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Abstract

This chapter elaborates a review of sol-gel–prepared TiO
2 
photocatalyst for different pho-

tocatalytic applications. Among the semiconductors employed, TiO
2
 is known as an attrac-

tive photocatalyst owing to its high photosensitivity, nontoxicity, easy availability, strong 
oxidizing power and long-term stability. Some research works related to the effect of sol-
gel preparation parameters on physicochemical properties and different photocatalytic 
applications of prepared TiO

2 
photocatalysts are reported. Furthermore, various sol-gel 

and related systems for modification of TiO
2
 photocatalytic performance, including tran-

sition metals and co-doing of TiO
2
, were considered. The results illustrated that doping 

TiO
2
 with metal ions through sol-gel method usually resulted in an improved efficiency of 

TiO
2 
photocatalyst. This method has all the advantages over other preparation techniques 

in terms of purity, homogeneity, felicity and flexibility in introducing dopants in a large 
concentration, stoichiometry control, ease of processing and composition control.

Keywords: TiO
2
, metal doping, hydrolysis, physicochemical properties, photocatalytic 

activity

1. Introduction

An excessive deal of attention has recently been paid to the development of photocatalyst which 
being used in a variety of products and research areas especially for environmental and energy 
applications. Semiconductor-based photocatalyst have been extensively studied due to its elec-

tronic configuration to absorb applied solar spectrum for photocatalytic reaction. The semi-
conductor consists of a valence band (VB) and conduction band (CB). The energy difference 
between the top of the VB and the bottom of the CB levels is known as band gap energy (Eg) 
which is responsible for photoactivity of the semiconductor. Figure 1 displays the general prin-

ciple of photocatalytic reaction over the semiconductor as summarized in the following steps:

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Harvesting photons with energy equivalent or larger than the bandgap energy to form 
electron-hole pairs.

2. Photogenerated electrons are injected to the CB, while photogenerated holes with a posi-
tive charge are left behind in the VB.

3. Surface chemical reactions consist of reducing an acceptor species (A+A) and oxidizing a 
donor species (D D+) [1].

Semiconducting oxides such as TiO
2
, SrTiO

3
, ZnO, α-Fe

2
O

3
, WO

3
, Ta

2
O

5
, VO

2
, KTaO

3
 and Fe

2
O

3
 

appear to be the most considered materials for photocatalysts due to the fact that their prop-

erties can be modified over wide ranges through changing their semiconducting properties. 
Moreover, these materials are economically promising because their processing technologies 
are relatively simple [2, 3]. Among different metal oxides, TiO

2
 is one of the most signifi-

cant photocatalyst with a large variety of applications in energy and environment (Figure 2), 

Figure 1. A schematic diagram of general principle of the photocatalytic reaction.

Figure 2. Different photocatalytic applications of TiO
2
.

Recent Applications in Sol-Gel Synthesis152



regardless of its limitations. The following section is dedicated to the discussion of the  intrinsic 
properties of TiO

2
 to fully understand its function as a photocatalyst and its synthesis process.

2. Titanium dioxide (TiO
2
) photocatalyst

TiO
2
 has high resistance to corrosion and photocorrosion in an aqueous medium, cheaper than 

many other photosensitive materials, easily available, environmentally friendly. Furthermore, 
its electronic properties can be varied by just changing the defect chemistry or oxygen stoichi-
ometry [9]. The photocatalytic applications of TiO

2
 are restricted because of its large bandgap 

energy (3.0–3.2 eV) and small electron mobility of 1 cm2/V s [4–6]. TiO
2
 has three crystalline 

phases, including anatase, rutile and brookite. Anatase and rutile are the most common struc-

tures for photocatalytic studies. Figure 3a and b describes the lattice structures of anatase and 
rutile, respectively, in the form of distorted TiO

6
 octahedral with six O2− ions around each Ti+4 

ion. The structure of rutile represents an irregular octahedron with slightly orthorhombic 
distortion compared to octahedron in anatase [34]. The structural difference between anatase 
and rutile explains the significant difference in their electronic band properties.

