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Abstract

The method and probability of distinguishing between the Λ cold dark matter (ΛCDM)
model and modified gravity are studied from future observations for the growth rate of
cosmic structure (Euclid redshift survey). We compare the mock observational data to
the theoretical cosmic growth rate by modified gravity models, including the extended
Dvali–Gabadadze–Porrati (DGP) model, kinetic gravity braiding model, and Galileon
model. In the original DGP model, the growth rate fσ8 is suppressed in comparison with
that in the ΛCDMmodel in the setting of the same value of the today’s energy density of
matter Ωm;0, due to suppression of the effective gravitational constant. In the case of the
kinetic gravity braiding model and the Galileon model, the growth rate fσ8 is enhanced
in comparison with the ΛCDM model in the same value of Ωm;0, due to enhancement of
the effective gravitational constant. For the cosmic growth rate data from the future
observation (Euclid), the compatible value of Ωm;0 differs according to the model. Fur-
thermore, Ωm;0 can be stringently constrained. Thus, we find the ΛCDM model is
distinguishable from modified gravity by combining the growth rate data of Euclid with
other observations.

Keywords: accelerated expansion, gravitational theory, dark energy, observational test,
cosmic growth rate

1. Introduction

Cosmological observations, including type Ia supernovae (SNIa) [1, 2], cosmic microwave

background (CMB) anisotropies, and baryon acoustic oscillations (BAO), indicate that the

universe is undergoing an accelerated phase of expansion. This late-time acceleration is one of

the biggest mysteries in current cosmology. The standard explanation is that this acceleration is

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



caused by dark energy [3–6]. This would mean that a large part of components in the universe

is unknown. The cosmological constant is a candidate of dark energy. To explain the late-time

accelerated expansion of the universe, the cosmological constant must be a very small value.

However, its value is not compatible with a prediction from particle physics, and it has fine-

tuning and coincidence problems.

An alternative explanation for the current acceleration of the universe is to modify general

relativity to be a more general theory of gravity at a long-distance scale. Several modified

gravity theories have been studied, such as f(R) gravity (for reviews, see, e.g., [7]), scalar-tensor

theories [8–10], and the Dvali–Gabadadze–Porrati (DGP) braneworld model [11–13].

Furthermore, as an alternative to general relativity, Galileon gravity models have been pro-

posed [14–22]. These models are built by introducing a scalar field with a self-interaction

whose Lagrangian, which is invariant under Galileon symmetry ∂μφ ! ∂μφþ bμ, keeps the

field equation of motion as a second-order differential equation. This avoids presenting a new

degree of freedom, and perturbation of the theory is free from ghost or instability problems.

The simplest term of the self-interaction is □φð∇φÞ2, which induces decoupling of the Galileon

field from gravity at small scales via the Vainshtein mechanism [23]. Therefore, the Galileon

theory recovers general relativity at scales around the high-density region, as is not inconsis-

tent with solar system experiments.

Galileon theory has been covariantized and studied in curved backgrounds [24, 25]. Although

Galileon symmetry cannot be maintained in the case that the theory is covariantized, it is

possible to preserve the equation of motion at second order, which means that the theory does

not raise ghost-like instabilities. Galileon gravity induces self-accelerated expansion of the

current universe. Thus, inflation models inspired by the Galileon gravity theory have been

studied [26–28]. In Ref. [29], the parameters of the generalized Galileon cosmology were

constrained from the observational data of SNIa, CMB, and BAO. The evolution of matter

density perturbations for Galileon cosmology has also been investigated [16–18, 30, 31].

Almost 40 years ago, Horndeski derived the action of most general scalar-tensor theories with

second-order equations of motion [32]. His theory received much attention as an extension of

covariant Galileons [14, 24, 25, 33]. One can show that the four-dimensional action of general-

ized Galileons derived by Deffayet et al. [34] is equivalent to Horndeski’s action under field

redefinition [35]. Because Horndeski’s theory contains all modified gravity models and single-

field inflation models with one scalar degree of freedom as specific cases, considerable atten-

tion has been paid to various aspects of Horndeski’s theory and its importance in cosmology.

Recently, more general modified gravity theories have been studied, including Gleyzes-

Langlois-Piazza-Vernizzi (GLPV) theories [36, 37] and eXtended Galileon with 3-space covari-

ance (XG3) [38].

