, 28 � 98, 30 � 104, 32 � 110, 34 � 116, 36 � 122, 38 � 128, 40 � 134 and 42 � 140 are
studied. Under these dimensions, the lengths Ly and Lx roughly satisfy the relation Ly = 81.7 (Å)
+ 4.24 Lx, and the smallest (nx � ny = 24 � 86) and the largest (nx � ny = 42 � 140) systems
correspond to Lx � Ly ~100 � 500 Å2 and ~170 � 820 Å2, respectively. Similar to Figure 1(a), a
dislocation dipole is created by removing a (101) plane (a thickness of the Burgers magnitude
b) of height d = 40 (010) planes (~230 Å).

MD simulations are performed at 300 K for 4 ns to equilibrate the systems, and another 16 (=
ttot) ns to calculate time-averaged energies of both perfect crystals and crystals containing the
dislocation dipoles. Let Ep and Np represent the energy and total number of atoms in the
perfect crystal, and Ed and Nd represent the energy and total number of atoms in the dislocated
crystal. Since atoms are equivalent in the perfect crystal, the total energy of a perfect crystal
containing the same number of atoms as in the dislocated crystal can be obtained by scaling Ep

with the ratio Nd/Np. Hence, the dislocation line energy is calculated as

Γ ¼
Ed �

Nd

Np
Ep

2Lz
ð11Þ

where 2Lz is the total dislocation length. Based on a time segment of Δt = 16 ps to calculate
sample Γi, both best estimate dislocation energies Γ (simplified as Γ) and their standard devia-
tions σ are calculated using Eqs. (1)–(3). The results of Γ and σ are shown in Figure 4 as unfilled
circles and error bars, respectively. In Figure 4, the thin light line is obtained from a continuum
model [20], and the crosses represent data from MS simulations.
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Figure 4 indicates that despite the challenge for convergence during short-time MD simula-
tions as seen in Figure 1(b), the uncertainty margin of time-averaged MD results of dislocation
energies can be reduced to a negligible level if the average time is increased to 16 ns or above.
As a consequence of the high convergence, all the MD data points fall right on top of the
continuum line. This means that if constructed from the continuum function, the error param-
eter ξ would also be near zero. Contrarily, the MS results only approximately agree with the
continuum line at small system dimensions (however, our smallest dimension of Lx ~ 100 Å
would correspond to 80,000 atoms, which is big according to the literature MS standard) and
become meaningless for large systems. The uncertain margin of MS simulations can also be
quantified and reduced by performing ensemble averages of a large number of MS simulations
with initial configurations taken from various snapshots of an MD simulation (so that they are
at different thermally activated states). This is left as an exercise for readers as we only address
MD simulations in this chapter.

8. Diffusion parameters

For alloyed systems, or systems involving defects, the number of possible atomic diffusion
mechanisms can be tremendous. In such cases, diffusivities can be most effectively calculated
from the mean square displacement of the diffusing species obtained from MD simulations.
Diffusivities at different temperatures can be further used to derive pre-exponential factor and

Figure 4. CdS misfit dislocation energy as a function of system dimensions Lx and Ly under the constraint Ly = 81.7 (Å) +
4.24 Lx. Note that error bars of MD data are essentially horizontal lines, indicating negligible uncertainty margins.
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activation energy of diffusion through an Arrhenius fit. The only challenge of this approach is
that it is usually associated with large statistical errors. We now explore this issue using
hydrogen diffusion in aluminium as an example. We use the literature Al-H potential [13] in
the calculations.

Aluminium fcc crystals containing 8 {100} planes in each of the three <100> coordinate direc-
tions are used for simulations. The initial crystals are created based on the room temperature
experimental lattice constant a = 4.05 Å [23]. The system dimension is therefore around 32 Å,
corresponding to 2048 aluminium atoms. For comparison, we also calculate the theoretical
lattice constants at finite temperatures following the approach described above, and find
a = 4.05 Å at 300 K and a = 4.06 Å at 700 K. Bulk crystals are simulated using periodic boundary
conditions, and a single hydrogen atom is introduced in the computational cell.

