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Abstract

The PDM control joins together between the concepts of soft switching and hard switching.
Its application to the series resonant inverter cancels the switching losses and uses dc bus
without storage capacity. Objectively, the PDM controls led to ac-ac converters with high
efficiency (zero switching loss), small size (no storage capacity) andwith the possibility of a
self power factor correction. However, the operating analysis of these converters is very
complex because the operation is done on two time scales and leaves questions unan-
swered. The average modeling facilitates the analysis of the operation and leads to estab-
lish: (i) an analytical expression of the power factor, (ii) the linearity conditions of the
power characteristic, and (iii) a model of ac-ac series resonant multi-converter which is
independent of the carriers. In the case of ac-ac series resonant multi-converter, the coordi-
nation of carriers allows to shape the power characteristic. Among the three types of
coordination presented, there is an original coordinate that linearizes the power character-
istic. The results are validated by simulations carried out in Matlab SimPower systems.

Keywords: pulse density modulation, series resonant inverter, multi-inverter ac-ac
converter, power factor correction, average modeling

1. Introduction

The soft-switching, appeared in the early eighties of last century, is a major event in the

development of power electronics [1, 2]. Numerous research and conference sessions devoted

to it reflect this importance. The soft switching is a conceptual breakthrough that led to

technological advances. Indeed, to reduce the size of the reactive components, something that

has a positive effect on the weight and size of converters, it is necessary to seek to increase the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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switching frequency. However, to increase the switching frequency of power semiconductor

switches, it is imperative to create the conditions for reducing switching losses. Within the

framework of soft switching concept, one considers that the most effective way to achieve this

goal is to leave full-controlled power semiconductor devices to switch depending on their

changing voltages and/or currents [3–5]. The power part of the converter plays an active role

in determining the switching instants.

In resonant converters, implementing this concept, there is a shared determination of switching

instants between the control part and power part of the converter: if a commutation is caused by

the control, complementary commutation is caused by the voltage or current of the switch (ZVS

or ZCS). The transmitted power control is done by the frequency modulation.

Pulse density modulation (PDM) control, appeared in the mid-1990s [6, 7], joins together the

concept of soft switching and the traditional concept of hard switching by separating the roles

of the control part and power part. The power part is responsible for determining the

switching instants. The control part decides the nature of switching cycles (active or inactive).

Its application to series resonance inverters has the major advantage to cancel the switching

losses and to produce an output power factor near to unity [6–11]. The integration of these

inverters in the ac-ac conversion makes it possible to save the smoothing filter and to have a

sine-wave absorption at full power [6, 7]. Several recent researches are devoted to the devel-

opment of PDM control and to the valorization of its applications [8–11]. The operating

analysis presented in these papers focus on the output current. The input current (current

drawn from the ac-supply) analysis is forsaken. This aspect constitutes the poor relation in

the scientific literature dedicated to the PDM technique.

Fill this blank, clarify it why, and show how to exploit the benefits and manage the challenges

are the objectives of this work. More than a synthesis of previous work, this chapter provides

for the first time an average modeling of PDM inverters, an accurate determination of the

linear operating conditions and an original linearization technique.

This chapter is organized as follows: in Section3, we present the principle of PDM control and

its integration in ac-ac converter. Section4 is devoted to the description of a pulse density

modulator. The conventional analysis is the subject of Section5. The determinations of the

input current of the ac-ac converter and its power factor in the case of single and multi-inverter

configurations are presented. Section6 is devoted to the average modeling of ac-ac series

resonant converter in single- and multi-inverter configurations. Several cases of coordination

of the carriers are discussed in Section7. Simulation results are given in Section8, and conclu-

sion is presented in Section9.

2. Principle

Pulse density modulation (PDM) is a type of control applied to the series resonance inverters.

Turn-on and turn-off occur at zero crossings of the load current, because the switching fre-

quency is taken equal to resonance frequency of the load. All commutations are lossless and

without current gradient, and the input current of inverter is unidirectional. The inverter oper-

ation has the following improvements: (i) the switches are completely released from switching
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stress; (ii) dc bus has no storage capacity; and (iii) reduction of electromagnetic noise. But, as the

switching frequency is now fixed, it is impossible to use it to control the power.

To avoid this disadvantage, the control part generates a PDM pattern that determines whether

a switching cycle is active or inactive. An active cycle is a normal operating cycle of the single-

phase inverters. An inactive cycle is defined by the simultaneous state-on of same side

switches (e.g., high side) and the simultaneous state-off of the other side switches (e.g., low

side). It puts the output inverter in freewheel and, consequently, interrupts the flow of energy

between input and output of the converter. The power control is now done by the PDM pattern

duty cycle defined by:

d ¼ n=k ð1Þ

with k is the number of total cycles per PDM pattern period (called PDM pattern length) and

n¼1, 2,…. or k.

The power control is thus done in a discrete manner with a resolution which depends on the

length of the pattern.

Figure 1 shows the considered inverters and the transcription logic circuit of the PDM pattern in

the gate control signals of the switches. We propose in Figure 2 an operating model that clearly

shows the coexistence of the two concepts (hard and soft switching). The PDM inverter is divided

into soft inverter and hard buck. The transmitted power is controlled by the PDM pattern.

When the inverter is supplied by a single-phase diode bridge, the unit forms an ac-ac converter

(LF to HF) (Figure 3). Since the input current of PDM inverter is unidirectional, it is possible to

eliminate the smoothing filter (low frequency 2 · 50 or 2 · 60) and keep only a high frequency

decoupling capacitor CHF. The latter absorbs the high frequency ripple of the current in the

Figure 1. PDM inverter: topology, control and definition.
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rectifier. The result is a small-sized ac-ac converter because it is relieved of the smoothing

filter). The current drawn by the ac-ac converter is a sinusoidal form, but is intersected by zero

current phases when inactive cycles occur. In the following, we focus on the control, the

transmitted power and the quality of current drawn by this ac-ac converter that will be called

ac-ac PDM converter and noted PDMC.

