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Abstract

Uncertainty propagation (UP) methods are of great importance to design optimization
under uncertainty. As a well-known and rigorous probabilistic UP approach, the polyno-
mial chaos expansion (PCE) technique has been widely studied and applied. However,
there is a lack of comprehensive overviews and studies of the latest advances of the PCE
methods, and there is still a large gap between the academic research and engineering
application for PCE due to its high computational cost. In this chapter, latest advances of
the PCE theory and method are elaborated, in which the newly developed data-driven
PCE method that does not depend on the complete information of input probabilistic
distribution as the common PCE approaches is introduced and improved. Meanwhile,
the least angle regression technique and the trust region scenario are, respectively,
extended to reduce the computational cost of data-driven PCE to accommodate it to
practical engineering design applications. In addition, comprehensive comparisons are
made to explore the relative merits of the most commonly used PCE approaches in the
literature to help designers to choose more suitable PCE techniques in probabilistic design
optimization.

Keywords: uncertainty propagation, probabilistic design, polynomial chaos expansion,
data-driven, sparse, trust region

1. Introduction

Uncertainties are ubiquitous in engineering problems, which can roughly be categorized as

aleatory and epistemic uncertainty [1, 2]. The former represents natural or physical random-

ness that cannot be controlled or reduced by designers or experimentalists, while the latter

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



refers to reducible uncertainty resulting from a lack of data or knowledge. In systems design,

all sources of uncertainties need to be propagated to assess the uncertainty of system quantities

of interest, i.e., uncertainty propagation (UP). As is well known, UP is of great importance to

design under uncertainty, which greatly determines the efficiency of the design. Since generally

sufficient data are available for aleatory uncertainties, probabilistic methods are commonly

employed for computing response distribution statistics based on the probability distribution

specifications of input [3, 4]. Conversely, for epistemic uncertainties, data are generally sparse,

making the use of probability distribution assertions questionable and typically leading to

nonprobabilistic approaches, such as the fuzzy, evidence, and interval theories [5–7]. This chap-

ter mainly focuses on propagating the aleatory uncertainties to assess the uncertainty of system

quantities of interest using probabilistic methods, which is shown in Figure 1.

A wide variety of probabilistic UP approaches for the analysis of aleatory uncertainties have

been developed [8], among which the polynomial chaos expansion (PCE) technique is a

rigorous approach due to its strong mathematical basis and ability to produce functional

representations of stochastic quantities. With PCE, the function with random inputs can be

represented as a stochastic metamodel, based on which lower-order statistical moments as

well as reliability of the function output can be derived efficiently to facilitate the implementa-

tion of design optimization under uncertainty scenarios such as robust design [9] and

reliability-based design [10]. The original PCE method is an intrusive approach in the sense

that it requires extensive modifications in existing deterministic codes of the analysis model,

which is generally limited to research where the specialist has full control of all model equa-

tions as well as detailed knowledge of the software. Alternatively, nonintrusive approaches

have been developed without modifying the original analysis model, gaining increasing atten-

tion, thus is the focus of this chapter. As a well-known PCE approach, the generalized PCE

(gPCE) method based on the Askey scheme [11, 12] has been widely applied to UP for its

higher accuracy and better convergence [13, 14] compared to the classic Wiener PCE [15].

Generally, the random input does not necessarily follow the five types of probabilistic distri-

butions (i.e., normal, uniform, exponential, beta, and gamma) in the Askey scheme. In this

case, the transformation should be made to transfer each random input variable to one of the

five distributions. It would induce substantially lower convergence rate, which makes the
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Figure 1. Illustration of uncertainty propagation.
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nonoptimal application of Askey polynomial chaos computationally inefficient [8]. Therefore,

the Gram-Schmidt PCE (GS-PCE) [16] and multielement PCE (ME-PCE) [17] methods have

been developed to accommodate arbitrary distributions through constructing their own

orthogonal polynomials rather than referring to the Askey scheme.

All the PCE methods discussed above are constructed based on the assumption that the exact

knowledge of the involved joint multivariate probability density function (PDF) of all random

input variables exists. Generally, by assumption of independence of the random variables, the

joint PDF is factorized into univariate PDFs of each random variable in introducing PCE in the

literature. However, the random input could exist as some raw data with a complicated

cumulative histogram, such as bi-modal or multi-modal type, for which it is often difficult to

obtain the analytical expression of its PDF accurately. Under these scenarios, all the above PCE

approaches become ineffective since they all have to assume the PDFs to be complete. To

address this issue, the data-driven PCE (DD-PCE) method has been proposed [18], in which

its accuracy and convergence with diverse statistical distributions and raw data are tested and

well demonstrated. With this PCE method, the one-dimensional orthogonal polynomial basis

is constructed directly based on a set of data of the random input variables by matching certain

order of their statistic moments, rather than the complete distributions as in the existing PCE

methods, including gPCE, GS-PCE, and ME-PCE.

At present, great research achievements about PCE have been made in the literature, which

have also been applied to practical engineering problems to save the computational cost in UP.

However, there is still a large gap between the academic study and engineering application for

the PCE theory due to the following reasons: (1) the complete information of input PDF often is

not known in engineering, which cannot be solved by most PCE methods presented in the

literature; (2) the computational cost of existing PCE approaches is still very high, which

cannot be afforded in practical problems, especially when applied to design optimization;

and (3) there is a lack of comprehensive exploration of the relative merits of all the

PCE approaches to help designers to choose more suitable PCE techniques in design under

uncertainty.

2. Data-driven polynomial chaos expansion method

Most PCE methods presented in the literature are constructed based on the assumption that

the exact knowledge of the involved PDF of each random input variable exists. However, the

PDF of a random parameter could exist as some raw data or numerically as a complicated

cumulative histogram, such as bimodal or multimodal type, which is often difficult to obtain

the analytical expression of its PDF accurately. To address this issue, the data-driven PCE

method (DD-PCE for short in this chapter) has been proposed. DD-PCE follows the similar

general procedure as that of the well-known gPCE method. For gPCE, the one-dimensional

orthogonal polynomial basis simply comes from the Askey scheme in Table 1 and is a function

of standard random variables. While for DD-PCE, the one-dimensional orthogonal polynomial

basis is constructed directly based on the data of random input by matching certain order of

statistic moments of the random inputs and is a function of the original random variables.

Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation
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2.1. Procedure of data-driven PCE method

Step 1. Represent the output y as a PCE model of order p.

y ≈
X

P

i¼0

biΦiðXÞ ¼
X

P

i¼0

bi
Y

d

j¼1

P
ðαi

j
Þ

j ðXjÞ ð1Þ

where P+1 (1þ P ¼ ðdþ pÞ!=ðd!p!Þ) is the number of PCE coefficients bi that is the same as

gPCE; ΦiðXÞ is the d-dimensional orthogonal polynomial produced by the full tensor product

of one-dimensional orthogonal polynomials P
ðαi

j
Þ

j ðXjÞ; and αi
j represents the order of P

ðαi
j
Þ

j ðXjÞ

and clearly satisfies 0 ≤
X

d

j¼1

αi
j ≤ p.

P
ðαi

j
Þ

j ðXjÞ corresponding to the jth dimensional random input variable xj in Eq. (1) is defined as

below, in which the index αi
j is replaced by kj for simplicity below:

Pj
ðkjÞðXjÞ ¼

X

kj

s¼0

p
ðkjÞ
s, j �ðXjÞs, j ¼ 1, 2,…, d ð2Þ

where p
ðkjÞ
s, j is the unknown polynomial coefficient to be solved.

Step 2. Solve the unknown polynomial coefficient p
ðkjÞ
s, j to construct the one-dimensional

orthogonal polynomial basis.

Since the construction of P
ðαi

j
Þ

j ðXjÞ on each dimension is the same, the subscript j denoting the

dimension number is omitted thereafter for simplicity. Based on the property of orthogonality,

one clearly has

ð

x∈Ω

PðkÞðXÞPðlÞðXÞdΓðXÞ ¼ δkl, ∀k, l ¼ 0, 1,…, p ð3Þ

where δkl is the Kronecker delta, Ω is the original stochastic span, and Γ(X) represents the

cumulative distribution function of the random variable X.