First, a warm-up MD simulation is performed for more than 0.1 ns to equilibrate the system at
the target temperature T. Following this, an MD simulation is performed for a total period of
ttot. If the time step size is dt, the total number of simulated steps n = ttot/dt. The time-dependent
hydrogen location, r(t), is recorded on a time interval of Δt, i.e., at times t = iΔt, i = 1, 2,…, m
(m = ttot/Δt), where Δt is a multiple of dt. These locations allow calculations of the relative
hydrogen displacement per time interval Δt. For example, if the starting and ending times of
the Δt interval are (i � 1)Δt and iΔt, respectively (i = 1, 2, …, m), the displacement can be
calculated as Δri(Δt) = r(iΔt) � r(iΔt � Δt). Once Δr per Δt is known, the relative displacement
per larger time intervals of kΔt, measured between (i � 1)Δt and (i � 1 + k)Δt, can be simply

obtained as ΔriðkΔtÞ ¼
Xi�1þk

j¼i
ΔrjðΔtÞ, where i = 1, 2, …, m + 1 � k. This means that we can

calculate m + 1 � k values of Δri(kΔt). Clearly, the number of Δri(kΔt) values is large when k≪ m.
Under this condition, a highly converged mean square displacement can be obtained from

⌊ΔrðkΔtÞ⌋2 ¼

Xmþ1�k

i¼1

jΔriðkΔtÞj
2

mþ 1� k
ð12Þ

This mean square displacement is a linear function of time t. In particular, ⌊ΔrðkΔtÞ⌋2 ¼ 6Dt,
where D is diffusivity [24]. Fitting the MD data to 6Dt in a small time range t≪ ttot (i.e., k≪ m)
allows us to determine diffusivity D. Eq. (4) can be used to estimate the uncertainty of this
linear fit.

The MD procedures described above can be used to calculate diffusivities at different temper-
atures. The results can be fitted to the Arrhenius equation to get the pre-exponential factor D0

and activation energy Q of hydrogen diffusion in aluminium [13]. Eq. (4) can also be used to
estimate error of this Arrhenius fit.

Based on an NVT ensemble, MD simulations are performed to calculate the mean square
displacement of the hydrogen atom at various temperatures between 400 and 800 K using
ttot = 0.88 ns, dt = 0.001 ps and Δt = 0.0088 ps. The mean square displacements for a small time
range (t < 15 ps) are fitted to 6Dt. A small time range is used to increase the terms in the
average sum. For example, for t = 15 ps, the total number of terms in Eq. (12) equalsN =m + 1�
k = ttot/Δt + 1 � t/Δt > 98296. The MD mean square displacement results and the fitted 6Dt lines
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are shown in Figure 5(a) for three chosen temperatures 500, 600 and 700 K. The diffusivities

derived from the mean square displacement are fitted to the Arrhenius equation, and the

results are shown in Figure 5(b). It can be seen that although the mean square displacement

appears to satisfy well the linear function of time, the statistical error for the Arrhenius fit is

significant.

To examine convergence of the results with respect to simulation time ttot, extensive MD

simulations at a variety of temperatures are performed using dt = 0.001 ps and Δt = 4.4 ps.

Arrhenius fits are performed at different total MD simulation time ttot, and the error parameter

ξ for the Arrhenius fits is calculated using Eq. (9). The results for the fitted activation energy

and the associated error parameter as a function of ttot are shown respectively in Figure 6(a)

and (b). It can be seen that the activation energy approaches a constant value after the

simulation time reaches 10 ns and above. Correspondingly, the Arrhenius error reduces to

near zero at t ≥ 10 ns. To verify that highly converged results are indeed obtained at ttot = 13.2

ns, the corresponding mean square displacement as a function of time at selected temperatures

and the Arrhenius plot are shown respectively in Figure 7(a) and (b). It can be seen that ideally

linear plots are obtained for both mean square displacement and Arrhenius fit, indicating

Figure 5. Uncertainty examination of hydrogen diffusion parameters in aluminium calculated fromMD simulations at ttot
= 0.88 ns, dt = 0.001 ps and Δt = 0.0088 ps. (a) Mean square displacement and (b) Arrhenius plot.

Figure 6. Convergence of diffusion calculation as a function of simulation time. (a) Activation energy and (b) Arrhenius

error.
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negligible errors. Interestingly, the activation energy determined from the slope of the Arrhe-
nius fit, Q = 0.43 eV, is in excellent agreement with MS calculation at 0 K, Q = 0.41 eV [13]. Note
that MS can only be applied for a single atomic diffusion mechanism as in the present case. MD
simulations can be applied to alloyed and defected systems that may involve thousands or
more different atomic jump paths.