In this chapter, the probability of distinguishing between the Λ cold dark matter (ΛCDM) model

and modified gravity is studied by using future observations for the growth rate of cosmic

structure (e.g., Euclid redshift survey [39]). We computed the growth rate of matter density

perturbations in modified gravity and compared it with mock observational data. Whereas the

background expansion history in modified gravity is almost identical to that of dark energy
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models, the evolution of matter density perturbations of modified gravity is different from that

of dark energy models. Thus, it is important to study the growth history of perturbations to

distinguish modified gravity from models based on the cosmological constant or dark energy.

Although past observations of the growth rate of matter density perturbations have been used

to study modified gravity [40], we focus on future observations of the growth rate by Euclid.

We adopt the extended DGP model [41], kinetic gravity braiding model [30], and Galileon

model [16, 17] as modified gravity models. The kinetic gravity braiding model and the

Galileon model are specific aspects of Horndeski’s theory.

This chapter is organized as follows. In the next section, we present the background evolution

and the effective gravitational constant in modified gravity models. In Section 3, we describe

the theoretical computations and the mock observational data of the growth rate of matter

density perturbations. In Section 4, we study the probability of distinguishing between the

ΛCDM model and modified gravity by comparing the predicted cosmic growth rate by

models to the mock observational data. Finally, conclusions are given in Section 5.

2. Modified gravity models

2.1. Extended DGP model

In the DGP model [11], it is assumed that we live on a 4D brane embedded in a 5D Minkowski

bulk. Matter is trapped on the 4D brane, and only gravity experiences the 5D Minkowski bulk.

The action is

S ¼
1

16π
M3

ð5Þ

ð

bulk

d5x
ffiffiffiffiffiffiffiffiffiffiffi

�gð5Þ
p

Rð5Þ þ
1

16π
M2

ð4Þ

ð

brane

d4x
ffiffiffiffiffiffiffiffiffiffiffi

�gð4Þ
p

ðRð4Þ þ LmÞ, ð1Þ

where quantities of the 4D brane and the 5D Minkowski bulk are represented with subscripts

(4) and (5), respectively. M is the Planck mass, and Lm is the Lagrangian of matter confined on

the 4D brane. The transition between 4D and 5D gravity occurs at the crossover scale rc.

rc ¼
M2

ð4Þ

2M3
ð5Þ

: ð2Þ

At scales larger than rc, gravity appears in 5D. At scales smaller than rc, gravity is effectively

bound to the brane, and 4D Newtonian dynamics is recovered to a good approximation. rc is a

parameter in this model, which has the unit of length [42].

Under spatial homogeneity and isotropy, a Friedmann-like equation is obtained on the brane

[43, 44]:

H2 ¼
8πG

3
ρþ ε

H

rc
; ð3Þ

where ρ represents the total fluid energy density on the 4D brane. The DGP model has two
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branches (ε = �1). The choice of ε = þ1 is called the self-accelerating branch. In this branch, the

accelerated expansion of the universe is induced without dark energy, since the Hubble

parameter comes close to a constant H = 1/rc as time passes. By contrast, ε = �1 is the normal

branch. In this case, the expansion cannot accelerate without a dark energy component.

Therefore, in the following, we adopt the self-accelerating branch (ε = þ1).

The original DGP model, however, is plagued by the ghost problem [45] and is incompatible

with cosmological observations [46].

Dvali and Turner [41] phenomenologically extended the Friedmann-like equation of the DGP

model (Eq. (3)). This model interpolates between the original DGP model and the ΛCDM

model by adding the parameter α. The modified Friedmann-like equation is

H
2 ¼

8πG

3
ρþ

H
α

rc
2�α

: ð4Þ

For α = 1, this is equivalent to the original DGP Friedmann-like equation, whereas α = 0 leads to

an expansion history identical to ΛCDM cosmology. This is important for distinguishing the

ΛCDM model from the original DGP model between α = 0 and 1. In the extended DGP model,

the crossover scale rc can be expressed as follows:

rc ¼ ð1�Ωm;0Þ
1

α�2H
�1
0 : ð5Þ

Thus, the independent parameters of the cosmological model are α and today’s energy density

parameter of matter Ωm;0. The effective gravitational constant of the extended DGP model is

given in order to interpolate between ΛCDM and the original DGP model. The effective

gravitational constant is as follows.