Distribution types PDFs Polynomials Weights Intervals

Normal 1
ffiffiffiffi

2π
p e�x2=2 Hermite Hn(x) e�x2=2 [�∞, +∞]

Uniform 1/2 Legendre Pn(x) 1 [�1, 1]

Beta ð1�xÞαð1þxÞβ
2αþβþ1Bðαþ1, βþ1Þ

Jacobi Pðα,βÞ
n ðxÞ ð1� xÞαð1þ xÞβ [�1, 1]

Exponential e�x Laguerre Ln(x) e�x [0, +∞]

Gamma xαe�x

Γðαþ1Þ General Laguerre Lðα,βÞn
xαe�x [0, +∞]

Table 1. Random variable types and the corresponding orthogonal polynomials.
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It is assumed that all the coefficients pðkÞs in Eq. (2) are not equal to 0, and then Pð0Þ ¼ p
ð0Þ
0 . For

simplicity, the coefficient of the highest degree term in each P(k) is set as p
ðkÞ
k ¼ 1, ∀k. According

to Eq. (3), one has
ð

x∈Ω

p
ð0Þ
0

X

k

s¼0

pðkÞs Xs

" #

dΓðXÞ ¼ 0 ð4Þ

In the same way as above, one has

ð

x∈Ω

X

1

s¼0

pð1Þs Xs

" #

X

k

s¼0

pðkÞs Xs

" #

dΓðXÞ ¼ 0

⋮ ⋮
ð

x∈Ω

X

k�1

s¼0

pðk�1Þ
s Xs

" #

X

k

s¼0

pðkÞs Xs

" #

dΓðXÞ ¼ 0

ð5Þ

There are totally k equations in Eqs. (4) and (5). Through substituting Eq. (4) into the first

equation in Eq. (5), and then substituting Eq. (4) and the first equation in Eq. (5) to the second

equation in Eq. (5), and so on, one set of new equations can be derived:

ð

x∈Ω

X

k

s¼0

pðkÞs XsdΓðXÞ ¼ 0

ð

x∈Ω

X

k

s¼0

pðkÞs Xsþ1dΓðXÞ ¼ 0

⋮
ð

x∈Ω

X

k

s¼0

pðkÞs Xsþk�1dΓðXÞ ¼ 0

ð6Þ

It is observed that

ð

ξ∈Ω

XkdΓðXÞ is actually the kth order statisticmoment of x, i.e.,

ð

x∈Ω

XkdΓðXÞ ¼ μk.

Therefore, Eq. (6) can be rewritten as

μ0 μ1 ⋯ μk

μ1 μ2 ⋯ μkþ1

⋮ ⋮ ⋮ ⋮

μk�1 μk ⋯ μ2k�1

0 0 ⋯ 1

2

6

6

6

6

4

3

7

7

7

7

5

p
ðkÞ
0

p
ðkÞ
1

⋮

p
ðkÞ
k�1

p
ðkÞ
k

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

0
0
⋮

0
1

2

6

6

6

6

4

3

7

7

7

7

5

ð7Þ

where μiði ¼ 0, 1,…, 2k� 1Þ is the ith order statistic moment of x, which can be easily calcu-

lated from the given input data statistically or the PDFs of random inputs by integral. Of

course, when the number of given data is not large enough, errors would be induced in the

moment calculation.

Clearly, to obtain a k-order one-dimensional orthogonal polynomial basis, 0 to (2k � 1)-order

statisticmoments of x shouldbematched,which canbe calculated basedon thePDFor statistically

Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation
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based on the data set. Of course, when the number of data is not large enough, errors would be

induced in themoment calculation. The polynomial coefficients for the one-dimensional orthogo-

nal polynomial basis can be obtained by solving Eq. (7) with the Cramer’s Rule.

Step 3. Calculate the PCE coefficients bi by the least square regression technique.

Step 4. Once the PCE coefficients are obtained, a stochastic metamodel (i.e., PCE model) that is

much cheaper than the original model is provided. Evaluate on the PCE model by Monte Carlo

simulation (MCS) to obtain the probabilistic characteristics of y. Since the PCE model is cheap,

a large amount of sample points can be used. For the statistic moments, the analytical expres-

sions can also be conveniently derived based on the PCE coefficients:

E½y� ¼ E
X

P

i¼0

biψiðXÞ

" #

¼ b0

σ2½y� ¼ E½y2� � E2½y� ¼
X

P

i¼0

b2i E½ψ
2
i ðXÞ� � E2½y�

Skew½y� ¼ E
y�E½y�
σ½y�

� �3
� �

¼
E½y3� � 3E½y�σ2½y� � E3½y�

σ3½y�

Kur½y� ¼
E½ðy� E½y�Þ4�

σ4½y�
¼

E½y4� � 4E½y�E½y3� þ 6E2½y�σ2½y� þ 3E4½y�

σ4½y�

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

2.2. Extension of Galerkin projection to DD-PCE

In the existing work about DD-PCE, only the regression method is employed to calculate the

PCE coefficients. To the experience of the authors, the matrix during regression may become

ill-conditioned during regression for higher-dimensional problems since the sample points

required for regression that is often set as two times of the number of PCE coefficients P + 1

[19] is increased greatly causing a large-scale matrix during regression. To solve higher-

dimensional problems, the Galerkin projection method in conjunction with the sparse grid

technique has been widely used in gPCE due to its high accuracy, robustness, and conver-

gence [20], which has also been observed and demonstrated during our earlier studies on PCE

in recent years. In this section, the Galerkin projection method for PCE coefficients calculation

is extended to the DD-PCE approach to address higher-dimensional UP problems. Figure 2

shows the general procedure of the improved DD-PCE method.

With the projection method, the Galerkin projection is conducted on each side of Eq. (1):

yΦjðXÞ
� �

¼
X

P

i¼0

biΦiðXÞΦjðXÞ

* +

, ðj ¼ 0, 1,⋯, PÞ ð9Þ

where 〈•〉 represents the operation of inner product as below

〈g, f 〉 ¼

ð

gf dHðXÞ ð10Þ

where H(X) is the joint cumulative distribution function of random input variables X.

Uncertainty Quantification and Model Calibration18



Based on the orthogonality property of orthogonal polynomials, the PCE coefficient can be

calculated as

bi ¼ E yΦiðXÞ½ �=E ΦiðXÞΦiðXÞ½ �, ði ¼ 0, 1,⋯, PÞ ð11Þ

Similar to gPCE, the key point is the computation of the numerator in Eq. (11), which can be

expressed as

E yΦiðXÞ½ � ¼

ð
ξ∈Ω

yΦiðXÞdΗðXÞ ð12Þ

The Gaussian quadrature technique, such as full factorial numerical integration (FFNI) and

spare grid numerical integration, has been widely used to calculate the numerator in the

existing gPCE approaches, with which the one-dimensional Gaussian quadrature nodes and

weighs are directly derived by multiplying some scaling factors on the nodes and weights

from the existing Gaussian quadrature formulae and then the tensor product is employed to

obtain the multidimensional nodes. For some common type of probability distributions, for

example, normal, uniform, and exponential distributions, their PDFs have the similar formu-

lations as the weighting functions of the Gaussian-Hermite, Gaussian-Legendre, and

Gaussian-Laguerre quadrature formula. Therefore, li and wi can be conveniently obtained

based on the tabulated nodes and weights of Gaussian quadrature formula [21], which are

shown in Table 2, where lG�H
i and ωG�H

i , lG�La
i and ωG�La

i , lG�Le
i and ωG�Le

i , respectively,

represent the quadrature nodes and weights of Gaussian-Hermite, Gaussian-Laguerre, and

Gaussian-Legendre quadrature formula; λ is the parameter of exponential distribution; and μ1

and μ0 denote the lower and upper bounds of uniform distribution.

Figure 2. Procedure of the improved DD-PCE.
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However, the distributions of random inputs may not follow the Askey scheme, or are even

nontrivial, or even exist in some raw data with a cumulative histogram of complicated shapes.

Thus, such way to derive these nodes and weighs is not applicable in this case. In this work, a

simple method is proposed based on the moment-matching equations below to obtain the one-

dimensional quadrature nodes and weights.

ω0 þ ω1 þ⋯þ ωn ¼
ð

x∈Ω

1dΓðxÞ

ω0l0 þ ω1l1 þ⋯þ ωnln ¼
ð

x∈Ω

xdΓðxÞ
⋮

ω0ðl0Þn þ ω1ðl1Þn þ⋯þ ωnðlnÞn ¼
ð

x∈Ω

xrdΓðxÞ

ð13Þ

where li and ωi (i = 0, 1, …, n) are respectively the ith one-dimensional Gaussian quadrature

nodes and weights, which theoretically can be obtained by solving Eq. (13).

However, Eq. (13) are multivariate nonlinear equations, which are difficult to solve when the

number of equations is large (n + 1 > 7). It is noted that the one-dimensional polynomial basis

P(k) corresponding to each dimension constructed above is orthogonal. Therefore, its zeros are

just the Gaussian quadrature nodes li, which can be easily obtained by solving P(k) = 0. Through

substituting li into Eq. (13), the n + 1 weights ωi can be conveniently calculated. To calculate

Eq. (13) of PCE order p, generally at least p + 1 one-dimensional nodes should be generated to

ensure the accuracy, i.e., n ≥ p, which means that 0 to at least pth statistic moments of the

random variable X should be matched. In this work, n is set as n = p.