3. PDM pattern generation

The PDM pattern generation is subject to two particular restrictions.

The first restriction concerns the adaptation of the PDM pattern frequency to the load reso-

nance frequency. So that the switching cycles are not truncated, the PDM pattern period must

be a multiple of the resonance period:

First restriction TPDM ¼ kTr with k is an integer ð2Þ

To satisfy this restriction, several options are possible. We present below a PWM type tech-

nique but adapted to PDM control. It is based on a synchronous comparison of a control signal

ðecÞ and a triangular carrier ðCarÞ [12]. The synchronous comparison is carried out by a

conventional comparator followed by a D flip-flop (Figure 4).

When the PDM inverter is integrated into an ac-ac series resonant converter, it is necessary that

the PDM pattern satisfies a second restriction: its period (frequency) must be a sub-multiple

(multiple) of the period (frequency) of the dc link voltage:

Figure 2. Decomposition of the PDM inverter in hard buck and soft inverter.

Figure 3. Ac-ac PDM converter (without smoothing filter).
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Second restriction Tdc ¼ qTPDM with q is an integer ð3Þ

If this restriction is not satisfied, a continuous component can appear in the current drawn

from the electrical network. The substitution of Eq. (2) into Eq. (3) leads to restriction:

Tdc ¼ NTres with N ¼ q � k is an integer ð4Þ

To check this restriction, a calibration of the dc-voltage period seen by the inverter is performed

by the definition of the ZCD signal (Zero Crossing Detector) [12]. This signal is determined by

the synchronous comparison of the ac-supply voltage with positive and negative thresholds. The

synchronous comparison is carried out here by the set two comparators—and logical gate—D

flip-flop. ZCD is at the zero level during a time which is a multiple of the period of resonance

and which can be very close to the period of the rectified voltage if the thresholds are close to

zero. ZCD, when it’s high, is used to reset the PDM pattern and the carrier’s generator. Hence-

forth, the useful (or usable) period of the rectified voltage is automatically adjusted with a

multiple of the resonance period, and the triangular carrier is synchronized to the latter. Figure 5

shows the pattern generation circuit for an ac-ac PDM converter. The PDM pattern duty cycle is

identified with the control signal because the carrier is triangular, whereas the carrier frequency

represents the PDM pattern length. As a result, the control signal controls the power while the

carrier frequency controls the power variation resolution. In the following section, we establish

the relation between the control signal and the transmitted power and the impact of the carrier

frequency on the quality of the current drawn from the ac-supply.

Figure 4. Adaptation of PDM frequency to resonance frequency by synchronous comparison.

Figure 5. PDM pattern generator performing synchronous comparison and calibration.
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4. Conventional analysis

4.1. Input current of ac-ac PDM converter

The drawn current from ac network and transmitted power by ac-ac series resonant converter

are determined under the following assumptions: (i) the load has a low damping coefficient;

(ii) CHF capacitor absorbs HF component (twice the resonant frequency) of the inverter input

current; (iii) the dc link voltage is assumed constant during a switching cycle; and (iv) no

restriction is imposed on the PDM pattern except the restrictions of definition.

One determines successively the load current, the currents after and before the HF decoupling

capacitor and the current drawn from the ac-supply. Then, one calculates the Fourier series of

the latter current. In Ref. [12], it is shown that if the PDM pattern is generated according to the

solution of Section3, the following results are obtained:

i. the transmitted power in pu varies linearly with the control signal:

p ¼ ec ð5Þ

ii. the spectrum of the drawn current consists of harmonic pairs spaced from 2qFac

iii. and the power factor, calculated from the harmonic summation, is as follows:

PF ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
2

ec2

X

∞

h¼1

�

sin
�

πhð1� ecÞ
�

=πh
�2

s

ð6Þ

It is independent of the PDM pattern frequency. The power factor decreases continuously

when the transmitted power in pu varies from 1 to 0.

Failing to improve the power-factor directly, an increase in the pattern frequency brings a

better conditioning of the harmonic distortion (increase spacing and thus reject harmonics in

high frequencies). But, it is observed that the more the frequency increases, the more one loses

the linearity between power and control signal. We propose later in this chapter, a theoretical

determination of the maximum frequency which preserves this linearity.

4.2. Input current of ac-ac multi-PDM converter and power factor correction

Correction by mutual compensation requires the use more than one inverter and an adapted

control. The inverters are managed in such a way that the distortion produced by an inverter

(zero current phase) is completely or partially masked by the other inverters. The inverters do

not operate in inactive cycles simultaneously but successively. This management is based on the

use of a set of interlaced carriers. This idea was developed for a systemwith several inverters and

separate loads (each inverter feeds one load). Then, the idea was extended to the more realistic

case of a single load [13]. The considered converter and its carriers are shown in Figure 6. It is

called ac-ac multi-PDM converter and noted M-PDMCG. If this converter consists of G inverters

(Invg with g ¼ 1, 2,…, G), the carrier associated with an Invg is as follows:
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CargðθÞ ¼ Car1

�

θ� ðg� 1Þ2π=G
�

ð7Þ

and all inverters have the same control signal:

ec,g ¼ ec ð8Þ

This converter behavior is modeled by a bi-converter system with separate loads (ConvA and

ConvB) and variable parameters. The control signals, carriers and transformer ratios of ConvA
and ConvB vary according to the control signal. Figure 7 shows the topology of the bi-converter

system and the control parameters. The results, detailed in Ref. [13], are as follows:

i. Power versus control signal is piecewise linear:

p ¼ a1 ¼ gþ ðG:ec � gÞð2g� 1Þ ð9Þ

Where g� 1 ¼ f loorðG:ecÞ (integer portion of G:ec )

ii. the spectrum of the drawn current consists of harmonic pairs spaced from 2GqFac

iii. the power factor, calculated from the harmonic summation, is:

PF ¼ 1

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ð2g� 1Þ2

X

∞

h¼1

�

sinðπhGecÞ=πh
�2

�

g2 þ ðGec � gÞð2g� 1Þ
�2

v

u

u

u

u

u

t

ð10Þ

The power factor is equal to 1 in G points when the transmitted power is equal to

ðj=GÞ2 100% of its maximum value with j ¼ 1, 2, …G, and

iv. the maximum power is G2 times greater than in the case of the PDMC.