Geff

G
¼ 1þ

1

3β
; ð6Þ

where

β � 1�
2ðrcHÞ2�α

α
1þ

1

3

ð2� αÞ _H

H
2

" #

: ð7Þ

Geff / G is the effective gravitational constant normalized to Newton’s gravitational constant,

and an overdot represents differentiation with respect to cosmic time t.

2.2. Kinetic gravity braiding model

The kinetic gravity braiding model [30] is proposed as an alternative to the dark energy model.

One can say that the kinetic gravity braidingmodel is a specific aspect of Horndeski’s theory [32].

The most general four-dimensional scalar-tensor theories keeping the field equations of motion

at second order are described by the Lagrangian [32–35, 47]
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L ¼
X

5

i¼2

Li; ð8Þ

where

L2 ¼ Kðφ; XÞ, ð9Þ

L3 ¼ �G3ðφ; XÞ□φ; ð10Þ

L4 ¼ G4ðφ; XÞRþ G4; X½ð□φÞ2 � ð∇μ∇νφÞð∇μ
∇

νφÞ�, ð11Þ

L5 ¼ G5ðφ; XÞGμνð∇μ
∇

νφÞ � 1

6
G5; X½ð□φÞ3 � 3ð□φÞð∇μ∇νφÞð∇μ

∇
νφÞ

þ 2ð∇μ
∇αφÞð∇α

∇βφÞð∇β
∇μφÞ�:

ð12Þ

Here, K and Gi (i = 3, 4, 5) are functions of the scalar field φ and its kinetic energy

X ¼ �∂μφ∂μφ=2 with the partial derivatives Gi;X � ∂Gi=∂X. R is the Ricci scalar, and Gμν is the

Einstein tensor. The above Lagrangian was first derived by Horndeski in a different form Ref.

[32]. This Lagrangian (Eqs. (8)–(12)) is equivalent to that derived by Horndeski [35]. The total

action is then given by

S ¼
ð

d4x
ffiffiffiffiffiffiffi�g

p ðLþ LmÞ, ð13Þ

where g represents a determinant of the metric gμν, and Lm is the Lagrangian of non-relativistic

matter.

Variation with respect to the metric produces the gravity equations, and variation with respect

to the scalar field φ yields the equation of motion. By using the notation K � Kðφ;XÞ,
G � G3ðφ;XÞ, F � 2

M2
pl

G4ðφ;XÞ, and assuming G5ðφ;XÞ ¼ 0 for Friedmann–Robertson–Walker

spacetime, the gravity equations give

3M2
plFH

2 ¼ ρm þ ρr � 3M2
plH

_F � K þ 2XK;X þ 6H _φXG;X � 2XG;φ; ð14Þ

�M2
plFð3H2 þ 2 _HÞ ¼ pr þ 2M2

plH
_F þM2

pl
€F þ K � 2XG;X

€φ � 2XG;φ; ð15Þ

and the equation of motion for the scalar field gives

ðK;X þ 2XK;XX þ 6H _φG;X þ 6H _φXG;XX � 2XG;φX � 2G;φÞ €φ

þð3HK;X þ _φK;φX þ 9H2 _φG;X þ 3 _H _φG;X þ 6HXG;φX � 6HG;φ � G;φφ
_φÞ _φ

�K;φ � 6M2
plH

2F;φ � 3M2
pl

_HF;φ ¼ 0:

ð16Þ

Here, an overdot denotes differentiation with respect to cosmic time t, and H ¼ _a=a is the

Hubble expansion rate. Note that we use the partial derivative notation K;X � ∂K=∂X and
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K;XX � ∂
2K=∂X2 and a similar notation for other variables. Also, ρm and ρr are the energy

densities of matter and radiation, respectively, and pr is the pressure of the radiation.

In the kinetic gravity braiding model [30], the functions in Horndeski’s theory are given as

follows:

Kðφ;XÞ ¼ �X; ð17Þ

G3ðφ;XÞ ¼ Mpl
r2c
M2

pl

X

 !n

; ð18Þ

G4ðφ;XÞ ¼
M2

pl

2
; ð19Þ

G5ðφ;XÞ ¼ 0: ð20Þ

Mpl is the reduced Planck mass related to Newton’s gravitational constant by Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p

,

and rc is called the crossover scale in the DGP model [42]. The kinetic braiding model we study

is characterized by parameter n in Eq. (18). For n = 1, this corresponds to Deffayet’s Galileon

cosmological model [22]. For n equal to infinity, the background expansion of the universe of

the kinetic braiding model approaches that of the ΛCDM model. This helps distinguish the

kinetic braiding model from the ΛCDM model.