In the same way, the nodes and weights in other dimensions are obtained conveniently. Then,

the numerator can be calculated by the full factorial numerical integration (FFNI) method [8]

for lower-dimensional problems (d < 4) as

E½y ΦiðXÞ� ¼ E½ZðXÞ� ≈
X

m1

i1¼1

ωi1⋯

X

mj

ij¼1

ωij⋯

X

md

id¼1

ωidZðli1 ,⋯, lij ,⋯, lidÞ¼
X

N

j¼1

W jZðLjÞ ð14Þ

where lij and ωij , respectively, represent the one-dimensional nodes and weights of the jth

random input variable, which can be obtained using the way introduced above; Li and Wi

(i = 1,…, N) are the d-dimensional nodes and weights, respectively.

Generally, m is set as m ≥ p + 1 (p is the order of the PCE model). If the number of nodes N for

calculating E[yΦi(X)] is too small, which is not matched with the PCE order, large error would

Normal Exponential Uniform

li ωi li ωi li ωi

ffiffiffi

2
p

σlG�H
i þ μ ωG�H

i
ffiffiffi

π
p lG�La

i

λ
ωG�La

i
μ1�μ0

2 lG�Le
i þ μ1þμ0

2
ωG�Le
i

2

Table 2. li and ωi calculated based on Gaussian quadrature.
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be induced. Therefore, the conclusion that the higher the PCE order, the more accurate the UP

results is based on the fact that E[yΦi(X)] has been calculated accurately enough. Clearly, the

number of nodes N is increased exponentially with the increase of dimension d, causing curse

of dimensionality. Therefore, FFNI is only suitable for lower-dimensional problems (d < 4).

For higher-dimensional problems (d ≥ 4), the sparse grid numerical integration method [22]

can be used to calculate E[yΦi(X)] to reduce the computational cost:

E½yΦiðXÞ� ¼ E½ZðXÞ� ≈
X

q�dþ1 ≤ jij ≤ q

ð�1Þq�jij d� 1
q� jij

	 


ðωi1…ωij…ωidÞ Zðli1 ,⋯, lij ,⋯, lidÞ ð15Þ

where jij ¼ i1 þ ,…, þ id and i1,…, id are the accuracy index corresponding to each dimension.

For the FFNI-based method, if m nodes are selected on each dimension (m1 =…= md = m), 2m � 1

accuracy level can be obtained. For the sparse grid-based method, 2k + 1 accuracy level can be

obtained with the accuracy level k = q � d. For example, if k = 2 and d = 8, for the sparse grid-

based method, 17 nodes are required yielding 5th (2�2 + 1)-order accuracy level. For the FFNI-

based method, to obtain the same accuracy level 5 (2�3 � 1), m should be m = 3 requiring 38

nodes. Clearly, to obtain the same accuracy level, the number of nodes of the sparse grid-based

method is much smaller than that of the FFNI-based method if d is relatively large.

In this chapter, we focus on extending the Galerkin projection to the DD-PCE method to

address higher-dimensional UP problems and then exploring the relative merits of these PCE

approaches. For the case with only small data sets, both DD-PCE and the existing distribution-

based method (gPCE) may produce large errors for UP, and the estimation of PDF for the

existing PCE methods is problem dependent and very subjective. It is difficult to make a

comparison effectively between DD-PCE and the existing PCE methods. Therefore, during

the comparison, it is assumed that there are enough data of the random input to ensure the

accuracy of the moments.

2.3. Comparative study of various PCE methods

In this section, the enhanced DD-PCE method, the recognized gPCE method, and the GS-PCE

method that can address arbitrary random distributions are applied to uncertainty propaga-

tion to calculate the first four statistic moments (mean μ, standard deviation σ, skewness β1,

kurtosis β2) and probability of failure (Pf), of which the results are compared to help designers

to choose the most suitable PCE method for UP. To comprehensively compare the three PCE

approaches, four cases are respectively tested on four mathematical functions with varying

nonlinearity and dimension shown in Table 3 and N, U, Exp, Wbl, Rayl, and Logn denote

normal, uniform, exponential, Weibull, Rayleigh, and lognormal distribution, respectively. Pf

is defined as Pf = probability (y ≤ 0).

The PCE order is set as p = 5 for all the functions for comparison, which means that 0–9th

statistic moments of the random inputs should be matched to construct the one-dimensional

orthogonal polynomials for the DD-PCE approach. For the first and second functions, FFNI-

based Galerkin projection is used to calculate the PCE coefficients, while for the latter two,

Polynomial Chaos Expansion for Probabilistic Uncertainty Propagation
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the sparse grid-based method with accuracy level k = 4 is used since the dimension is higher.

The results of MCS with 107 runs are used to benchmark the effectiveness of the three

methods.

In Case 1, all the random input distributions are known and belong to the Askey scheme. The

test results are shown in Tables 4–7, where the bold numbers with underline are the relatively

best results and e represents the relative errors of the first four moments (μ, σ, β1, β2) with

respect to MCS. Pf estimated by MCS is presented with 95% confidence interval. The results

marked with * are from the sparse grid-based method. From these tables, it is found that with

the same number of function calls (denoted as Ns), DD-PCE, gPCE, and GS-PCE produce

almost the same results of the statistic moments, which are very similar to those of MCS (with

the largest error as 2.6927%). The estimation of Pf for all the methods is within the 95% confi-

dence interval with respect to MCS, indicating the high accuracy of UP. Although the orthogonal

polynomial basis for DD-PCE is constructed by matching only 0–9th statistic moments of the

random input variable instead of the complete PDFs for gPCE and GS-PCE, the results are

accurate enough in this case. Moreover, the application of sparse grid technique to DD-PCE can

greatly reduce the function calls for higher-dimensional problems (see Tables 5 and 6), while

Function 1: y = x1+x2+x3

Case 1: x1 ~U(1,2), x2 ~N(1,0.2), x3 ~ Exp(0.5)

Case 2: x1 ~Wbl(2,6), x2 ~Rayl(3), x3 ~ Logn(0,0.25)

Case 3: x1~BD, x2~ BD, x3~N(0,0.2)

Case 4: 500 and 107 sample points x1~BM, x2~ BM, x3~N(-0.8,0.2)

Function 2: y = sin(x1) � cos2(x2) + x3sin(x1) + 0.9

Case 1: x1 ~N(0.5,0.2), x2 ~U(0,1.5), x3 ~ Exp(0.1)

Case 2: x1 ~Wbl(2,3), x2 ~Rayl(0.2), x3 ~ Logn(0,0.25)

Case 3: x1~ BD, x2~ BD, x3~U(0,1)

Case 4: 500 and 107 sample points x1~BM, x2~ BM, x3~U(0.4,2)

Function 3: y = e�x1cos(x2) + x3e
�x4x5

� e�x6

Case 1: x1 ~N(1,0.2), x2 ~U(�1,1), x3 ~ N(1,0.2), x4 ~ U(�1,1), x5 ~ N(0,0.2), x6 ~ U(0,2)

Case 2: x1 ~Wbl(1,5), x2 ~Rayl(0.5), x3 ~ Logn(0.5,0.25) ,x4 ~ Rayl (0.3), x5 ~ Wbl(1,5), x6 ~ Rayl(1)

Case 3: x1~ BD, x2~ BD, x3~ N(2,0.2), x4 ~ U(-1,0), x5 ~ N(1,0.2), x6 ~ U(�1,4)

Case 4: 500&107sample points x1~BM, x2~Rayl (0.3), x3~BM ,x4 ~Rayl (0.3), x5 ~BM, x6 ~Rayl (1)

Function 4: y = x1
2x2

2
� x3

2x4
2 + x5

2x6
2
� x7

2x8
2 + x9

2x10
2

Case 1: x1 ~ N(1,0.2), x2 ~ U(0,2), x3 ~ N(0,0.2), x4 ~ U(0,2), x5 ~ N(1,0.2), x6 ~ U(0,2), x7 ~ N(0,0.2), x8 ~ U(0,2), x9 ~ N(1,0.2),

x10 ~ U(0,2)

Case 2: x1 ~Wbl(1,5), x2 ~Rayl(1), x3 ~Wbl(1,5), x4 ~Rayl(0.3), x5 ~Wbl(1,5), x6 ~Rayl(1), x7 ~Wbl(1,5), x8 ~Rayl(0.3), x9 ~Wbl

(1,5), x10 ~Rayl(1)

Case 3: x1 ~ N(1,0.2), x2 ~ N(1,0.2), x3 ~ BD, x4 ~ BD, x5 ~ N(1,0.2), x6 ~ N(1,0.2), x7 ~ BD, x8 ~ BD, x9 ~ N(1,0.2), x10 ~ N(1,0.2)

Case 4: 500 and 107 sample points x1 ~N(1.5,0.2), x2 ~N(1,0.2), x3 ~ BM, x4 ~ BM, x5 ~ N(1,0.2), x6 ~ N(1,0.2), x7 ~N(0,0.2), x8
~ N(0,0.2), x9 ~ N(1,0.2), x10 ~ N(1,0.2)