9. Thermal conductivity

Another good example to examine uncertainty is thermal conductivity calculations which are
usually associated with large statistical errors. Here, we explore calculations of thermal con-
ductivities for a bulk GaN crystal using a ‘direct method’ [12]. The geometry of such a method
is illustrated in the left bottom legend of Figure 8. Assuming that heat flux is along the x-axis,
two regions of width w are created in the cell. One region is in the middle, and the other region
is on the two ends (due to the periodic boundary condition, the two regions of width w/2
shown in the legend are in fact one region). Through velocity rescaling, a constant heat flux of J
(say, in unit eV/ps�Å2) is continuously removed from the middle region and an exactly the
same amount of heat flux is continuously added to the end region. When a steady state is
reached, this creates a temperature gradient ∂T/∂x from the cold (middle) to the hot (end)
regions. This temperature gradient can then be used to calculate thermal conductivity κ

through the Fourier’s law

κ ¼
�J

∂T=∂x
ð13Þ

Our calculations use the GaN literature potential developed by Bere and Serra [25, 26]. A
wurtzite GaN crystal with 500 (0001) planes in the x-direction, 6 (1100) planes in the y-
direction and 10 (1120) planes in the z-direction is used. The crystal is uniformly divided into

Figure 7. Statistical uncertainty examination of hydrogen diffusion parameters in aluminium calculated from MD simu-
lations at ttot = 13.2 ns, dt = 0.001 ps and Δt = 4.4 ps. (a) Mean square displacement and (b) Arrhenius plot.
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100 bins along the x-axis so that position-dependent temperature can be calculated as the time-
averaged temperature for each of the bins. MD simulation is performed for 24 ns using an NVE
ensemble at an initial temperature of 300 K, a heat flux of J = 0.0015W/ps�Å2, a heat source/sink
width of w = 60 Å and a time step size of dt = 0.001 ps. After the first 4 ns is discarded to enable
the temperature gradient to reach a steady state, time-averaged temperatures are calculated for
the remaining simulations.

To examine the convergence of the temperature gradient calculations, Figure 8(a) and (b)

compares the temperature profiles obtained from a short average time of 0.5 ns (average
between 23.5 and 24 ns) and a long average time of 20 ns (average between 4 and 24 ns). It
can be seen that extremely scattered data are obtained at the short average time. A related
phenomenon is that the temperature gradients obtained from the left and the right sides of the
cold region do not closely match, indicating non-convergence. Contrarily, the data averaged
over the longer time are extremely smooth, and the temperature gradients obtained from both

Figure 8. Results of 300 K thermal conductivity calculations. (a) Temperature averaged over a short period of 0.5 ns; (b)
temperature averaged over a long period of 20 ns; (c) convergence of temperature gradient and (d) convergence of
thermal conductivity.
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sides of the cold region are the same up to the fourth decimal point. This suggests that the

statistical margin of the temperature gradients is greatly reduced by increasing the average

time. To quantify this, we show the running averages of the left and the right temperature

gradients in Figure 8(c). Figure 8(c) confirms that although the two temperature gradients

differ significantly at short times, they approach the same plateau at t ! 24 ns.

To understand the uncertainty margin of the final thermal conductivity, we divide the 20 ns

simulation average time into 20 segments and calculate the thermal conductivities κi for each

of the segments i = 1, 2, …, 20. We also calculate the running average of these conductivities.

The results are shown in Figure 8(d). It can be seen that κi is associated with a significant

uncertainty margin σ, which can be calculated using Eq. (2). However, the running average

quickly approaches a saturated value of ~91 W/K�m. Note that the running average at time

t = 20 ns is exactly the average measurement of the 20 κi as defined by Eq. (1). The uncertainty

margin of this average is σ ¼ σ=
ffiffiffiffiffi

20
p

.

10. Composition profile

Population of chemical species in a material often needs to be studied. For instance, hydrogen

segregation to a crack tip causes hydrogen embrittlement. Hydrogen segregation to a surface

impacts the adsorption/desorption performance of solid state hydrogen storage materials.

Calculation of composition profiles is a good approach to quantify these segregation effects.