Figure 6. Ac-ac multi-PDM converter (MPDMCG): topology and carriers in case G¼3.
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This modeling is empirical because it is based solely on the observation of the converter behavior.

However, since the behavior of a converter is defined by its topology and its control, the bi-

converter model is only valid for the control law considered during the observation phase.

5. Analysis by average modeling

The average modeling is a powerful tool for the regulation and simulation of power electronics

converters. Its main disadvantage is that it can predict only the mean value [14]. High fre-

quency ripple is lost or predicted with inaccuracy [15]. In the case of PDM converters, the dc

link between the rectifier and the inverter ensures high frequency decoupling. The rectifier’s

currents do not have high frequency ripple. The average modeling is thus a well-adapted tool

for the determination of the low frequency side currents in the PDM converters. This technique

is already applied successfully to the PDM-dual converters [16]. In the present work, it is

applied for the first time to the PDM converters.

5.1. Average model of ac-ac PDM converter

5.1.1. Modeling of series resonant inverter

The time is subdivided into half-periods of resonance. Each half-period is indicated by an

index n. The load voltage switches from �udc to þudc at instants nðTr=2Þ and from þudc to

�udc at instants ðnþ 1ÞðTr=2Þ with n even number. The capacitor voltage is as follows:

Figure 7. Bi-converter equivalent system when ðg� 1Þ=G ≤ ec ≤ g=G.
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vCðnþ 1Þ ¼ �vCðnÞ Aþ udc � ð1þ AÞ at the end of the ðnþ 1Þth half period ð11Þ

vCðnþ 2Þ ¼ �vCðnþ 1Þ A� udc � ð1þ AÞ at the end of the ðnþ 2Þth half period ð12Þ

Under compact form, Eq. (11) and Eq. (12) become:

vCðnÞ ¼ �vCðn� 1Þ Aþ ð�1Þnþ1udc � ð1þ AÞ with n even or odd ð13Þ

Eq. (13) gives the value of the capacitor voltage at the end of the nth half-period as a function of

the value taken at the (n � 1)th half-period. According to the initial value, Eq. (13) becomes:

vCðnÞ ¼ ð�1Þn
(

vCð0Þ A
n � udc � ð1þ AÞ

X

n�1

i¼0

Ai

)

ð14Þ

Knowing that
Xn�1

i¼0
Ai ¼ 1�An

1�A , Eq. (14) becomes :

vCðnÞ ¼ ð�1Þn vCð0Þ A
n � udc � ð1� AnÞ

1þ A

1� A

� �

ð15Þ

The pic value of load current during the nth half-period is as follows:

îðnÞ ¼
ffiffiffiffiffiffiffiffiffi

C=L
p

�

vCðnÞ � udc

�

expðαTr=4Þ for n odd ð16Þ

îðnÞ ¼ �
ffiffiffiffiffiffiffiffiffi

C=L
p

�

vCðnÞ þ udc

�

expðαTr=4Þ for n even ð17Þ

During the nth half-period, the average value of inverter’s input current is as follows:

〈i〉ðnÞ ¼
2

π

îðnÞ ¼
2

π

ffiffiffiffiffiffiffiffiffi

C=L
p

�

ð�1Þnþ1vCðnÞ � udc

�

∙ expðαTr=4Þ ð18Þ

Since the initial value of udc is zero, writing Eq. (18) for n¼0 leads to:

〈i〉ð0Þ ¼ �
2

π

ffiffiffiffiffiffiffiffiffi

C=L
p

vCð0Þ∙expðαTr=4Þ ð19Þ

It is deduced that

vCð0Þ ¼ �
π

2

ffiffiffiffiffiffiffiffiffi

C=L
p

〈i〉ð0Þ∙expð�αTr=4Þ ð20Þ

The substitution of Eq. (20) into Eq. (15) yields:

vCðnÞ ¼ ð�1Þn �
π

2

ffiffiffiffiffiffiffiffiffi

C=L
p

expð�αTr=4Þ〈i〉ð0Þ A
n � udc � ð1� AnÞ

1þ A

1� A

� �

ð21Þ

The substitution of Eq. (21) into Eq. (18) yields:
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〈i〉ðnÞ ¼ 〈i〉ð0Þ An þ udc
4

π

ffiffiffiffiffiffiffiffiffi

C=L
p expð�αTr=4Þ

1� A
1� An 1þ A

2A

� �

ð22Þ

Under the assumption:

ð1þ AÞ=2A ≈ 1 ð23Þ

(this assumption is justified by the fact that ðαTr=2 ¼ πξÞ is close to zero), expression (22) is

identified with that of the current in Req � Leq series branch supplied by a voltage udc with:

Req ¼
π

4

ffiffiffiffi

L

C

r

1� expð�αTr=2Þ

expð�αTr=4Þ
ð24Þ

Leq ¼
Req

α
¼ L

π

4ξ

1� expð�αTr=2Þ

expð�αTr=4Þ
ð25Þ

The inverter dc side can then be modeled by the average circuit constituted by Req � Leq series

branch.