However, rutile with band gap energy of 3.0 eV has a threshold absorption edge of 415 nm in the 
visible region compared to anatase with band gap energy of 3.2 eV and threshold absorption of 
390 nm. Researchers have reported that anatase is the appropriate crystalline phase for photo-

catalytic hydrogen production [36]. It has more negative CB position (~0.2 eV) compared to rutile 
as demonstrated in Figure 4, while their VB positions (O2p) are almost in the similar position.

2.1. Sol-gel synthesis of TiO
2 
nanoparticles

Photocatalytic activity of TiO
2
 is strongly influenced by the synthesis condition and method-

ology. Various methods have been applied for synthesis of TiO
2 
photocatalyst: electrochemi-

cal [7, 8], combining inverse micelle and plasma treatment [9], dip coating [10], two step wet 

Figure 3. The bulk structural model of: (a) anatase and (b) rutile (ball (1) and (2 ) represent oxygen and titanium atoms, 
respectively) [35].
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chemical [11], precipitation [12], thermal (hydrothermal and solvothermal) [13, 14], chemical 
solvent and chemical vapor decomposition (CSD and CVD) [15, 16], ultrasonic  irradiation [17], 
two-route sol-gel [18], and sol-gel [19–21]. Sol-gel method is a technique to improve the physi-
cochemical and electrochemical properties of TiO

2 
nanocrystalline. It provides a simple syn-

thesis process of nanoparticle at ambient temperature under atmospheric pressure, and this 
technique does not require a complicated set up. The benefits derived from preparing TiO

2
 

by sol-gel method (process flow chart shown in Figure 5) such as purity, homogeneity, and 
flexibility of the growth of TiO

2
 can be effectively controlled by hydrolysis and condensation 

of titanium alkoxide in the aqueous medium [22]. Typically, sol-gel–derived precipitates are 
amorphous in nature, requiring further heat treatment to induce crystallization. Based on 
literatures, the sol-gel method has been modified using various techniques like calcination, 
ultrasonic [23], hydrothermal [24, 25], or surfactant [26] to obtain better properties of the syn-

thesized powders.

Figure 4. Electronic bands of anatase and rutile [36].

Figure 5. A schematic diagram of sol-gel process to synthesize TiO
2
-based photocatalysts [22].
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In normal sol-gel processing, gelation and calcintion are necessary. If the calcination tempera-

ture for crystallization is not high enough, some organic molecules will remain in the product, 
leading to the incomplete crystallization of titania. However, high temperature calcination 
causes high aggregation rate and/or phase transformation [27]. Hydrothermal synthesis pro-

vides an easy route to prepare a well-crystalline and phase-pure oxide in a tightly closed 
vessel. The hydrothermal-assisted sol-gel method helps to increase the number of hydroxyl 
groups (OH−) on the surface of the photocatalyst and requires a lower calcination tempera-

ture. The prepared TiO
2
 by this method has high thermal stability, well-crystalline phase, 

small particle sizes, and large surface area, which are beneficial to improve the photocatalytic 
activity [28–30]. The sol-gel process is typically based on the formation of inorganic polymer 
by hydrolysis and condensation of metal precursor like titanium alkoxide to oxopolymers, 
which are transformed into a metal alkoxide in aqueous solutions or organic solvents [31–34]. 
A number of parameters can influence on the hydrolysis process like water to alkoxide ratio, 
pH, and solvents. Water plays a significant role during the hydrolysis process to determine 
the reaction mechanism, the number of active sites on the surface of the photocatalyst and the 
physical properties of the photocatalyst during photocatalytic reaction [35].

2.2. Effect of hydrolysis process on sol-gel method

The water to alkoxide molar ratio (RW) plays an important role in the structure of TiO
2 
due to 

controlling of the formation of nucleus and the growth of crystallites. The total sol-gel syn-

thesis can be described by an alcoholic permutation reaction, hydrolysis, and condensation 
reactions, which are competitive with alkoxolation, oxolation and olation as follows:

1. Alcoholic permutation

  M(OR ) Z + x  R   ′ (OH ) ↔   M(OR)Z  − x(O R   ′  ) +xROH  (1)

2. Hydrolysis

  M(OR ) n + n H
2
O ⇄ M(OH ) n + nROH  (2)