However, due to the discrete nature of crystals, a snapshot composition profile is not smooth

and is hence associated with a significant uncertainty margin. Here, we demonstrate the

calculation of uncertainty margin of a composition profile obtained from MD simulations. We

use the hydrogen segregation on (111) palladium surface as an example. The literature Pd-H

potential [19] is used.

The fcc palladium crystal contains 5040 Pd atoms with 21 ð112Þ planes in the x- direction, 20

(111) planes in the y- direction and 12 ð110Þ planes in the z- direction. Based on an NPT

ensemble to relax stresses, an MD simulation is performed at a temperature of T = 300 K and

a hydrogen composition of x = 0.1 (i.e., the chemical formula for the system is PdH0.1). The

corresponding numbers of H atoms are randomly introduced into the octahedral interstitial

sites so that the initial composition is nominally uniform. To simulate the (111) surfaces,

periodic boundary conditions are used in the x- and z-directions and a free boundary condition

is used in the y- direction. To ensure a full equilibration between the surfaces and bulk, we first

perform a pre-conditioning MD simulation that involves 1.5 ns annealing at 600 K, another

1.5 ns to cool the system from 600 K to the target temperature T = 300 K, and a final 1.5 ns

annealing at the target temperature. With the pre-conditioned sample, a second MD simula-

tion is performed for 33 ns at the target temperature, where 100 snapshots of atom positions

are recorded on a time interval of 330 ps. Hydrogen composition is calculated for each atomic

layer and is averaged over the 100 snapshots. One snapshot of atomic configuration and the

averaged composition profile normal to the surface are shown respectively in Figure 9(a)

and (b). In Figure 9(b), the error bars represent the standard deviation calculated using Eq. (3).

Uncertainty Quantification and Reduction of Molecular Dynamics Models
http://dx.doi.org/10.5772/intechopen.68507

105



Considering that the initial composition is nominally uniform, Figure 9(a) shows visually a

strong hydrogen surface segregation effect. This is confirmed in Figure 9(b) where the surface

composition reaches the saturation value of 1.0 as compared to the bulk value of xbulk ~ 0.03.

Interestingly, all data points shown in Figure 9(b) have negligible error bars. Also it is impor-

tant to note that the composition profile is highly symmetric with respect to the two end

surfaces and the composition is ideally constant in the bulk region. These further confirm that

our high temperature pre-annealing and the ensemble-average of many snapshots have suc-

cessfully equilibrated the system and reduced the statistical error, resulting in highly con-

verged composition profile.

11. Calibration of continuum models

When the uncertainty margin is reduced to near zero, MD simulations are well suited to

validate and calibrate other models. Here, we apply MD to calibrate a continuum misfit

dislocation theory. As shown in Figure 10(a), consider that a film is grown on a substrate

surface. If the film lattice constant af is smaller than the substrate lattice constant as, then the

film must be stretched by a strain of ε = (as � af)/af in order to grow on the substrate. This

creates a large strain energy. However, if misfit dislocations are formed in the film (i.e., adding

a lattice unit in the film), then the strain for the film to match the substrate is reduced to ε = (as
� af)/af � b/L, where b is the Burgers magnitude of the dislocation and L is the dislocation

spacing. While formation of dislocations reduces lattice mismatch strain energy, it causes

additional dislocation energy. The continuum misfit dislocation models express the total sys-

tem energy as a function of dislocation density so that by minimizing the total energy, the

equilibrium dislocation density can be predicted. This concept has been used to develop a

variety of continuum misfit dislocation models [27–30].

In previous application of the continuum misfit dislocation models, the dislocation Burgers

magnitude b is usually taken from the film lattice constant, and the dislocation spacing L is

usually taken from the substrate [31–33]. Referring to Figure 10(a), these mean that b = af and

L = Ls. Despite that these choices appear to be natural, they have not been justified. Questions

arise on why the Burgers magnitude should be defined by the film lattice constant because if a

Figure 9. Hydrogen segregation on (111) surfaces. (a) A snapshot configuration and (b) averaged composition profile.
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misfit dislocation can be viewed as an extra plane in the film, it can be equally viewed as a

missing plane in the substrate. To understand this issue, we have performed MD analyses of a

CdS film on a CdTe substrate [20]. Our MD energy (normalized by interfacial area) is com-

pared with the original continuum model [30] in Figure 10(b). It can be seen that MD results

do not perfectly match the continuum prediction. Because the uncertainty margin of MD

simulations on dislocation energy and strain energy (or equivalently elastic constant) calcula-

tions has been reduced to near zero as shown in Figures 3 and 4, the results should match

perfectly if the MD and the continuum models are consistent. We find, however, that if an

approximation of the dislocation interaction energy array assumed in the original continuum

model is corrected, and if the Burgers magnitude is taken from substrate rather than film (i.e., b

= as), and the dislocation spacing is taken from the film rather than substrate (i.e., L = Lf), then

MD results can match the continuum prediction perfectly as shown in Figure 10(c).