Table 3. Test functions and random input information of four cases.
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Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0050 0 0.0100

eσ (%) – 0.0164 (0.0164) 0.0164

eβ1 (%) – 0.1367 0.1367 0.1094

eβ2 (%) – 0.4877 0.3032 0.2199

Pf (1e
�3) [8.5185,8.6328] 8.5472 8.5901 8.5688

Ns 107 125 125 125

Table 4. Results of function 1 (Case 1).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0123 0.0296 0.0074

eσ (%) – 0.0402 0.0723 0.0522

eβ1 (%) – 0.1018 0.0890 0.1399

eβ2 (%) – 0.1050 0 0.1326

Pf (1e
�3) [4.2476,4.3286] 4.2627 4.2881 4.2562

Ns 107 10,626 10,626 10,626

Table 7. Results of function 4 (Case 1).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0 0.0112 0.0225

eσ (%) – 0.0288 0.0288 (0.0288

eβ1 (%) – 2.2284 2.6927 1.7642

eβ2 (%) – 0.6040 0.6074 0.5028

Pf (1e
�3) [4.8454,4.9318] 4.8993 4.8669 4.9074

Ns 107 1820 1820 1820

Table 6. Results of function 3 (Case 1).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0115 0 0.0231

eσ (%) – 0.0516 0 0.0258

eβ1 (%) – 0 0.4202 5.4852

eβ2 (%) – 0.1725 0.0814 0.0958

Pf ( 1e
�3) [3.1403,3.2101] 3.1713 3.2017 3.1936

Ns 107 125 125 125

Table 5. Results of function 2 (Case 1).
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exhibiting good accuracy. Especially for the fourth function, with FFNI, the computational cost is

very large (Ns = 976,562).

In Case 2, all the random input distributions are known but do not belong to the Askey

scheme. In this case, the Rosenblatt transformation is employed for the gPCE method first.

However, DD-PCE and GS-PCE can be directly used. The results are shown in Tables 8–11. It

is observed that overall DD-PCE and GS-PCE perform better than gPCE, yielding results that

are close to those of MCS. The reason is that the transformation in gPCE would induce error.

Specifically, in Tables 9 and 10, the gPCE method causes relatively large errors due to the

transformation. In addition, note the numbers with shadow, they are clearly larger than those

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0196 0.0087 0.0175

eσ (%) – 0.0298 0.0099 0.0199

eβ1 (%) – 0.2573 0.2059 0.2059

eβ2 (%) – 0.2170 0.2263 0.0899

Pf (1e
�4) [1.9818,2.1602] 2.0360 2.1490 2.0480

Ns 107 125 125 125

Table 8. Results of function 1 (Case 2).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0243 0.0182 0.0061

eσ (%) – 0.0467 0.2101 0

eβ1 (%) – 1.8877 8.0227 2.5956

eβ2 (%) – 0.0307 1.1659 0.0279

Pf (1e
�4) [9.0052,9.3808] 9.0130 7.9720 9.0250

Ns 107 125 125 125

Table 9. Results of function 2 (Case2).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0 0.0084 0

eσ (%) – 0.0443 0.0887 0.0443

eβ1 (%) – 0.3471 0.6480 0.4397

eβ2 (%) – 0.0419 0.1927 0.1368

Pf (1e
�3) [1.0859,1.1271] 1.0963 1.2291 1.1188

Ns 107 1820 1820 1820

Table 10. Results of function 3 (Case2).
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of DD-PCE and GS-PCE, and Pf is outside the range of the 95% confidence interval of MCS.

The interpretation is that since the first function is linear, the impact of transformation

employed in gPCE on the accuracy of UP is small; while, for the second and third functions,

they are more complicated and nonlinear (including trigonometric and exponential terms), the

error induced by the transformation employed in gPCE is amplified more. The fourth function

is a nonlinear polynomial one, which is easier to be handled than functions 2 and 3 in doing

UP. Therefore, the results are generally accurate except Pf that is still outside the range of the

95% confidence interval of MCS. Moreover, the application of sparse grid greatly reduces Ns,

exhibiting good potential applications for higher-dimensional problems.

In Case 3, the PDFs of some variables is bounded (BD) as below,

f ðxÞ ¼
2x, 0 < x < 1
0, otherwise

�

ð16Þ

and the rest of the variables follow typical distributions. In this case, the Rosenblatt transfor-

mation is also employed for the gPCE method first.

From the results in Tables 12–15, it is found that generally large errors are induced by gPCE,

especially the numbers with shadow in the tables. Since the first two variables follow the

distribution bounded in an interval, the error induced by the transformation is large and all

values of Pf are outside the confidence intervals for gPCE. While, the results of DD-PCE and

GS-PCE are generally accurate and comparable, which are still very close to those of MCS. It

should be noted that although the error of gPCE is the largest, all Pf by the three methods are

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0240 0.0180 0.0320

eσ (%) – 0.0111 0.0722 0.0250

eβ1 (%) – 0.2170 0.1979 0.2362

eβ2 (%) – 0.4229 1.9117 0.4582

Pf (1e
�3) [4.4019,4.4843] 4.4635 4.6942 4.4200

Ns 107 10,626 10,626 10,626

Table 11. Results of function 4 (Case 2).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0 0.0150 0

eσ (%) – 0.0195 24.1063 0

eβ1 (%) – 0.1359 36.9565 0.1132

eβ2 (%) – 0.0545 12.3239 0.0545

Pf (1e
�3) [4.9841,5.0717] 5.0038 5.2620 5.0333

Ns 107 125 125 125

Table 12. Results of function 1 (Case 3).
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outside the confidence intervals for function 3 (italic numbers) since this function is the most

nonlinear and complicated. Hence, we increase the PCE order p and accuracy level k of the

sparse grid to p = 6 and k = 5, and the results of Pf for DD-PCE, gPCE, and GS-PCE are 3.1263,

3.1446, and 3.1350, exhibiting evident improvement. Clearly with the same Ns, DD-PCE and

GS-PCE are much more accurate than gPCE when nontrivial distribution is involved. These

results further demonstrates the effectiveness and advantage of the enhanced DD-PCE for UP.

In Case 4, the distributions of the random input variables are unknown and only some data

exist. Although, based on the data, the analytical PDF can be obtained through some expe-

rience systems, such as Johnson or Pearson system [8], if the distribution of the data is very

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0039 6.4980 0.0194

eσ (%) – 0.0409 8.2618 0.0164

eβ1 (%) – 0.1187 50.3681 0.0475

eβ2 (%) – 0.1720 11.8984 0.1949

Pf (1e
�3) [8.6089,8.7237] 8.6559 0.8227 8.6728

Ns 107 10,626 10,626 10,626

Table 15. Results of function 4 (Case 3).

Methods MCS DD-PCE gPCE GS-PCE

eμ (%) – 0.0083 0.0914 0.0083

eσ (%) – 0.0213 19.7662 0.0213

eβ1 (%) – 0.4186 123.2093 0.3256

eβ2 (%) – 0.0555 12.7841 0.0476

Pf (1
e�3) [1.4429,1.4903] 1.4449 1.7890 1.4452

Ns 107 125 125 125

Table 13. Results of function 2 (Case 3).

Methods MCS DD-PCE* gPCE* GS-PCE*

eμ (%) – 0.0359 0.7473 0.0598

eσ (%) – 0.3983 (4.2798 0.3693

eβ1 (%) – 0.1221 22.5570 0.2036

eβ2 (%) – 0.6186 77.1134 0.6321

Pf (1e
�3) [3.1972,3.2676] 2.6222 8.9269 2.6071

Ns 107 1820 1820 1820

Table 14. Results of function 3 (Case 3).
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complicated, such as with a complicated cumulative histogram of bi- or multimodes, it is

often very difficult to obtain the analytical PDF accurately. As is well-known that the Pearson

system based on the first four statistic moments of the random variable would produce large

errors for bimode (BM) or multimode PDFs. Evidently, the existing PCE approaches, includ-

ing gPCE and GS-PCE, may produce large errors since they all depend on the exact PDFs of

the random inputs in this case. However, DD-PCE can still work since it is a data-driven

approach. To explore the effectiveness and advantage of DD-PCE over the other two

approaches, it is assumed that the input data for some random input variables have a

complicated bimode (BM) histogram shown in Figure 3 and the data for the rest from the

typical distributions. Therefore, for the convenience and effectiveness of test, all the input

data are generated based on the PDFs, of which the PDF of BM distribution is shown in

Eq. (17). It should be pointed out that the PDFs actually are unknown and only some data

exist in practice.

f PDF ¼ 0:647

0:1
ffiffiffiffiffiffi

2π
p exp � x2

2� 0:12

	 


þ 0:353

0:2
ffiffiffiffiffiffi

2π
p exp �ðx� 1Þ2

2� 0:22

 !