5.1.2. Modeling of PDM inverter

Pulse density modulation is introduced by considering a fictitious hard buck that connects the

voltage source to the inverter, represented by its average model. The unit constitutes the

average model of PDM inverter (Figure 8). The current drawn by this converter is as follows:

idcðtÞ ¼
udc
Req

1�
1� exp

�

� ð1� dÞTr=τeq

�

1� expð�Tr=τeqÞ
expð�t=τeqÞ

8

<

:

9

=

;

for 0 ≤ t ≤ dTPDM ð26Þ

idcðtÞ ¼ 0 for dTPDM〈t ≤TPDM ð27Þ

Using Eq. (26) and Eq. (27), themean value, RMS value and form factor are calculated.We obtain:

〈i〉dcTPDM
¼

udc
Req

d�
τeq

TPDM

1� exp �d TPDM

τeq

� �� �

1� exp �ð1� dÞ TPDM

τeq

� �� �

1� exp � TPDM

τeq

� �� �

8

<

:

9

=

;

ð28Þ

〈Idc〉 ¼
udc
Req



d� 2
τeq

TPDM

1� e
�d

TPDM
τeq

� �

1� e
�ð1�dÞ

TPDM
τeq

� �

1� e
�

TPDM
τeq

þ
τeq

2∙TPDM

1� e
�ð1�dÞ

TPDM
τeq

1� e
�

TPDM
τeq

0

@

1

A

2

1� e
�2d

TPDM
τeq

� �

v

u

u

u

u

t

ð29Þ

Figure 8. Average model of PDM inverter.

Recent Developments on Power Inverters82



FF ¼

d � τeq

TPDM

1�exp �d
TPDM
τeq

� �� �

1�exp �ð1�dÞTPDM
τeq

� �� �

1�exp �TPDM
τeq

� �



d� 2
τeq

TPDM

1�exp �d
TPDM
τeq

� �� �

1�exp �ð1�dÞTPDM
τeq

� �� �

1�exp �TPDM
τeq

� � þ τeq

2∙TPDM

1�exp �ð1�dÞTPDM
τeq

� �

1�exp �TPDM
τeq

� �

0

@

1

A

2

1� exp �2d TPDM

τeq

� �� �

v

u

u

u

t

ð30Þ

5.1.3. Extension to ac-ac converter

Now, we consider that the voltage udc is supplied by a single-phase diode rectifier. During the

jth PDM pattern period, we suppose that this voltage is as follows:

udcðjÞ ¼ V̂ acsinðθjÞ ð31Þ

with θj ¼ π

q
2j�1
2 is the midpoint of jth pattern period.

By substitution of Eq. (31) into Eqs. (28) and (29), we obtain mean value, RMS value and form

factor of idc during jth pattern period:

〈idc〉TPDM
¼ V̂ ac

Req
d� τeq

TPDM

1� exp �d TPDM

τeq

� �� �

1� exp �ð1� dÞ TPDM

τeq

� �� �

1� exp � TPDM

τeq

� �

8

<

:

9

=

;

sinðθjÞ ð32Þ

Idc ¼
V̂ ac

Req

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d� 2τeq

TPDM

1� e
�ð1�dÞTPDM

τeq

1� e
�TPDM

τeq

1� e
�d

TPDM
τeq þ 1

4

1� e
�ð1�dÞTPDM

τeq

1� e
�TPDM

τeq

0

@

1

A 1� e
�2d

TPDM
τeq

� �

8

<

:

9

=

;

v

u

u

u

t sinðθjÞ

ð33Þ

In the appendix, we show that the fundamental component and the RMS value of the current

drawn from ac-supply (Rectifier input current) and the mean and RMS values of the inverter

input current during the jth PDM pattern period are linked by the following relationships:

Î f

ðV̂ ac=ReqÞ
¼ 〈idc〉TPDM

ðjÞ
ðV̂ ac=ReqÞsinðθjÞ

ð34Þ

Iac

ðV̂ ac=ReqÞ
¼ IdcðjÞ

ðV̂ ac=ReqÞsinðθjÞ
1
ffiffiffi

2
p ð35Þ

Knowing that in the case of a single-phase diode rectifier, the displacement factor is unitary,

and the power factor is assimilated to the distortion factor:

PF ¼ Î f
ffiffiffi

2
p

∙Iac
ð36Þ

Substitution of Eqs. (35), (34), (33) and (32) into Eq. (36) yields:
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PF ¼
ec � q2Facτeq

�

1�expð� ec=q2FacτeqÞ
��

1�exp

�

�ð1�ecÞ=q2Facτeq
��

1�expð� 1=q2FacτeqÞ


ec � q4Facτeq
1�exp � ec

q2Facτeq

� �� �

1�exp � ð1�ecÞ
q2Facτeq

� �� �

1�exp � 1
q2Facτeq

� � þ qFacτeq
1�e

� ð1�ecÞ
q2Facτeq

1�e
� 1
q2Facτeq

 !2

1� e
�2 ec

q2Facτeq

� �

v

u

u

u

t

ð37Þ

The transmitted power is defined by:

P ¼ 1

2
V̂ ac Î f ð38Þ

Substitution of Eqs. (32) and (34) into Eq. (38) gives the transmitted power in pu:

p ¼ ec � q2Facτeq

�

1� expð� ec=q2FacτeqÞ
��

1� exp
�

� ð1� ecÞ=q2Facτeq
��

1� expð� 1=q2FacτeqÞ
ð39Þ

Its reference is as follows:

Pref ¼
1

2
V̂ ac

2=Req ð40Þ

The expressions (37) and (39) can be greatly simplified, if we consider the hypothesis:

H1 : q2Facτeq ≪ 1 ð41Þ

They become:

PF ≈
ffiffiffiffi

ec
p ð42Þ

p ≈ ec ð43Þ

To establish the maximum value that q2Facτeq can take without the approximations becoming

imprecise, we calculate the relative errors in the most unfavorable case:

ΔPF

PF
¼ jPFðecÞ �

ffiffiffiffi

ec
p j

PFðecÞ
ð44Þ

Δp

p
¼ jpðecÞ � ecj

pðecÞ
ð45Þ

It is checked that the most unfavorable case, that is, the errors are maximal, occurs when ec is

minimal. For different values of ec,min, we plot these errors versus q2Facτeq (Figure 9). It is

noted that the power error is not limited (it increase continuously). Eq. (43) gives values that

can be truly erroneous if q2Facτeq is not kept below a maximum value ðq2Facτeq Þmax. This

means that in order to maintain a relative error less than a given limit, when ec varies between

1 and ec,min, the coefficient q must respect the constraint:
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q ≤ qmax ¼ ðq2Facτeq Þmax=2Facτeq ð46Þ

This constraint means that:

Fcarτeq ≤ ðq2Facτeq Þmax ð47Þ

because

q¼ðFPDM¼FcarÞ=2Fac ð48Þ

In Figure 9, we can directly read ðq2Facτeq Þmax as a function of the maximum permissible error

and for different values of ec,min. If, for example, to maintain the error below 30%, the carrier

frequency must be less than the maximum frequency:

Fcar ≤ ðFcarÞmax¼0:023=τeq si ec,min¼0:1 ð49Þ

Fcar ≤ ðFcarÞmax¼0:119=τeq si ec,min¼0:5 ð50Þ

Eqs. (49) and (50) can be put in the general form:

Fcarτeq ≤Lxðec,minÞ ð51Þ

where Lxðec,minÞ is the maximum value that Fcarτeq must not exceed if we want Eq. (43) to give

the power with a tolerance less than x when ec varies from 1 to ec,min.

Eq. (26) shows that idc has a static component and a transient component:

idc
sðtÞ ¼

udc
Req

for 0 ≤ t ≤ ðdTPDM ¼ ec=FcarÞ ð52Þ

idc
tðtÞ ¼

udc
Req

1� exp
�

� ð1� dÞTr=τeq

�

1� expð�Tr=τeqÞ
expð�t=τeqÞ for 0 ≤ t ≤ ðdTPDM ¼ ec=FcarÞ ð53Þ

Figure 9. Power and power factor errors versus q2Facτeq.
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Eq. (53) shows that the more we reduce Lxðec,minÞ, the more transient component is damped.

Consequently, the currents become:

idcðtÞ ¼
udc
Req

� PDM_P ð54Þ

iacðtÞ ¼
uac
Req

� PDM_P ð55Þ

If the power and the power factor are determined from Eqs. (54) and (55), we find the

expressions (42) and (43). This proves that the hypothesis H1, which allowed the passage of

Eqs. (37) and (39) to Eqs. (42) and (43), indirectly signifies the predominance of the static

component in idc.

5.2. Average model of ac-ac Multi-PDM converter (MPDMC)

The converter considered is that shown in Figure 6. By replacing each inverter by its average

model, one builds the MPDMC’s average model (Figure 10).

According to this average model, the current drawn by the gth inverter is as follows:

• zero, if its pattern is at zero:

iac,g ¼ 0 if PDM_Pg ¼ 0 ð56Þ

• identical to the current drawn by a PDMC if its pattern is at 1, and the patterns of all the

other inverters are at zero:

iac,g ¼ iac if PDM_Pg ¼ 1 and PDM_Pj 6¼g ¼ 0 ð57Þ

• identical to the current drawn by a PDMC multiplied by the number of inverters whose

patterns are at 1, if its pattern is at 1:

iac,g ¼ iac
XG

j¼1

PDM_Pj ð58Þ

Eqs. (56), (57) and (58) can be written in the form:

iac,g ¼ iacPDM_Pg

XG

j¼1

PDM_Pj ð59Þ

The current drawn by the MPDMC is the sum of the currents drawn by the various inverters:
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iac,MPDMC ¼
X

G

g¼1

iac,g ð60Þ

Substitution of Eqs. (59) and (60) into Eq. (55) yields:

iac,MPDMC ¼
vac
Req

X

G

g¼1

PDM_Pg

0

@

1

A

2

ð61Þ

Comparing between Eqs. (61) and (55), we see that a M-PDMC is a PDMC that would be

modulated by the square of the sum of the different patterns.

6. MPDMC features: power factor correction and transmitted power

The behavior of the MPDMC is determined by three elements: the control signal, the carrier

and the coordination of all the carriers. In this section, we discuss three types of coordination.

6.1. First coordination: interlaced carriers

In Figures 11 and 12, we traced interlaced carriers, the patterns PDM_Pg and
XG

g¼1
PDM_Pg

� �2

in the cases G¼2 and G¼3.

In the case G¼3, when 0 ≤ ec ≤ 1=3, we have 1 or 0 pattern at 1:

Figure 10. Average model of MPDMC.
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X

G

g¼1

PDM_Pg

!2

¼ 1 during dðTPDM=3Þ ð62:1:1Þ

 

X

G

g¼1

PDM_Pg

!2

¼ 0 during ð1� dÞðTPDM=3Þ ð62:1:2Þ

Figure 11. Interlaced carriers for MPDMC2.