The Burger magnitude must be defined from substrate, whereas the dislocation spacing must

be defined from the film can be analytically derived. Assume that in a dislocation-free system,

nf planes of film with plane spacing af are matched with ns (assumes that ns = nf) planes of

substrate with plane spacing as. If the substrate is much thicker than the film, it can be assumed

to be rigid. Then the film is subject to a mismatch strain of (nfas � nfaf)/(nfaf) = (as � af)/af. If we

consider a scenario where a half plane is inserted to the film, then the film is subject to a

residual strain of [nfas � (nf + 1)af]/[(nf + 1)af] = (as � af)/af � as/Lf. Obviously, Lf = (nf + 1)af is

exactly the length of unstrained film. Alternatively, if we consider a scenario where a half plane

is removed from the substrate, then the film is subject to a residual strain of [(nf � 1)as � nfaf]/

(nfaf) = (as � af)/af � as/Lf. Interestingly, Lf = nfaf is again exactly the length of unstrained film.

Hence, when the substrate is fixed, a dislocation always causes a consistent residual strain of

(as � af)/af � as/Lf whether the dislocation is viewed as inserting a half plane in the film or

removing a half plane from the substrate. By comparing the residual strain shown in Figure 10

(a), we see that the magnitude of the Burgers vector b should be the substrate value as rather

Figure 10. Calibration of a continuum misfit dislocation theory. (a) Misfit strain with and without misfit dislocation; (b)

comparison of MD data with an uncalibrated continuum model and (c) comparison of MD data with a calibrated

continuum model.
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than the film value af, and the dislocation spacing L should be the film value Lf rather than the

substrate value Ls. This can also be understood in a different way. According to the definition

of strain ε = ΔL/L0 where ΔL is change of sample length and L0 is the length of unstrained

sample, it is clear that the unstrained film length Lf should be used in place of L0 because in our

case, the substrate is fixed and only the film is strained. On the other hand, our fixed substrate

represents an infinite substrate thickness so that the thickness weighted average plane spacing

equals the substrate plane spacing. As a result, the substrate spacing bs (or as) should be taken

as the Burgers vector. This example shows how an MD model with reduced uncertainty

margin can reveal errors of widely used theories.

12. Conclusions

A brief overview is given for uncertainty quantification methods of multiscale models. We

demonstrate that rigorous quantification of all model uncertainties is still challenging. How-

ever, robust methods are already available today to reliably quantify and reduce the statistical

uncertainties of molecular dynamics (MD) simulations. In particular, by averaging over time,

the statistical uncertainties of MD calculated properties can always be reduced to near zero as

long as the MD simulation is sufficiently long. Counterintuitively, the statistical uncertainties

of time-averaged MD simulations are significantly smaller than those of molecular statics

simulations especially for large systems with many local energy minimums. For instance, the

dislocation energies calculated from time-averaged MD simulations match exactly the contin-

uum predictions, whereas the dislocation energies calculated from MS diverge at large system

dimensions. It is also demonstrated that the statistical uncertainties in long MD diffusion

simulations can be reduced to such a low level that ideally linear Arrhenius behaviour of

diffusion is captured. This means that MD simulations can be used to study diffusion for any

complex systems containing any number of diffusion paths. This is extremely important

considering that the past MS method to calculate diffusion energy barrier is usually only

applicable to single, known atomic jump paths. When zero statistical uncertainty margin is

achieved, MD simulations have been successfully used to validate and improve a widely-used

misfit dislocation theory. Most importantly, zero statistical error means that MD simulations

do not introduce additional errors beyond those inherent in the interatomic potential and

simplified systems. Such MD simulations, therefore, isolate out other uncertainties, facilitating

their quantifications. All these show that when statistical uncertainties are quantified and

reduced, MD simulations can impact material research that would be otherwise impossible.
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