, x∈ ½�∞, þ ∞� ð17Þ

We tested small (500) and large (107) numbers of input data to investigate the impact of

number of data on the accuracy of UP. The results are shown in Tables 16–19, from which it is

noticed that the results of DD-PCE are generally very close to those of MCS when the number

of sample points of the random input variables is large (107). When only 500 sample points are

used, the errors are much larger. It means that the accuracy of DD-PCE is improved with the

increase of the number of sample points. The reason is very simple that with the increase of the

number of sample points, the statistic moments of random input variables calculated are more

accurate, which would undoubtedly increase the accuracy of UP. The observation exhibits

great agreements to what has been reported in work of Oladyshkin and Nowak. Similar to

Case 3, the estimated Pf is outside the confidence intervals for function 3 since this function is

the most nonlinear and the random distribution is more irregular, which can be improved by

Figure 3. PDF plot of the bimodal distribution.
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Methods MCS DD-PCE (10
7
) DD-PCE (500)

eμ (%) – 0.0066 1.4873

eσ (%) – 0.0196 0.0688

eβ1 (%) – 0.0150 0.0451

eβ2 (%) – 0.0052 3.2327

Pf (1e
�3) [1.4772,1.5252] 1.5069 0

Ns 107 125 125

Table 16. Results of function 1 (Case 4).

Methods MCS DD-PCE(10
7
) DD-PCE(500)

eμ (%) – 0.0132 0.4350

eσ (%) – 0.0109 0.1957

eβ1 (%) – 0.1159 13.4783

eβ2 (%) – 0.0131 0.8956

Pf (1e
�3) [6.4478,6.5474] 6.4703 8.000

Ns 107 125 125

Table 17. Results of function 2 (Case 4).

Methods MCS DD-PCE(10
7
) DD-PCE(500)

eμ (%) – 0.0327 0.6047

eσ (%) – 2.7503 5.3717

eβ1 (%) – 3.8373 9.5932

eβ2 (%) – 0.5563 1.3573

Pf (1e
�3) [7.7830,7.8924] 6.6667 6.0000

Ns 107 1820 1820

Table 18. Results of function 3 (Case 4).

Methods MCS DD-PCE(10
7
) DD-PCE(500)

eμ (%) – 0.0024 0.1925

eσ (%) – 0.0241 3.5156

eβ1 (%) – 0.4149 214.4537

eβ2 (%) – 0.0170 11.9346

Pf (1e
�3) [9.2650,9.3842] 9.2937 0

Ns 107 10626 10626

Table 19. Results of function 4 (Case 4).
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increasing Ns. This means that the generally the more nonlinear the function and the more

irregular the random input distribution, the more difficult it is to achieve accurate UP results.

These results further demonstrate the effectiveness and advantage of the enhanced DD-PCE

method for UP.

To study the convergence property of the enhanced DD-PCEmethod, the errors (e) of moments

and Pf with different PCE orders obtained by the proposed one as well as gPCE and GS-PCE

are shown in Figures 4–7, taking Function 2, for example. Clearly, similar to the existing two

methods, with the increase of the PCE order, the errors decrease significantly, exhibiting an

approximate exponential convergence rate. Meanwhile, it is observed that the speed of conver-

gence in Case 1 (Askey scheme) is the fastest. Generally, the more irregular the input distribution

and the more nonlinear the function, the slower is the convergence process. In addition, it is also

Figure 4. Errors with respect to different PCE orders (Case 1).

Figure 5. Errors with respect to different PCE orders (Case 2).

Figure 6. Errors with respect to different PCE orders (Case 3).
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noticed that for Case 3, since x1 and x2 follow the nontrivial distribution, the convergence rate is

very slow for gPCE (see left in Figure 6) due to the error induced by the transformation.

2.4. Summary

Overall, the three approaches produce comparably good results when the random inputs follow

the Askey scheme. However, gPCE is the most mature and convenient to be implemented since

there is no need to construct the orthogonal polynomials. When the PDFs of random inputs are

unknown but do not follow the Askey scheme, large errors would be induced by the transforma-

tion for gPCE and the rest two PCE methods are comparable in accuracy and implementation

complexity. It should also be pointed out that for DD-PCE, when constructing one-dimensional

polynomials, the statistic moments (often 0–10 order) should be calculated first. If large gap exists

between the high-order and low-order moments, the matrix singularity would happen in solving

the linear equations (Eq. (7)). Therefore, in this case, GS-PCE is preferable especially when the

function is highly nonlinear.When thePDF is unknownandcannot be obtained accurately, such as

when random inputs exist as some raw data with a complicated cumulative histogram, only the

DD-PCEmethod can still performwell since it is a data-drivenmethod instead of the probabilistic-

distribution-driven, while large errors would be produced if GS-PCE and gPCE are employed.

However, more efforts should bemade to solve the numerical problems in theDD-PCEmethod to

make it more robust and applicable in constructing the one-dimensional orthogonal polynomials.

3. A sparse data-driven PCE method

The size of the truncated polynomial terms in the full PCEmodel is increased with the increase of

the dimension of random inputs d and the order of PCE model p (see Eq. (1)), resulting in a

significant growth of the computational cost. Therefore, attempts are made in this section on the

full DD-PCE method introduced in Section 2 to reduce the computational cost. Accordingly, a

sparse PCE approximation, which only contains a small number of polynomial terms compared

Figure 7. Errors with respect to different PCE orders (Case 4).
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to a classical full representation, is eventually provided by using the least angle regression (LAR)

theory [23] and the sequential sampling method. The original LAR method is used for variables

selection, aiming to find the most important variables with respect to a function response. In this

work, LAR is extended to select some polynomial terms Фi(x) from the full PCE model that have

the greatest impact on the model response y ≈MðxÞ ¼
XP

i¼0
biΦiðxÞ in a similar way.

Although the computational cost and accuracy are dependent on the PCE order, how to

determine a suitable order that compromises between accuracy and efficiency is not within

the scope of this chapter. In common situations, PCE of order p = 2 or 3 can produce results

with good agreement to MCS for the output PDF estimation [24]. For more rigorous

approaches of adaptively determining the order of the PCE model rather than specifying it in

advance, readers can refer to references [25, 26].

3.1. Procedure of data-driven PCE method

A step-by-step description of the proposed method is given in detail as below with a side-by-

side flowchart in Figure 8.

Step 1. Given the information of the random inputs (raw data or probabilistic distributions),

specify the PCE order p, and then construct the full DD-PCE model without computing the PCE

coefficients.

Step 2. Generate the initial input sample points X = [x1,…,xm,…,xN]
T according to the distribu-

tions of the random inputs or select the sample points from the given raw data, where xm = [xm1,

…,xmd]. Meanwhile, calculate the corresponding real function responses y = [y1,…,ym,…,yN]
T.

X is standardized to have mean 0 and unit length, and that the response y has mean 0.

1

N

X

N

m¼1

xmn ¼ 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

m¼1

x2mn

v

u

u

t ¼ 1 ðn ¼ 1,…, dÞ,
1

N

X

N

m¼1

ym ¼ 0 ð18Þ

Then one has all the standardized data as

X ¼

x11, x12,…, x1d

x21, x22,…, x2d

⋯ ⋯

xN1, xN2,…, xNd

2

6

6

6

4

3

7

7

7

5

, y ¼ ðy1,…,yNÞ
T ð19Þ

Step 3. Set the iteration number as K = 0 and compute the values of all polynomial terms Фi(x)

(i = 0, 1,…, P) of the full PCE model in Eq. (1) by, respectively, substituting each input sample

point xm into them. Then one obtains the information matrix as

Φ ¼

Φ0ðx1Þ Φ1ðx1Þ,…, ΦPðx1Þ

⋮… ⋮

Φ0ðxNÞ Φ1ðxNÞ,…, ΦPðxNÞ

2

6

4

3

7

5
ð20Þ
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Step 4. The LAR algorithm is employed to automatically detect some number (often K + 1) of

significant orthogonal polynomial terms from the first K + 1 terms Фi(x) (i = 0, 1, …, K) in

Eq. (1), which will be retained to construct a sparse candidate PCE model that has a smaller

scale than the full PCE model. For the introduction of the original LAR algorithm, readers

can refer to reference [23] for more details.

Step 5. To save the computational cost, the leave-one-out cross-validation method [27] is

employed to evaluate the accuracy of the candidate sparse PCE model constructed above,

which is represented as the leave-one-out error analytically as below:

Figure 8. The flowchart of the sparse DD-PCE method.
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ErrLOO ¼
1

N

X

N

j¼1

gðxjÞ � ĝð�jÞ
I

ðxjÞ

1� hj

 !2

ð21Þ

where g(xj) is the response value from the original model at the sample point xj; ĝ
ð�jÞ
I

represents

the candidate sparse PCE model comprised of all the selected polynomial terms, of which the

indices are stored in I; the PCE coefficients of ĝ
ð�jÞ
I

are computed through using the ordinary

least-square regression method based on the leave-one-out approach, i.e., the sample points for

regression are X(-j) = [x1,…,xj�1, xj+1,…,xN]
T and y(�j) = [y1,…,yj-1, yj+1,…,yN]

T.