Figure 12. Interlaced carriers for MPDMC3.
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with d ¼ 3:eC ð62:1:3Þ

when 1=3 ≤ ec ≤ 2=3, we have 2 or 1 patterns at 1 :
 

X

G

g¼1

PDM_Pg

!2

¼ 22 during dðTPDM=3Þ ð62:2:1Þ

 

X

G

g¼1

PDM_Pg

!2

¼ 12 during ð1� dÞðTPDM=3Þ ð62:2:2Þ

with d ¼ 3:eC � 1 ð62:2:3Þ

when 2=3 ≤ ec ≤ 3=3, we have 3 or 2 patterns at 1 :
 

X

G

g¼1

PDM_Pg

!2

¼ 32 during dðTPDM=3Þ ð62:3:1Þ

 

X

G

g¼1

PDM_Pg

!2

¼ 22 during ð1� dÞðTPDM=3Þ ð62:3:2Þ

with d ¼ 3:eC � 2 ð62:3:3Þ

Eqs. (62) can be generalized as follows:

when ðg� 1Þ=G ≤ ec ≤ g=G, we have g or g � 1 patterns at 1 :

 

X

G

g¼1

PDM_Pg

!2

¼ g2 during dðTPDM=GÞ ð63:1Þ

 

X

G

g¼1

PDM_Pg

!2

¼ ðg� 1Þ2 during ð1� dÞðTPDM=GÞ ð63:2Þ

with d ¼ G:eC � ðg� 1Þ ð63:3Þ

where ðg� 1Þ ¼ f loorðG:eCÞ ð63:4Þ

From Eq. (63), we determine average value and RMS value of
XG

g¼1
PDM_Pg

!2
0

@ :

 

X

G

g¼1

PDM_Pg

!2* +

¼ g2dþ ðg� 1Þ2ð1� dÞ ð64Þ

RMS

 

X

G

g¼1

PDM_Pg

!2
0

@

1

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g4dþ ðg� 1Þ4ð1� dÞ

q

ð65Þ

Using Eqs. (64) and (65), we determine transmitted power and power factor :
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p ¼

 XG

g¼1

PDM_Pg

!2* +
¼ g2dþ ðg� 1Þ2ð1� dÞ ð66Þ

PF ¼

 XG

g¼1

PDM_Pg

!2* +,
RMS

XG

g¼1

PDM_Pg

0
@

1
A

20
@

1
A ¼

1þ
��

g=ðg� 1Þ
�2

� 1
�
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

��
g=ðg� 1Þ

�4
� 1
�
d

r ð67Þ

with d ¼ G:eC � ðg� 1Þ ð68Þ

and ðg� 1Þ ¼ f loorðG:eCÞ ð69Þ

We find: (i) the same characteristic power versus control signal as in Section 5 and (ii) the power

factor is determined by an analytic expression and not by a summation of the harmonics.

6.2. Second coordination: distribution in uniform bandwidths

Instead of reducing the total harmonic distortion by a mutual compensation of the individual

distortions (produced by each inverter), one can reduce it differently: all inverters operate at

full power or at standstill, and they do not produce distortion, except one that operates in

modulation to ensure power variation. To achieve this correction, the carriers are distributed in

uniform bandwidths. All carriers have the same peak value:

dCarg ¼ 1=G ð70Þ

In Figures 13 and 14, we plot uniformly superimposed carriers, associated patterns PDM_Pg

and

 XG

g¼1
PDM_Pg

!2

in the cases G¼2 and G¼3.

In the case G¼3, Eq. (70) leads to:

dCar1 ¼dCar2 ¼dCar3 ¼ 1=3 ð71Þ

when 0 ≤ ec ≤ 1=3, we have 1 or 0 pattern at 1:

 XG

g¼1

PDM_Pg

!2

¼ 1 during d:TPDM ð72:1:1Þ

 XG

g¼1

PDM_Pg

!2

¼ 0 during ð1� dÞ:TPDM ð72:1:2Þ

with d ¼ eC=dCar1 ¼ 3:eC ð72:1:3Þ

when 1=3 ≤ ec ≤ 2=3, we have 2 or 1 patterns at 1:
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X

G

g¼1

PDM_Pg

!2

¼ 22 during d:TPDM ð72:2:1Þ

Figure 13. Carriers distributed in uniform bandwidths, G¼2.

Figure 14. Carriers distributed in uniform bandwidths, G¼3.
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 XG

g¼1

PDM_Pg

!2

¼ 12 during ð1� dÞ:TPDM ð72:2:2Þ

with d ¼ ðeC � 1=3Þ=dCar2 ¼ 3:eC � 1 ð72:2:3Þ

when 2=3 ≤ ec ≤ 3=3, we have 3 or 2 patterns at 1:

 XG

g¼1

PDM_Pg

!2

¼ 32 during d:TPDM ð72:3:1Þ

 XG

g¼1

PDM_Pg

!2

¼ 22 during ð1� dÞ:TPDM ð72:3:2Þ

with d ¼ ðeC � 2=3Þ=dCar3 ¼ 3:eC � 2 ð72:3:3Þ

Eqs. (72) can be generalized as follows:

when ðg� 1Þ=G ≤ ec ≤ g=G, we have g or g � 1 patterns at 1:

 XG

g¼1

PDM_Pg

!2

¼ g2 during d:TPDM ð73:1Þ

 XG

g¼1

PDM_Pg

!2

¼ ðg� 1Þ2 during ð1� dÞ:TPDM ð73:2Þ

with d ¼
�
G:eC � ðg� 1Þ

�
=ðG:dCargÞ ð73:3Þ

where ðg� 1Þ ¼ f loorðG:eCÞ ð73:4Þ

Using Eq. (73), we determine transmitted power and power factor:

p ¼

 XG

g¼1

PDM_Pg

!* +2

¼ g2dþ ðg� 1Þ2ð1� dÞ ð74Þ

PF ¼
XG

g¼1

PDM_Pg

0
@

1
A

* +2,
RMS

XG

g¼1

PDM_Pg

0
@

1
A

20
@

1
A ¼

1þ
��

g=ðg� 1Þ
�2

� 1
�
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

��
g=ðg� 1Þ

�4
� 1
�
d

r ð75Þ

with d ¼
�
G:eC � ðg� 1Þ

�
=ðG:dCargÞ ¼ G:eC � ðg� 1Þ ð76Þ

and ðg� 1Þ ¼ f loorðG:eCÞ ð77Þ
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It is because the carriers are distributed in uniform bandwidths that power and power factor

versus control signal characteristics are the same as in the previous case. The novelty is that the

power characteristic is defined by one and only one carrier depending on the value of ec. This is

an advantage which facilitates the search of the conditions to correct the non-linearity of power

characteristic.