3. Condensation reactions

A. Alcoxolation

  M-OH + M-OR ⇄ M-O-M + R-OH  (3)

B. Oxolation

  M-OH + M-OH ⇄ M-O-M + H₂O  (4)

The water to alkoxide molar ratio is investigated in two main groups: low RW and high RW. 
Hydrolysis of alkoxide with low water content less than stoichiometric ratio (RW < 4) causes 
an incomplete hydrolysis. Therefore, unhydrolyzed alkoxide can be absorbed on the surface 
of TiO

2 
and increase particle size with irregular shape and low surface area [36]. A high RW 

(RW > 100) causes the completion of nucleation and growth during the hydrolysis of TiO
2
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within nanosecond; thus, TiO
2 
particle is unstable, and the white suspension is immediately 

formed due to precipitation of a large aggregate [37]. Furthermore, adding external solvent 
like simple alcohols can significantly affect the controlling hydrolysis and condensation rate.

Venkatachalam et al. [38] investigated the influence of water to alkoxide ratio, pH, and type of 
solvent (methanol, isopropyl alcohol, acetic acid) on the physicochemical properties of TiO

2 

and consequently its photocatalytic activity by using Bisphenol-A (BPA) as a model pollutant. 
Table 1 illustrates that the prepared photocatalysts in the presence of acetic acid had smaller 
particle size and higher surface area compared to prepared TiO

2
 in the presence of isopro-

panol and methanol. It was explained that acetic acid as a catalyst causes a rapid hydrolysis 
process, formation of titanium hydroxide, and their condensation to form TiO

2
 nanoparticles. 

In addition, the variation of pH from 3 to 9 during hydrolysis process illustrates that the pre-

pared TiO
2 
photocatalyst at pH = 9 has very low surface area due to rapid hydroxylation of 

titanium precursor and agglomeration of TiO
2
 particles.

It was reported that high water: alkoxide ratio improves the nucleophilic attack of water on 
titanium (IV) isopropoxide; however, it had negative effect on the surface area beyond the 
optimum level (350) due to more agglomeration. Furthermore, the presence of residual alk-

oxy groups decreases the crystallization rate of TiO
2
, which favor the formation of less dense 

anatase phase exclusively. At low water content, the hydrolysis rate is slow, and the existence 
of excess titanium alkoxide in the solvent favors the development of Ti–O–Ti chains and for-

mation of high ratio of rutile phase. They reported that the synthesized TiO
2 
photocatalyst 

under the optimum molar ratio of alkoxide, acetic acid and water is 1:10:350 had maximum 
photocatalytic mineralization of BPA over nano-sized TiO

2 
photocatalystcompered to P25 

(commercial TiO
2
) and other prepared photocatalysts.

Bashiri et al. [29] reported synthesis a series of 10 mol% Cu/TiO
2 
photocatalysts by  varying 

H
2
O:alkoxide molar ratios (8, 16, 32, and 64) using sol-gel–associated hydrothermal method. 

The influence of hydrolysis rate on the physicochemical properties (Table 2) and  photocatalytic 

Photocatalyst BET surface 

area (m2 g−1)

Catalyst anatase 

crystallite size (nm)

Anatase:rutile 

ratio (%)

Band gap 

energy (eV)

Hydrolyzing agent

Methanol 69 17 69:31 3.19

Isopropyl alcohol 84 12.6 74.26 3.21

Glacial acetic acid 107 8.3 82.18 3.27

Source:solvent:water

1:10:150 86 12 73:27 3.19

1:10:250 94 10.1 78:22 3.26

1:10:350 110 8.1 83:17 3.28

1:10:450 91 8.6 74:26 3.21

Table 1. Physicochemical properties of nano-sized TiO
2 
photocatalysts [38].
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hydrogen production by water photosplitting in an aqueous NaOH-glycerol solution were 
investigated. It was demonstrated that the amount of water has strong influence on the hydro-

lysis and polymerization rate, changing the physicochemical properties and photocatalytic 
activity of the prepared photocatalysts.