Once the PCE coefficients are calculated, the predicted value by the candidate sparse PCE

model at the sample point xj is calculated as ĝ
ð�jÞ
I

ðxjÞ; hj is the jth diagonal element of the matrix

ΦA(Φ
T
AΦA)

�1
Φ

T
A, where ΦA is a N � k matrix comprised of all the selected column vectors

Фi = [Фi(x1),…, Фi(xN)]
T (i ∈ I) and k is the number of selected polynomial terms.

To evaluate the accuracy more effectively, the relative error is employed based on ErrLOO as

εLOO ¼ ErrLOO=V̂ ðyÞ ð22Þ

where V̂ ðyÞ denotes the empirical variance of the response sample points y, which is calculated

by

V̂ ðyÞ ¼
1

N � 1

X

N

j¼1

ðyj � yÞ

2

, y ¼
1

N

X

N

j¼1

yj ð23Þ

Step 6. Check the stop criterion:

If the accuracy εLOO satisfies the target threshold ε, i.e., εLoo ≤ ε, the procedure will be stopped,

the PCE model obtained by LAR in Step 4 will be considered as the final one, and all the

sample points will be used for regression to calculate the PCE coefficients of the current sparse

PCE model;

If εLoo > ε and K < P, set K = K + 1 and go to Step 4 to find another candidate sparse PCE model

by LAR;

If εLoo > ε and K = P, generate some new sample points Xnew with the sequential sampling

technique and calculate the corresponding responses ynew, and add the new sample points into

the old ones as X = [X; Xnew] and y = [y; ynew], then go to Step 3 to find another candidate

sparse PCE model.

In this work, if the PDF of random input is known, a large number of sample points are

generated as the database according to the PDF beforehand; if the PDF of random input is

unknown, the raw data are considered as the database. Each sample point in the database has

its own index. The initial sample points are selected from the database through randomly and

uniformly generating their indices. Then these sample points will be removed from the data-

base and the rest will be indexed again. Similarly, by randomly and uniformly generating the

indices, the sequential sample points will be selected from the reduced database. By using this
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sampling strategy, the sample points are distributed uniformly as far as possible, which is

helpful to improve the accuracy of the PCE coefficient calculation.

Step 7. Based on the final sparse PCE model, the probabilistic properties of y can be obtained

by running MCS or analytically.

3.2. Comparative study

In this section, the proposed sparse DD-PCE method (shortened as sDD-PCE hereafter) is

applied to three mathematical examples to calculate the mean and variance of the output

responses. The full DD-PCE (shortened as fDD-PCE hereafter) method that adopts a full PCE

structure and one-stage sampling with the size of one times the number of PCE coefficients is

also applied to UP, of which the results are compared to those of sDD-PCE to demonstrate its

effectiveness and advantage.

The test examples of varying dimensions including their input information are shown in

Table 20, in which the symbols N ,U and E respectively, denote normal, uniform, and expo-

nential distribution. To fully explore the applicability of sDD-PCE, three different cases of the

random input information that almost cover all the situations in practice (Case 1: raw data;

Case 2: common distribution; Case 3: nontrivial distribution) are considered. The nontrivial

bimodal distribution (denoted as BD) used in Section 2.3 (Eq. (16)) is considered.

Another type of nontrivial distribution considered here is invented by conducting square

operation on the sample points from some common distributions (see Case 3 in Function 2).

The target accuracy ε of sDD-PCE is set as 10�5. Meanwhile, to ensure the effectiveness of

comparison between sDD-PCE and fDD-PCE, the order of the PCE model p is set as the same

Function 1: f1 = X1X2

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6)

Case 3: X1 and X2 ~BD

Function 2: f 2 ¼ �X2
1X

2
2 � 2X4

3 þ 3X2
4 � 0:5X5 þ 4:5

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U (0.4,1.6), X3~E (0.1), X4~U (�0.5,1),X5~U (0.5,1).

Case 3: X1~BD, X2~U (0.4,1.6).^2, X3~U (0.5,1) .^2, X4~U (�0.5,1), X5~U (0.5,1).

Function 3: f 3 ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
10

X

10

i¼1

x2i

v

u

u

t

0

@

1

A� exp 1
10

X

10

i¼1

cos ð2πxiÞ

 !

Case 1: 105 raw data

Case 2: X1~N (1,0.22), X2~U(0.4,1.6), X3~U (�1.5,15), X4~U(�1,2), X5~U(�15, 1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5),

X9~U(�2,15), X10~U(�2,15).

Case 3: X1 and X2 ~BD, X3~U (�1.5,15), X4~U(�1,2), X5~U(�15,1), X6~N (2,0.22), X7~U(�3,3), X8~U(�15,1.5), X9~U(�2,15),

X10~U(�2,15).

Table 20. Test functions.
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(p = 3, 4, 5) for both methods. MCS with 108 runs is conducted to benchmark the accuracy of

both methods. In Case 1, the probabilistic distributions of all the random input variables are

unknown and only a number of raw data (105) exist, which cannot be solved by the traditional

PCE methods, such as gPCE. Clearly, the more the raw data, the more reliable the results will

be. Considering that the main objective of this paper is to investigate the effectiveness and

capability of sDD-PCE in reducing the computational cost, it is assumed that a large number of

raw data (105) exist of the random inputs.

The results are listed in Tables 21–23, in which em and ev, respectively, denote the errors (%) of

mean and variance relative to the results of MCS, N denotes the number of total sample points

(function evaluations) used for PCE coefficients estimation during regression, and Na repre-

sents that the result cannot be obtained.

From the results some noteworthy observations are made. First, generally with high PCE order

(p = 5), the results of sDD-PCE are accurate. Second, for low-dimensional problem (d = 2,

Function 1), the efficiency and accuracy of sDD-PCE and fDD-PCE are almost comparable.

Specially, for lower orders p = 3 and 4, sDD-PCE is even less efficient. The interpretation is that

fDD-PCE sDD-PCE

em 0.321 0.099 0.044 0.330 0.201 0.181

ev 0.232 0.813 0.173 0.203 0.099 0.068

p 3 4 5 3 4 5

N 10 15 21 20 30 20

Table 21. Results of function 1 (Case 1).

fDD-PCE sDD-PCE

em 6.162 Na Na 8.803 7.263 2.402

ev 10.182 Na Na 16.670 5.026 8.882

p 3 4 5 3 4 5

N 56 126 252 20 20 30

Table 22. Results of function 2 (Case 1).

fDD-PCE sDD-PCE

em Na Na Na 0.045 0.739 0.239

ev Na Na Na 18.134 12.882 2.479

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 23. Results of function 3 (Case 1).
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in addition to the regression process, the sample points are also required during the construc-

tion of the sparse PCE model for sDD-PCE, while for fDD-PCE, the sample points are only

used during regression. Moreover, for em with p = 3 (lower order) of Function 1, fDD-PCE is

even more accurate with higher efficiency (see underlined numbers). The reason may be that

for low-dimensional problems with low-order PCE models, the size of the total polynomial

terms is already small and the sparse structure of sDD-PCE is of little help in reducing the

number of sample points since additional sample points are required during the selection of

important polynomial terms. Therefore, fDD-PCE may produce more accurate results than

sDD-PCE since it maintains more information. This will be verified later. Third, with the

increase of dimension (from d = 2, 5 to d = 10), N is increased significantly with the increase of

p for fDD-PCE, causing matrix ill-conditioned problem. So some results (p = 4 and 5) even

cannot be obtained by fDD-PCE. Specially, for Function 3, the dimension is high (d = 10), fDD-

PCE cannot produce results for any order p. However, for sDD-PCE, no remarkable increase in

N is noticed since it adopts a sparse PCE model that can adaptively remove the insignificant

polynomial terms, while its accuracy is generally improved clearly exhibiting small error

relative to MCS. When p = 5, only 13 polynomial terms are selected from 3003 total terms for

Function 3; while for Function 1, 4 are selected from 21 total terms. Therefore, the larger the

dimension, the more obvious the advantage of sDD-PCE over fDD-PCE in efficiency.

In Case 2, the PDFs of all the random inputs are known and assumed to follow common

distributions. This is a general case that can be solved by the traditional probabilistic

distribution-based PCE methods. The results are shown in Tables 24–26. Generally with high

PCE order (p = 5), the results of sDD-PCE are accurate, demonstrating its effectiveness in

dealing with random inputs with known PDFs. Meanwhile, for low-dimensional problem

(Function 1), generally sDD-PCE is more accurate with the similar N as fDD-PCE. However,

for lower order (p = 2) of Function 1, fDD-PCE is even more accurate than sDD-PCE, but with

fDD-PCE sDD-PCE

em 0.083 0.044 0.060 0.710 0.010 0.100

ev 0.468 0.758 0.211 0.975 0.061 0.061

p 3 4 5 3 4 5

N 10 15 21 30 15 20

Table 24. Results of function 1 (Case 2).

fDD-PCE sDD-PCE

em 24.401 Na Na 1.244 0.490 0.216

ev 39.578 Na Na 4.380 3.271 2.837

p 3 4 5 3 4 5

N 56 126 252 20 20 30

Table 25. Results of function 2 (Case 2).
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much smaller N. This observation is consistent with what has been noticed in Case 1 and the

reason is that additional sample points are required to selecting important polynomial terms.