6.3. Third coordination: distribution in non-uniform bandwidths

Using Eqs. (74) and (76), we determine the slope of the power characteristic

dp

deC
¼

g2 � ðg� 1Þ2

dCarg
ð78Þ

To linearize this power characteristic, all segments of the power characteristic must have the

same slope G2 (because, when eC varies from 0 to 1, power varies from 0 to G2):

dp

deC
¼

g2 � ðg� 1Þ2

dCarg
¼ G2 ð79Þ

It is thus deduced that to linearize the power characteristic, it is necessary that:

dCarg ¼
g2 � ðg� 1Þ2

G2
ð80Þ

The carriers are therefore distributed in non-uniform bandwidths defined by:

�
BLg�1 ¼

Xg�1

j¼1

dCarj
�
≤ eC ≤

�
BLg ¼

Xg

j¼1

dCarj
�

ð81Þ

Taking account of Eq. (80), the lower and upper limits of a bandwidth become:

BLg�1 ¼
Xg�1

j¼1

dCarj ¼ ðg� 1Þ2=G2

BLg ¼
Xg

j¼1

dCarj ¼ g2=G2

8
>>>>><
>>>>>:

ð82Þ

For example, if one considers an MPDMC with three inverters, the three carriers and the three

bandwidths are (Figure 15):

Car1 : covers ½0 1=9�, its pic-value is dCar1 ¼ 1=9 and its upper limit: B1 ¼ 1=9

Car2 : covers ½1=9 4=9�, its pic-value is dCar2 ¼ 3=9 and its upper limit: B2 ¼ 4=9

Car3 : covers ½4=9 9=9�, its pic-value is dCar3 ¼ 5=9 and its upper limit: B3 ¼ 9=9

The pattern duty cycle is defined by:
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d ¼ ec � BLg�1

BLg � BLg�1
if BLg�1 ≤ ec ≤BLg ð83Þ

Substitution of Eq. (82) into Eq. (83) yields:

d ¼ G2ec � ðg� 1Þ2
2g� 1

with ðg� 1Þ ¼ f loorðG ffiffiffiffi

ec
p Þ ð84Þ

Substitution of Eq. (84) into Eq. (74) leads to the expression of transmitted power:

p ¼ G2ec ð85Þ

Substitution of Eq. (84) into Eq. (75) leads to the expression of transmitted power:

PF ¼ G2ec
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2ec

�

g2 þ ðg� 1Þ2
�

� g2ðg� 1Þ2
r with ðg� 1Þ ¼ f loorðG ffiffiffiffi

ec
p Þ ð86Þ

Eqs. (85) and (86) show that the power characteristic is linear and that the power factor is

unitary in G points:

PF ¼ 1 when ec ¼ BLg ¼ ðg=GÞ2 or when p ¼ g2 with g ¼ 1, 2, …G ð87Þ

7. Simulation results

Simulations are carried out in the Matlab SimPowerSystems environment. We consider a RLC

load ð1:85 Ω, 20 μH, 90 nFÞ, matching transformer ration 3/10 and an ac-supply 120V-60Hz. The

results of four simulation series are presented. Figures 16 and 17 show examples of currents

drawn by a PDMC and MPDMC2. Figures 18 and 19 show the theoretical and simulation results

of transmitted power and power factor characteristics in the case of PDMC. Figures 20 and 21

show the theoretical and simulation results of transmitted power and power factor characteristics

in the case of MPDMC2 and coordination’s types 1, 2 and 3. We note a good agreement between

theoretical and simulation results.

Figure 15. Carriers distributed in non-uniform bandwidths, G¼3.
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Figure 16. Current drawn by PDMC, ec ¼ 0:5.

Figure 17. Current drawn by MPDMC2 carriers coordination type 2, ec ¼ 0:75.
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Figure 18. Power versus ec characteristic of PDMC.

Figure 19. Power factor versus ec characteristic of PDMC.
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Figure 20. Power versus ec characteristic of MPDMC2.

Figure 21. Power factor versus ec characteristic of MPDMC2.
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8. Conclusion

The reflections and results presented in this chapter can be divided into two groups: the

background and the novelties.

The background includes the PDM control principle, the PDM pattern generation and the

characteristics of the ac-ac PDM converter and ac-ac Multi-PDM converter. In the description

of the PDM control principle, we deliberately sought to present the PDM control as a form of

association based on role sharing between the concepts of soft switching and hard switching.

The role of soft switching is to produce lossless switching, while the role of hard switching is to

vary the power by deciding the nature of the switching cycles. This reflection on the nature of

the PDM control led us to represent the operation of the PDM inverter by a setting in cascade

of a chopper and a series resonant inverter. We have detailed a PDM pattern generation

method for the ac-ac PDM converter. It is a method inspired by PWM techniques, but adapted

to the specificities of the PDM control (adaptation of the pattern frequency to both the resonant

frequency and the ac-supply frequency). This method is based on a synchronous comparison

of a carrier with a control signal and a calibration of the useful period of the dc voltage.