In the case of the kinetic braiding model using the Hubble parameter as the present epoch H0,

the crossover scale rc is given by

rc ¼
2n�1

3n

� �1=2n
1

6ð1�Ωm;0 �Ωr;0Þ

� �ð2n�1Þ=4n
H�1

0 ; ð21Þ

where Ωr,0 is the density parameter of the radiation at the present time. Thus, the independent

parameters of the cosmological model are n and Ωm,0. The effective gravitational constant

normalized to Newton’s gravitational constant Geff / G of the kinetic braiding model is given by

Geff

G
¼ 2nþ 3nΩm �Ωm

Ωmð5n�ΩmÞ
; ð22Þ

where Ωm is the matter energy density parameter defined as Ωm ¼ ρm=3M
2
plH

2. Here, we used

the attractor condition. Although the background evolution for large n approaches the ΛCDM

model, the growth history of matter density perturbations is different due to the time-

dependent effective gravitational constant.

2.3. Galileon model

The Galileon gravity model is proposed as an alternative to the dark energy model. It is

thought that the Galileon model studied in Refs. [16, 17] is a specific aspect of Horndeski’s

theory [32].
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In the Galileon model [16, 17], the functions in the Lagrangian (Eqs. (8)–(12)) of the Horndeski’s

theory are given as follows:

Kðφ;XÞ ¼ 2
ω

φ
X; ð23Þ

G3ðφ;XÞ ¼ 2ξðφÞX; ð24Þ

G4ðφ;XÞ ¼ φ; ð25Þ

G5ðφ;XÞ ¼ 0; ð26Þ

where ω is the Brans–Dicke parameter and ξðφÞ is a function of φ.

In this case, the Friedmann-like equations, Eqs. (14) and (15), can be written in the following

forms, respectively:

3H2 ¼
1

M2
pl

ðρm þ ρr þ ρφÞ, ð27Þ

�3H2 � 2 _H ¼
1

M2
pl

ðpr þ pφÞ, ð28Þ

where the effective dark energy density ρφ is defined as

ρφ ¼ 2φ �3H
_φ

φ
þ
ω

2

_φ

φ

 !2

þ φ2ξðφÞ 3H þ
_φ

φ

( )

_φ

φ

 !3
2

4

3

5þ 3H2ðM2
pl � 2φÞ; ð29Þ

and the effective pressure of dark energy pφ is

pφ ¼ 2φ
€φ

φ
þ 2H

_φ

φ
þ
ω

2

_φ

φ

 !2

� φ2ξðφÞ
€φ

φ
�

_φ

φ

 !2
8

<

:

9

=

;

_φ

φ

 !2
2

4

3

5� ð3H2 þ 2 _HÞðM2
pl � 2φÞ: ð30Þ

The equation of motion for the scalar field is given by Eq. (16).

For the numerical analysis, we adopt a specific model in which

ξðφÞ ¼
r2c
φ2

; ð31Þ

where rc is the crossover scale [15]. This Galileon model extends the Brans–Dicke theory by

adding the self-interaction term, ξðφÞð∇φÞ2□φ. Thus, ω of this model is not exactly the same as

the original Brans–Dicke parameter. The evolution of matter density perturbations of this

model was computed in Refs. [16, 17].
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At early times, we set the initial condition φ≃M2
pl=2 to recover general relativity. Using these

initial conditions reduces the Friedmann equations (Eqs. (27) and (28)) to their usual forms:

3H2 ¼ ðρm þ ρrÞ=M
2
pl and �3H2 � 2 _H ¼ pr=M

2
pl. This is the cosmological version of the

Vainshtein effect [23], which is a method to recover general relativity below a certain scale. At

present, to induce cosmic acceleration, the value of rc must be fine tuned.

The energy density parameter of matter at present in this model is defined asΩm;0 ¼ ρm;0=3H
2
0φ0.