The average crystal sizes ranged from 9.63 (CuT8) to 13.55 nm (TiO
2
), which confirmed that 

the presence of copper and variation of water contents can strongly control crystal size. The 
low water content (CuT8) causes the incomplete hydrolysis, leads to aggregates, and sur-

passes the crystal growth. However, adding more water showed negative impact on the crys-

tallinity due to formation of aggregates rather than the growth of crystals, strong nucleophilic 
reaction and fast hydrolysis rate. In this case, more alkoxy groups in the alkoxide are substi-
tuted by hydroxyl groups from H

2
O, and the quantity of unhydrolyzed alkyl in the precursor 

is reduced hence reduction in steric hindrance by the residual alkyls preventing crystal-
lization to anatase phase [37, 39]. The better crystallinity and proper crystal size of CuT32 
compared to other photocatalysts can be explained by the moderate hydrolysis rate during 
preparation. The variation of the BET surface area of mesoporous photocatalysts from 82.69 
to 89.19 m2/g illustrates that the grain size was decreased in CuT8 and CuT64 but the surface 
area did not increase due to the agglomeration during hydrolysis process. The photocatalyst 
with the H

2
O:alkoxide molar ratio of 32 produced the highest cumulative hydrogen produc-

tion of 10571 µmol in 300 min compared to TiO
2
 and other synthesized Cu/TiO

2 
photocatalysts 

in the aqueous NaOH-glycerol solution. The mesoporous nanoparticles with larger specific 
surface area, lower bandgap energy, more absorbance in the visible region, presence of Ti3+ 

with higher photocatalytic activity and the coexistence of Cu
2
O and CuO are responsible for 

better photocatalytic performance of CuT32 photocatalyst.

In the other work, Behnajady et al. [40] synthesized titanium dioxide nanoparticles by sol-gel 
method. Various precursors under different synthesis conditions such as solvent and water 
percent, reflux temperature and time, sol drying method and calcination temperature are 
studied as shown in Table 3.

The photocatalytic activity of prepared TiO
2 
was studied by photodegradation of C.I. Acid Red 

27 as a model contaminant from textile industry under UV light irradiation. Results of char-

acterization revealed that the type of the precursor and solvent is effective on the particle size 

Photocatalysts H
2
O:alk xide Crystallite 

size (nm)

Average particle size (nm) BET surface 

area (m2/g)

Band 

gap (eV)

Hydrogen 

production 

(μmol)
TEM FESEM

TiO
2

0 13.55 13.89 27.54 82.69 3 24.5

CuT8 8 9.63 11.47 22.194 85.57 2.96 1228.8

CuT16 16 11.22 12.08 19.72 83.5 2.9 3926.8

CuT32 32 12.88 13.34 16.835 89.19 2.72 10571.0

CuT64 64 10.54 12.53 20.185 84.57 2.83 3010.3

Table 2. Physicochemical properties of all prepared photocatalysts [29].
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and crystalline structure of the synthesized TiO
2
 nanoparticles, which can strongly control the 

photocatalytic performance of TiO
2
. Optimal conditions for synthesis of TiO

2
 nanoparticles 

with excellent photocatalytic activity were obtained from titanium isopropoxide precursor in 
methanol solvent with molar ratio of 1:65:1(precursor:water:solvent) under reflux for 3 h at 
reflux temperature of 80°C, employing thermal drying method for sol drying and calcination 
temperature of 450°C. Titanium dioxide nanoparticles produced under optimal conditions 
show higher photocatalytic activity than commercial TiO

2
-P25. In the following section, the 

various sol-gel and related systems of doping TiO
2 
including noble metal, co-doping, transi-

tion metal doping, and their photocatalytic performance in degradation of pollutants in aque-

ous solutions and solar hydrogen production are discussed.