With the increase of dimension, N is increased significantly with the increase of p for fDD-PCE.

However, for sDD-PCE, remarkable improvement in the accuracy is noticed without a remark-

able increase in N. These results show great agreements to what has been noticed in Case 1.

In Case 3, the PDFs of all the random inputs are known; however, some of them follow

nontrivial distributions. In this case, the traditional gPCE method cannot work well since large

errors would be induced in transforming such nontrivial distributions to certain ones in the

Askey scheme. The results are shown in Tables 27–29, which exhibit great agreements to what

has been observed in Case 1 and Case 2. The proposed sDD-PCE method can significantly

reduce the number of sample points while with high accuracy. The higher the dimension, the

more advantageous the adaptive sparse structure of sDD-PCE can be. In this case, only 11

polynomial terms are selected from 3003 total terms for d = 10 with sDD-PCE. Moreover, sDD-

PCE can produce accurate and efficient results for nontrivial distributed random inputs.

To verify the guess that for low-dimensional problems with low-order PCE models, fDD-PCE

may produce more accurate results than sDD-PCE since it maintains more information.

fDD-PCE sDD-PCE

em Na Na Na 3.461 4.432 0.317

ev Na Na Na 20.155 6.217 4.223

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 26. Results of function 3 (Case 2).

fDD-PCE sDD-PCE

em 1.210 0.854 0.302 1.366 1.044 0.161

ev 2.321 0.748 0.815 0.805 0.161 0.000

p 3 4 5 3 4 5

N 10 15 21 10 10 10

Table 27. Results of function 1 (Case 3).

fDD-PCE sDD-PCE

em 3.324 Na Na 5.718 1.383 0.680

ev 7.855 Na Na 7.634 7.322 2.290

p 3 4 5 3 4 5

N 56 126 252 20 30 30

Table 28. Results of function 2 (Case 3).
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Another test is conducted for Function 1 with lower order p = 2 with all the three cases, of

which the results are shown in Table 30. Just as expected, fDD-PCE is clearly more accurate

than sDD-PCE while generally with less sample points. For Function 1 with p = 2, the total

number of polynomial terms is 6, which is very small. With sDD-PCE, only the last polynomial

term is removed, while more points are required in removing the insignificant polynomials. So

the sparse scheme does not have obvious impact under this circumstance. Therefore, it is

concluded that the developed sDD-PCE method is particularly applicable to high-dimensional

problems, especially those requiring a high order PCE model.

3.3. Summary

The developed sDD-PCE can reduce the number of polynomial terms in the PCE model, thus

reducing the computational cost. Generally, the larger the random input dimension, the more

obvious the advantage of the developed sDD-PCE over fDD-PCE in efficiency. The sDD-PCE

method is much more efficient than fDD-PCE in solving high-dimensional problems, espe-

cially those requiring a high order PCE model.

4. Sparse DD-PCE-based robust optimization using trust region

In Section 3, to reduce the computational cost of DD-PCE, a sparse DD-PCE method has been

developed by removing some insignificant polynomial terms from the full PCE model, thus

decreasing the number of samples for regression in computing PCE coefficients. However,

when the sparse DD-PCE is applied to robust optimization, it is conventionally a triple-loop

process (see Figure 9): the inner one tries to identify the insignificant polynomial terms of the

fDD-PCE sDD-PCE

em Na Na Na 4.114 2.212 0.112

ev Na Na Na 48.894 15.817 3.101

p 3 4 5 3 4 5

N 286 1001 3003 30 30 30

Table 29. Results of function 3 (Case 3).

Case 1 Case 2 Case 3

fDD sDD fDD sDD fDD sDD

em 0.2801 0.146 0.0366 0.244 0.414 0.807

ev 0.6344 0.367 0.3577 0.431 0.552 0.477

N 6 7 6 10 6 18

Table 30. Results of function 1 (p = 2).
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PCE model (the dash box); the middle is UP; the outer is the search for optima, which clearly is

still very time-consuming for problems with expensive simulation models.

As has been mentioned in Section 3, during each optimization iteration, although the sample

points required for regression during UP of sDD-PCE are greatly reduced, certain additional

number of sample points are required to identify the insignificant polynomial terms by the inner

loop. If at some iteration design points, almost the same sparse polynomial terms are retained,

the inner loop can clearly be avoided, thus saving the computational cost. To address this issue,

the trust region technique widely used in nonlinear optimization is extended in this section.

During optimizing, a trust region is dynamically defined. If the updated design point lies in the

current trust region, it is considered that the insignificant terms of its PCE model remain

unchanged compared to those of the last design point, i.e., the inner loop is eliminated at the

updated design point. Meanwhile, to further save the computational cost, the sample points

lying in the overlapping area of two adjacent sampling regions are reused for the PCE coefficient

regression for the updated design point. The proposed robust optimization procedure employing

sparse DD-PCE in conjunction with the trust region scenario is applied to several examples of

robust optimization, of which the results are compared to those obtained by the robust optimi-

zation without the trust region method, to demonstrate its effectiveness and advantage.

Figure 9. The triple-loop formulation of sDD-PCE-based robust optimization.
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4.1. The trust region scenario

The trust region method is a traditional approach that has been widely used in nonlinear

numerical optimization [28]. The basic idea of the trust region method is that in the trust

region of the current iteration design point, the second-order Taylor expansion is used to

approximate the original objective function. If the accuracy of the current second-order Taylor

expansion is satisfied, the size of the trust region is increased to speed up the convergence, and

if not it is reduced to improve the accuracy of approximation. To reduce the computational cost

of design optimization, the idea of the trust region technique has been extended and applied to

reliability-based wing design optimization [29], multifidelity wing aero-structural optimiza-

tion [30], and multifidelity surrogate-based wing optimization [31], which has been widely

believed as an efficient strategy in design optimization. For example, when the trust region

technique is applied to meta-model-based design optimization, during optimization, the sam-

ple points are sequentially generated in the trust region and the radius of the trust region is

dynamically adjusted based on the accuracy of the meta-model in the local region.

4.2. Robust design using sparse data-driven PCE and trust region

The scenario of trust region is extended here to reduce the computational cost of sDD-PCE-

based robust optimization. The basic idea is that the radius of a trust region is determined by

the distance between two successive design points and the variation of the corresponding

objective function values. If the updated design point μkþ1
x lies in the current trust region, it is

considered that the insignificant terms of its PCE model remain unchanged compared to those

of the last design point μk
X, i.e., the inner loop is eliminated at the updated design point.

Meanwhile, the sample points lying in the overlapping area of two adjacent sampling regions

are reused for the PCE coefficient regression for the updated design point to further save the

computational cost. Generally, for a practical engineering optimization problem, there is only

one performance function that is computationally expensive. Therefore, only one PCE model is

required to be constructed and the UP for the rest of the functions can be conveniently

implemented by MCS. In this study, it is assumed that the PCE model is only constructed for

the objective function and the general steps of the proposed method is as below.

Step 0: Set the iteration number as k = 1 and the initial staring design point μ0
x, do robust

optimization with sDD-PCE without trust region and obtain a new design variable μk
x, where

the Latin Hypercube sample points are generated around μ0
x to calculate the PCE coefficients.

Step 1: After the kth optimization iteration, define/update the trust region at the current

obtained new design point μk
x as a rectangle with each length as

r1 ¼ max ζ1

�

�

�μk
x

�

�

�

2
, ζ2 , r2 ¼ max ζ1

�

�

�Y
k
�

�

�, ζ2

onon

ð24Þ

where jμk
xj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xd

i¼1
ðμk

xi
Þ2

q

and |Yk| is the absolute value of corresponding objective function

at μk
x, i.e., jY

kj ¼ abs

�

Yðμk
xÞ
�

; ζ1 and ζ2 are user-defined parameters, which can be constants or

functions with respect to the iteration number k.
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Step 2: During the (k + 1)th optimization iteration, the obtained new design point is μkþ1
x .

Before conducting UP, calculate the variation between two successive design points μk

x and

μkþ1
x as Δx ¼ jμkþ1

x � μk

xj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d

i¼1
ðμkþ1

xi
� μ

k

xi
Þ2

q

and the variation of the objective function

ΔY ¼ jYkþ1ðμkþ1
x Þ � Y

kðμk

xÞj.