Therefore, in the numerical analysis, the value of rc is fine tuned so thatΩm,0 becomes an assumed

value. Thus, the independent parameters of the cosmological model are ω and Ωm,0. For the

Galileon model specified by Eqs. (23)–(26) and (31), the effective gravitational constant is given by

Geff ¼
1

16πφ
1þ

ð1þ ξðφÞ _φ
2
Þ2

J

" #

; ð32Þ

where

J � 3þ 2ωþ φ2ξðφÞ 4
€φ

φ
� 2

_φ
2

φ2
þ 8H

_φ

φ
� φ2ξðφÞ

_φ
4

φ4

" #

: ð33Þ

The effective gravitational constant Geff is close to Newton’s constant G at early times, but

increases at later times.

3. Cosmic growth rate

3.1. Density perturbations

Under the quasistatic approximation on sub-horizon scales, the evolution equation for cold

dark matter over-density δ in linear theory is given by

€δ þ 2H _δ � 4πGeffρδ≃0; ð34Þ

where Geff represents the effective gravitational constant of the modified gravity models

described in the previous section.

We set the same initial conditions as in the conventional ΛCDM case (δ ≈ a and _δ ≈ _a) because

we trace the difference between the evolution of the matter perturbations in modified gravity

and the evolution in the ΛCDM model. From the evolution equation, we numerically obtain

the growth factor δ / a for modified gravity models. The linear growth rate is written as

f ¼
d lnδ

d lna
: ð35Þ
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where δ is the matter density fluctuations and a is the scale factor. The growth rate can be

parameterized by the growth index γ, defined by

f ¼ Ω
γ
m: ð36Þ

Refs. [48, 49] showed that the growth rate f in the Galileon model specified by Eqs. (23)–(26)

and (31) is enhanced compared with the ΛCDM model for the same value of Ωm,0 due to

enhancement of the effective gravitational constant.

3.2. Euclid

Euclid [39] is a European Space Agency mission that is prepared for a launch at the end of

2020. The aim of Euclid is to study the origin of the accelerated expansion of the universe.

Euclid will investigate the distance-redshift relationship and the evolution of cosmic structures

by measuring shapes and redshifts of galaxies and the distribution of clusters of galaxies over a

large part of the sky. Its main subject of research is the nature of dark energy. However, Euclid

will cover topics including cosmology, galaxy evolution, and planetary research.

In this study, Euclid parameters are adopted as the growth rate observations. The growth rate

can be parameterized by using the growth index γ, defined by f ¼ Ωm
γ. Mock data of the

cosmic growth rate are built based on the 1σ marginalized errors of the growth rate by Euclid.

These data are listed in Table 4 in the paper by Amendola et al. [39]. Table 1 shows the 1σ

marginalized errors for the cosmic growth rates with respect to each redshift in accordance

with Table 4 in [39]. In Figure 1, the mock data of the cosmic growth rate used in this study are

plotted.

The mock data are used to compute the statistical χ2 function. The χ2 function for the growth

rate is defined as

χ2
f ¼

X14

i¼1

ðf theoryðziÞ � f obsðziÞÞ
2

σf gðziÞ
2

ð37Þ

where f obsðziÞ is the future observational (mock) data of the growth rate. The theoretical growth

rate f theoryðziÞ is computed as Eq. (35). In Ref. [50], constraints on neutrino masses are estimated

based on future observations of the growth rate of the cosmic structure from the Euclid

redshift survey.

The estimated errors from the observational technology of Euclid are known, but the center

value of future observations is not known. Therefore, the purpose of this study is not to

validate the ΛCDM model or modified gravity but to find ways and probabilities to distin-

guish between the ΛCDM model and modified gravity.
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Experiment z σf g
(ref.)

Euclid [39] 0.7 0.011

0.8 0.010

0.9 0.009

1.0 0.009

1.1 0.009

1.2 0.009

1.3 0.010

1.4 0.010

1.5 0.011

1.6 0.012

1.7 0.014

1.8 0.014

1.9 0.017

2.0 0.023

Here, z represents the redshift and σf g
represents the 1σmarginalized errors of the growth rates.

Table 1. 1σmarginalized errors for the growth rates in each redshift bin based on Table 4 in the study by Amendola et al. [39].
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f

z

Figure 1. Plot of mock data of the cosmic growth rate.