3. Doped-TiO
2 
photocatalysts by sol-gel method

Many researchers have attempted to modify TiO
2
 surface to overcome its limitation for pho-

tocatalytic reaction. The aim of these modifications is to extend the absorbance edge into the 
visible region, reducing charge carrier recombination and decreasing fast backward reaction. 
The modification of TiO

2
 mainly was conducted through the following strategies:

1. Doping metal ions with a dn (0 < n < 10) electronic configuration

2. Valence band control using an anion’s p orbitals or the s orbital of p-block metal ions

3. Spectral sensitization [41]

The metal dopant can strongly influence on the number of surface defects by changing the 
morphology such as crystal structure, crystallinity and particle size [1, 42]. Type of metal dop-

ants (electronegativity and affinity), total metal loading, preparation method, and chemical 
state of metal are crucial parameters to control the effect of metal loading in TiO

2 
[28]. In this 

Parameter Variations

Precursor Titanium tetraisopropoxide (TTIP), titanium n-butoxide 
(TBOT)

Solvent Methanol, ethanol, isopropanol

Solvent molar percent (%) 1, 5, 10, 15, 20

Water molar percent (%) 10, 20, 40, 65, 80, 100

Reflux temperature (°C) 50, 65, 80

Reflux time (h) 1, 3, 6

Sol drying method Thermal drying, freeze drying

Calcination temperature (°C) 350, 450, 750

Table 3. Experimental parameters [40].
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section, we discuss various sol-gel and sol-gel–related systems of doping TiO
2
, including co-

doping, transition metal and their photocatalytic performance.

3.1. Noble metal–doped TiO
2
 by sol-gel method

Loading noble metals (platinum (Pt), rhodium (Rh), palladium (Pd), silver (Ag) and gold (Au) 
with a low overpotential have been investigated as the effective materials to enhance photocat-
alytic activity in terms of hydrogen production on the surface of TiO

2
 [48–56]. Figure 6 displays 

that their Fermi energy levels are lower than TiO
2
 and the formation of Schottky barrier helps 

(retarding the electron/hole recombination) to pass photo-excited electrons from the CB of TiO
2
 

to the deposited metal particles on the surface of TiO
2
 until achieving a thermodynamic equi-

librium and their Fermi level energy are aligned [43]. Hence, accumulation of electrons in the 
noble metal particles is caused that their Fermi levels shift to more negative and closer to the 
CB level of TiO

2
, which is suitable for the reduction of water to hydrogen. Pt and Au have been 

used intensively as a co-catalyst compared with other noble metals due to their lower over-

potential, desirable electron affinity and work function compared to other noble metals [44].

Rosseler et al. described a comparison between sol-gel–prepared Au and Pt-doped TiO
2
. They 

showed that the optimum photocatalyst of 3 wt%-Au/TiO
2
 produced maximum amount of 

hydrogen up to 120 µmol/min in methanol (1, v/v%) solution under 150 W metal halide lamp 
(large portion of the visible light range) with intensity of 30 mW/cm2. Low photocatalytic 
activity of Pt/TiO

2
 was corresponded to low extension of absorption edge to the visible and 

great activity of Pt toward backward reaction:(H
2
 + 1/2 O

2
H

2
O) even at room temperature. 

Furthermore, they pointed out that the photocatalytic activity of a photocatalyst can be tuned 
by following considerable parameters:

1. The type and content of the metallic co-catalyst and metal-support interactions

2. The surface crystallographic, anatase/rutile ratio, porosity properties of the TiO
2

3. The relative amount of methanol added as sacrificial agent [38]

Figure 6. Fermi level equilibration in a semiconductor-metal nanocomposite [43].
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Naseri et al. [45] synthesized sol-gel-derived Ag/TiO
2
 thin films with various Ag:Ti molar 

ratios of 0, 1, 2, 5, 10 and 20 mol%. Ag/TiO
2 
photocatalyst was immersed in 1 M KOH as the 

photoanode, Pt wire as the cathode, and Ag/AgCl as the reference electrode (RE) under the 
illumination of Xe short arc lamp with intensity of 1000 W/m2 to measure photoelectrochemi-
cal activity. The 1 mol% Ag doped TiO

2 
photocatalyst (crystallite size: 11 nm) had maximum 

photocurrent density of 0.8 mA/cm2 and hydrogen production rate of 197 µmol/h. The mod-

ification of TiO
2
 with noble metals is the promising method, but their high cost and rela-

tively low availability strongly limit their application for large-scale photocatalytic systems. 
Therefore, largely available and cheap transition metals with acceptable photocatalytic activ-

ity can replace with the noble metals [46–49].