Step 3: If ΔX ≤ r2 and ΔY ≤ r2 both are satisfied, μkþ1
x is considered to be located in the trust

region of μk

x defined in Eq. (45), and go to Step 4; if either ΔX ≤ r1 or ΔY ≤ r2 cannot be

satisfied, μkþ1
x is considered to be not located in the trust region of μk

x defined in Eq. (45), and go

to Step 5.

Step 4: The retained polynomial terms Фi(x) at the updated new design point μkþ1
x are kept as

the same as those for the last design point μk

x, indicating that the inner loop of UP conducted on

μkþ1
x is removed. The Latin Hypercube sample points are generated around μkþ1

x according to

the distribution type and parameters of Xwith the same number of sample points as that used

at the last design point μk

x to calculate the PCE coefficients. Meanwhile, the sample points

located in the overlapping area of the two successive sampling regions are identified and

reused for PCE coefficients calculation to improve the accuracy.

Step 5: The inner loop is conducted on the updated design point μkþ1
x to detect the significant

polynomial terms. Similarly, the sample points located in the overlapping area of the two

successive sampling regions are also reused at the updated design point μkþ1
x in detecting the

significant polynomial terms and calculating the PCE coefficients to save the computational

cost.

Step 6: Set k = k + 1, based on the results of UP, search for the next updated new design point

μkþ1
x and go to Step 1.

The above procedure will continue until the convergent criterion is satisfied. Figure 10 shows

the case that the sample points in the previous optimization iteration are reused in the two

successive iterations. As is seen that two points are located in the overlapping area of two

successive sampling regions, thus are reused in the next iteration for regression to identify the

significant polynomials/calculate the PCE coefficients. In this way, the computational cost can

be further reduced.

Figure 10. Illustration of the reuse of sample points.
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4.3. Comparative studies

The first example is the Ackley Function:

f ðXÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

d

X

d

j¼1

X2
j

v

u

u

t

0

@

1

A� exp
1

d

X

d

j¼1

cos ð2πXjÞ

0

@

1

Aþ 22:71282, d ¼ 10 ð25Þ

The robust design optimization of this example is:

min F ¼ μf þ kσf

�10 ≤μXj
≤ 10, j ¼ 1, 2,…, 10

ð26Þ

All the design variables are considered to follow uniform distribution with variation of �0.2

around their mean values and k in Eq. (26) is set as k = 20. In this study, the fmincon function in

Matlab is used for optimization, and ζ1 and ζ2 in Eq. (45) are set as ζ1 = 0.5 and ζ2 = 0.5.

Meanwhile, the obtained optimal design variables of sDD-PCE-based robust design with and

without trust region scenario as well as the deterministic design without considering any

uncertainties are respectively substituted into Eq. (26) through MCS (with 1e6 runs) to calcu-

late the mean μf and standard deviation σf of the objective function.

The results are shown in Table 31, from which it is found that compared to the robust optimiza-

tion without the trust region scenario (denoted by without), the obtained performance results (μf,

σf, and F) of the robust optimization with the trust region scenario (denoted by with) are

comparable. However, the number of function calls (denoted as Funcall) is clearly reduced. The

decrease in computational cost is attributed to the application of trust region scenario and the

reusing of sample points. Meanwhile, the optimal designs of the two robust designs are both less

sensitive to uncertainties (smaller σf) compared to the results of deterministic design (denoted by

DD). These results demonstrate the effective and advantage of the proposed method.

The second example is the robust design optimization of an automobile torque arm, shown in

Figure 11.

In this problem, the four geometrical parameters (a, d1, d2, and l) are considered as design

variables, and the yielding strength Sy, Young’s modulus E, and the applied force Q are

deterministic parameters.

min f ða, d1, d2, lÞ ¼
πad22
4

þ 2 l�
d1
2
�
d2
2

	 


a2

s:t: g1ða, d2, lÞ ¼
Qð2l� d2Þd2

4ISy
� 1:0 ≤ 0

g2ða, d1, d2, lÞ ¼ 1:0�
π2Ea4

3ð2l� d1 � d2Þ
2

d2 � d1
Ql

≤ 0

5 ≤ a ≤ 15, 45 ≤ d1 ≤ 55, 55 ≤ d2 ≤ 65, 110 ≤ l ≤ 210

ð27Þ
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where the objective function f represents the volume of the arm, the first constraint g1 denotes

the yielding failure at section A-A, the second constraint g2 denotes the buckling failure at the

two connecting rods, and I ¼ a2ðd2 � aÞ2=2þ a4=6.

The distribution parameters of the four design variables and design parameters are shown in

Table 32.

Figure 11. Automobile torque arm.

μ�X μf σf F Funcall

DD [0,0,0,0,0,0,0,0,0,0] 1.8839 0.4390 10.6639 —

with [0.6246,0.7066,0.6687,0.7796,0.5744,

0.6784,0.7470,0.6333,0.6578,0.6904]

4.5014 0.1377 7.2554 12,735

without [0.6564,0.6935,0.6984,0.7036,0.6691,

0.0299,0.0141,0.6407,0.0205,0.0038]

3.7457 0.2003 7.7517 16,840

Table 31. Results of the Ackley Function.

Random variables Distribution Lower bound Upper bound

a Uniform μa �0.5 mm μa +0.5 mm

d1 Uniform μd1 �0.5 mm μd1 +0.5 mm

d2 Uniform μd2 �0.5 mm μd2 +0.5 mm

l Uniform μl �0.5 mm μl +0.5 mm

Parameters Values

Q Deterministic 5500 N

Sy Deterministic 170 N/mm2

E Deterministic 2.1 � 1010 N/mm2

Table 32. Distribution parameters for design variables and design parameters.
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The corresponding robust design optimization model is formulated as

min F ¼ ω1

μf

μ�
f

þ ω2

σf

σ�f

,ω1 ¼ 0:5,ω2 ¼ 0:5

s:t: G1ða, d2, lÞ ¼ μg1
þ kσg1 ≤ 0

G2ða, d1, d2, lÞ ¼ μg2
þ kσg2 ≤ 0

5 ≤μa ≤ 15, 45 ≤μd1
≤ 55, 55 ≤μd2

≤ 65, 110 ≤μl ≤ 210

ð28Þ

As has been mentioned above, the PCE model is only constructed for the objective function

and the results are shown in Table 33. It is noticed that the robust optimization designs with

and without the trust region scenario yields comparable results, while the function calls

(objective function calls) required by design with trust region is evidently smaller. The deter-

ministic design cannot even obtain a feasible optimal solution with both constraint violated

(>0), since it does not consider uncertainties during design. These results further demonstrate

the effectiveness and advantage of the proposed method.

4.4. Summary

The employment of the trust region in sDD-PCE-based robust optimization can evidently

reduce the computational cost. However, the determination of the trust region in this chapter

is still very subjective and a more rigorous method should be explored. In this section as well

as Section 3, the scenarios of sparse PCE and trust region are only employed to DD-PCE to

save the computational cost. However, the methods proposed here are also applicable to other

PCE approaches, such as gPCE and GS-PCE.

In this chapter, the latest advances in PCE theory and approach for probabilistic UP are

comprehensively presented in detail. However, it does not limit the application of PCE to

nonprobabilistic UP to address epistemic uncertainties. Sudret and Schöbi have proposed a

two-level metamodeling approach using nonintrusive sparse PCE to surrogate the exact com-

putational model to facilitate the uncertainty quantification analysis, in which the input vari-

ables are modeled by probability-boxes (p-boxes), accounting for both aleatory and epistemic

uncertainty [32]. The Fuzzy uncertainty propagation in composites has been implemented

using Gram-Schmidt polynomial chaos expansion, in which the parameter uncertainties are

represented by fuzzy membership functions [5]. A general framework has been proposed for a

dynamical uncertain system to deal with both aleatory and epistemic uncertainty using PCE,

where the uncertain parameters are described through random variables and/or fuzzy vari-

ables [33]. The mix UP approach is proposed, in which the inner loop PDFs are calculated

using the PCE, and outer loop bounds can be computed with optimization-based interval

μ�X μf σf F G1 G2 Funcall

DD [8.13, 55.00, 55.00, 110.00] 2.6616e4 1.2171e3 1 0.1848 5.1509e4 82

with [8.53, 54.10, 58.67, 111.03] 3.1027e4 1.3355e3 1.1315 �0.0123 �1.1833e5 658

without [8.57, 52.68, 57.50, 110.00] 3.0332e4 1.3093e3 1.1077 �4.0000e�4 �1.2913e2 1283

Table 33. Results of automobile torque arm.

Uncertainty Quantification and Model Calibration44



estimation [34]. PCE has also been applied for solving Bayesian inverse problem as “surrogate

posterior.”However, it has been indicated that the accuracy cannot always be ensured by PCE

since a sufficiently accurate PCE for this problem requires a high order, making PCE impractical

compared to directly sampling the posterior [35].
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