Trends in Modern Cosmology124



4. Comparison with observations

4.1. Extended DGP model

In Figure 2, we plot the probability contours in the (α, σ8)-plane in the extended DGPmodel from

the observational (mock) data of the cosmic growth rate by Euclid. The blue (dark) and light blue

(light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. Part of α = 0 for

the horizontal axis corresponds to the ΛCDMmodel, and part of α = 1 corresponds to the original

DGPmodel. σ8 is the rootmean square (rms) amplitude of over-density at the comoving 8 h�1Mpc

scale (where h is the normalized Hubble parameter H0 ¼ 100 hkmsec�1Mpc�1). In Figures 3–5,

we demonstrate why σ8 is stringently constrained.

We plot fσ8 (the product of growth rate and σ8) in the extended DGP model as a function of

redshift z for various values of the energy density parameter of matter at the present Ωm,0 in

Figures 3–5. In Figure 3, the parameters are fixed by α = 1, σ8 = 0.6. For the various values

of Ωm,0, the theoretical curves seem to revolve around the dashed circle. Hence, the value of

σ8 = 0.6 is incompatible with the observational (mock) data.

In Figure 4, the parameters are fixed by α = 1, σ8 = 1.0. For the various values of Ωm,0, the

theoretical curves seem to revolve around the dashed circle. Hence, the value of σ8 = 1.0 is

incompatible with the observational (mock) data.

In Figure 5, the parameters are fixed by α = 1, σ8 = 0.855. For the various values of Ωm,0,

although the theoretical curves seem to revolve around the dashed circle, some theoretical

curves are comparatively close to the observational (mock) data. Hence, the value of σ8 = 0.855

is compatible with the observational (mock) data in the original DGP model (α = 1).

0.60

0.70

0.80

0.90

1.00

0.0 0.2 0.4 0.6 0.8 1.0

σ
 8

α

0. 855

ΛCDM DGP

Figure 2. Probability contours in the (α, σ8)-plane for the extended DGP model from the observational (mock) data of the

cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits.
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Figure 3. fσ8 (the product of growth rate and σ8) in the extended DGP model as a function of redshift z for various values

of Ωm,0. The parameters are fixed by α = 1, σ8 = 0.6.
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Figure 4. fσ8 in the extended DGP model as a function of redshift z for various values of Ωm,0. The parameters are fixed

by α = 1, σ8 = 1.0.
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In Figure 6, we plot the probability contours in the (α,Ωm,0)-plane in the extended DGP model

from the observational (mock) data of the cosmic growth rate by Euclid. The red (dark) and

pink (light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. We

demonstrate why Ωm,0 is positively correlated with α in Figure 7.

We plot fσ8 in the extended DGP model as a function of redshift z in Figure 7. The red (solid)

line is the theoretical curve for the best-fit parameter in the ΛCDM model (α = 0, Ωm,0 = 0.257,

σ8 = 0.803). In the case of changing only α =1, the growth rate fσ8 is suppressed due to

suppression of the effective gravitational constant (green (dashed) line: α = 1, Ωm,0 = 0.257, σ8
= 0.803). For α = 1, by tuning the value of Ωm,0 and σ8, the theoretical curve is compatible with

the observational (mock) data again (blue (dotted) line: α = 1, Ωm,0 = 0.395, σ8 = 0.855).

In Figure 8, we add constraints on Ωm,0 for the extended DGP model from the combination of

CMB, BAO, and SNIa data (black solid lines) [46] to the probability contours in the (α, Ωm,0)-

plane by the growth rate (mock) data by Euclid of Figure 6.

Because Ωm,0 is stringently constrained by the cosmic growth rate data from Euclid, we find

the ΛCDM model is distinguishable from the original DGP model by combining the growth

rate data of Euclid with other observations.

4.2. Kinetic gravity braiding model

In Figure 9, we plot the probability contours in the (n,Ωm,0)-plane in the kinetic gravity braiding

model from the observational (mock) data of the cosmic growth rate by Euclid. The red (dark)

and pink (light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively.
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Figure 5. fσ8 in the extended DGP model as a function of redshift z for various values ofΩm,0. The parameters are fixed by

α = 1, σ8 = 0.855.
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Figure 6. Probability contours in the (α, Ωm,0)-plane for the extended DGP model from the observational (mock) data of

the cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits.
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Figure 7. fσ8 in the extended DGP model as a function of redshift z. The values of the parameters are as follows. Red