Without the detailed, we have given the power transmitted characteristics and the spectrum

of the current drawn from the ac-supply by an ac-ac PDM converter. Without detailed, we

gave the characteristics of the transmitted power and the spectrum of the current drawn from

the electrical communication by a ac-ac PDM converter. The power-factor correction by a total

or partial mutual compensation is presented. It leads to the definition of a converter with

several inverters and interlaced carriers. This is the ac-ac multi-PDM converter. The behavior

of this converter is modeled by a system bi-converter.

The novelties include mainly the average modeling of ac-ac PDM converter and ac-ac multi-

PDM converter and the introduction of carrier coordination as a control parameter of ac-ac

multi-PDM converter. The application of average modeling leads to the representation of the

series resonant inverter by an equivalent RL branch. The replacement of the inverter by its

equivalent RL branch in the ac-ac PDM converter facilitates the analysis of this converter and

makes it possible to establish (i) the conditions to preserve the linearity of the power character-

istic and (ii) an analytical expression of the power-factor. The replacement of the inverter by its

equivalent RL branch in the ac-ac Multi-PDM converter allows modeling this converter by an

operating model (a model that integrates the operations of the components of the converter).

This makes it possible to envisage several types of coordination. Three types of coordination are

presented. Coordination by stratified carriers allows (i) a power-factor correction based on the

search for a minimal distortion (ii) and to linearize the power characteristic.

Appendix

By subdividing ½0 π� into q PDM pattern periods, the expressions of the fundamental compo-

nent and the RMS-value of the drawn current are written:

Recent Developments on Power Inverters98



Î ac, f ¼
2

π

Xq

j¼1

ðjπ=q

ðj�1Þπ=q

idcsinðθÞdθ ðA:1Þ

Iac
2 ¼

2

π

Xq

j¼1

ðjπ=q

ðj�1Þπ=q

idc
2dθ ðA:2Þ

Assuming that q is large enough so that the sin varies very little over the interval ½ðj� 1Þπ=q

jπ=q�, we write that:

sinðθÞ ¼ sin
�

θj ¼ ðπ=qÞðj� 1=2Þ
�

ðA:3Þ

Taking into account Eqs. (A.3) and (A.1) becomes:

Î ac, f ¼
2

π

Xq

j¼1
sinðθjÞ

ðjπ=q

ðj�1Þπ=q

idcdθ ðA:4Þ

Knowing that average and RMS values of idc are as follows:

〈idc〉ðjÞ ¼
π

q

ðjπ=q

ðj�1Þπ=q

idcdθ ðA:5Þ

IdcðjÞ
2 ¼

q

π

ðjπ=q

ðj�1Þπ=q

idc
2dθ ðA:6Þ

It is established that:

Î ac, f ¼
2

q

X

q

j¼1

sinðθjÞ〈idc〉ðjÞ ðA:7Þ

Iac
2 ¼

1

π

X

q

j¼1

π

q
IdcðjÞ

2 ðA:8Þ

Substitutions of Eq. (32) into Eqs. (A.7) and (37) into Eq. (A.8) yield:

Î ac, f ¼
V̂ac

Req
d�

τeq

TPDM

1� exp �d TPDM

τeq

� �� �

1� exp �ð1� dÞ TPDM

τeq

� �� �

1� exp � TPDM

τeq

� �

8

<

:

9

=

;

2

q

Xq

j¼1
sinðθjÞ

2 ðA:9Þ

Iac
2

V̂ ac

Req

� �2
¼ d�

2τeq

TPDM

1� e
�ð1�dÞ

TPDM
τeq

1� e
�

TPDM
τeq

1� e
�d

TPDM
τeq þ

1� e
�ð1�dÞ

TPDM
τeq

� �

1� e
�2d

TPDM
τeq

� �

4 1� e
�

TPDM
τeq

� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

8

>

>

<

>

>

:

9

>

>

=

>

>

;

Xq

j¼1
sinðθjÞ

2

q

ðA:10Þ

Knowing that:
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X

q

j¼1

sinðθjÞ2 ¼ q=2 ðA:11Þ

Eqs. (A.9) and (A.10) becomes:

Î ac, f ¼
V̂ ac

Req
d� τeq

TPDM
1� exp �d

TPDM

τeq

� �� �

1� exp �ð1� dÞTPDM

τeq

� �� �

=1� exp �TPDM

τeq

� �� �

ðA:12Þ

Iac
2 ¼ V̂ ac

2

2Req
2

d� 2τeq

TPDM

1� e
�ð1�dÞTPDM

τeq

1� e
�TPDM

τeq

1� e
�d

TPDM
τeq þ

1� exp �d TPDM

τeq

� �� �

1� exp �ð1� dÞ TPDM

τeq

� �� �

4 1� exp � TPDM

τeq

� �� �

8

<

:

9

=

;

8

<

:

9

=

;

ðA:13Þ
Taking into account Eqs. (32) and (33), we obtain:

Îac, f ¼ 〈idc〉TPDM
ðjÞ=sinðθjÞ ðA:14Þ

Iac ¼ IdcðjÞ=
ffiffiffi

2
p

sinðθjÞ ðA:15Þ

Nomenclature

A
�

¼ expð�αTr=2Þ
�

Intermediate constant

C Load’s capacitor

Fac ðTacÞ Ac-supply frequency (period)

L Load’s inductor

R Load’s resistor

Tdc ð¼ Tac=2Þ Period of voltage rectified

TPDM PDM pattern

Tr Resonance period

V̂ac
Amplitude of ac-supply voltage

d Duty cycle of PDM pattern

f loor Integer portion

k PDM pattern length

q PDM pattern frequency in pu ðFPDM ¼ q2FacÞ

αð¼ R=2LÞ Attenuation factor

τeqð¼ Leq=ReqÞ Time constant of RL equivalent branch

ξ

�

¼ ðR=2Þ
ffiffiffiffiffiffiffiffiffi

C=L
p

�

Damping ratio
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