(solid) line: α = 0,Ωm,0 = 0.257, σ8 = 0.803. Green (dashed) line: α = 1,Ωm,0 = 0.257, σ8 = 0.803. Blue (dotted) line: α = 1,Ωm,0 =

0.395, σ8 = 0.855.
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Figure 8. Addition of constraints on Ω
m,0 for the extended DGP model from CMB, BAO and SNIa data [46] to the data in

Figure 6.
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data of the cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits.
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We plot fσ8 in the kinetic gravity braiding model as a function of redshift z in Figure 10. The red

(solid) line is the theoretical curve for the best-fit parameter in the ΛCDM model (Ωm,0 = 0.257,

σ8 = 0.803). In the case of the kinetic gravity braiding model for n = 1, the growth rate fσ8 is

enhanced due to enhancement of the effective gravitational constant (Green (dashed) line: n = 1,

Ωm,0 = 0.257, σ8 = 0.803). For n = 100, by tuning the value of Ωm,0 and σ8, the theoretical curve is

compatible with the observational (mock) data again (blue (dotted) line: n = 100, Ωm,0 = 0.196,

σ8 = 0.820).

In Figure 11, we add constraints on Ωm,0 for the kinetic gravity braiding model from CMB

(black dashed lines) and from SNIa (black solid lines) [30], respectively, to the probability

contours in the (n, Ωm,0)-plane by the growth rate (mock) data by Euclid of Figure 9.

In the kinetic gravity braiding model, the allowed parameter region obtained by using only the

growth rate data does not overlap with the allowed parameter region obtained from CMB or

from SNIa data.

4.3. Galileon model

In Figure 12, we plot the probability contours in the (ω, Ωm,0)-plane in the Galileon model from

the observational (mock) data of the cosmic growth rate by Euclid. The red (dark) and pink

(light) contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits, respectively. We also plot

the constraints on Ωm,0 for the Galileon model from the combination of CMB, BAO, and SNIa

(black solid lines) [49].
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Figure 10. fσ8 in kinetic gravity braiding model as a function of redshift z. The values of the parameters are as follows.

Red (solid) line: ΛCDM, Ωm,0 = 0.257, σ8 = 0.803. Green (dashed) line: n = 1, Ωm,0 = 0.257, σ8 = 0.803. Blue (dotted) line: n =

100, Ωm,0 = 0.196, σ8 = 0.820.
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Figure 11. Addition of constraints onΩ
m,0 for the kinetic gravity braiding model from CMB (black dashed lines) and from

SNIa (black solid lines), respectively, [30] to Figure 9.
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Figure 12. Probability contours in the (ω, Ω
m,0)-plane for the Galileon model from the observational (mock) data of the

cosmic growth rate by Euclid. The contours show the 1σ (68.3%) and 2σ (95.0%) confidence limits. The added constraints

on Ω
m,0 for the Galileon model are from the combination of CMB, BAO, and SNIa (black solid lines) [49].
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In the Galileon model, the allowed parameter region obtained by using only the growth rate

data do not overlap at all with the allowed parameter region obtained from the combination of

CMB, BAO, and SNIa data.

5. Conclusions

The growth rate fσ8 in the original DGP model is suppressed in comparison with that in the

ΛCDM case in the setting of the same value of Ωm,0 due to suppression of the effective

gravitational constant. In the case of the kinetic gravity braiding model and the Galileon

model, the growth rate fσ8 is enhanced in comparison with the ΛCDM case in the same value

of Ωm,0 due to enhancement of the effective gravitational constant. For the cosmic growth rate

data from the future observation, compatible values of Ωm,0 differ according to the model.

Furthermore, values of Ωm,0 can be stringently constrained. Thus, we find the ΛCDM model is

distinguishable from modified gravity by combining the growth rate data of Euclid with other

observations.

The estimated errors from the observational technology of Euclid are known, but the center

value of future observations is not known. If the center value of the cosmic growth rate of

future observations is different from that of this chapter, the valid model can differ from that of

this chapter. However, the methods in this chapter are useful for distinguishing between the

ΛCDM model and modified gravity.

In this chapter, assuming the function G5ðφ; XÞ in Horndeski’s theory G5ðφ; XÞ ¼ 0, we com-

pute the linear matter density perturbations for the growth rate. In future work, we will study

the model having non-zero function G5ðφ; XÞ in Horndeski’s theory and investigate the

nonlinear effect.
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