3.2. Transition metal–doped TiO
2 
by sol-gel method

Transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO
2
 nanoparticles were synthe-

sized by the sol-gel method using 2-hydroxylethylammonium format as an ionic liquid by 
Ghasemi et al. [50]. The performance of prepared photocatalysts was evaluated by degrada-

tion of Acid Blue92 (AB92) in aqueous medium under UV light. The results illustrated that 
transition metal (TM) doped TiO

2 
nanoparticles was significantly enhanced photodegrada-

tion of AB92 in water compared to pure TiO
2
. The studies revealed that transition metal 

(TM) doped TiO
2 

nanoparticles have smaller crystalline size and higher surface area than 
pure TiO

2
. Dopant ions in the TiO

2
 structure caused significant absorption shift into the vis-

ible region. They explained that this better photocatalytic degradation may correspond to 
high electron-hole generation and low charge carrier recombination rate. The Fe/TiO

2 
pho-

tocatalyst displayed maximum efficiency rate constant for AB92 degradation. The reason 
for the highest activity of Fe/TiO

2
 could be the lowest crystalline size, the highest surface 

area and the minimum band gap energy. A decrease in crystallite size can give rise to larger 
surface area, which can increase the available surface active site and consequently leads to 
a higher adsorption of dye, separationof electron-hole generation, and interfacial charge 
carrier transfer rate for degradation. The photocatalytic hydrogen production of prepared  
NiO/TiO

2 
photocatalysts with sol-gel and conventional incipient wetness impregnation 

methods was investigated by Sreethawong et al. [51]. They observed that sol-gel–prepared 
NiO/TiO

2
 under 300 W high-pressure Hg lamp in an aqueous methanol solution had mark-

edly higher hydrogen production rate of 162.6 µmol/h compared to TiO
2 
photocatalyst (87.2 

µmol/h). Furthermore, they pointed out that the extending absorption edge of NiO/TiO
2 

to the longer wavelengths between 600 to 800 nm and combination of single-step sol-gel 
process with pore-controlling surfactant caused high photocatalytic performance. Singh et 
al. [52] studied the photoelectrochemical performance of synthesized anatase Fe/TiO

2 
pho-

toanode with sol-gel spin coating method. The photoelectrochemical behavior of Fe/TiO
2 

photoanode was explored under 150 W Xenon Arc lamp and reaction condition; electrolyte: 
NaOH with pH = 13, cathode: Pt and reference electrode (RE): saturated calomel electrode 
(SCE). The four layers of 0.2 at % Fe/TiO

2 
photoanode with thickness of 1.30 µm showed 

better shift of the absorption edge toward the visible region with bandgap energy of 2.89 
eV. In addition, the measured photocurrent density (jp was ~0.92 mA/cm2 at zero external 
bias. Many researchers have been reported that co-doped TiO

2 
is more effective technique to 
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improve the  photocatalytic performance of TiO
2
 compared to single-doped TiO

2
 due to the 

synergistic effect of the presence of two metals.

3.3. Co-doped TiO
2
 by sol-gel method

The photocatalytic properties of bimetallic nanoparticles are directly related to their composi-
tion structure and catalyst preparation processes. Kim et al. [53] synthesized Cu-Ag/TiO

2 
pho-

tocatalyst with the sol-hydrothermal method (to split water under UV irradiation with intensity 
of 18 W/cm2 in the presence of methanol. The Cu(0.03)-Ag (0.07) Ti(0.9)O2 

photocatalyst (crystallite 
size: 15.28 nm) markedly increased hydrogen production rate up to 1093 mmol/h compared to 
Ag/TiO

2
 (312 mmol/h), Cu/TiO

2
 (900 mmol/h), and TiO

2
 (200 mmol/h). They suggested that the 

Cu or Ag components in the TiO
2
 framework were reduced by attracting the excited electrons 

from the valence band of TiO
2
, because of the greater reduction potential of CuO or AgO than 

that of pureTiO
2
. This hinders the recombination of charge carriers because the CuO or AgO 

component captures electrons, thereby increasing the number of holes over the valence band 
and allowing methanol decomposition to continue. Sun et al. [28] synthesized the single (Fe 
and Ni) and bimetallic (Fe-Ni) doped TiO

2
 using the sol-hydrothermal method. They found 

out that 5% Fe-4% Ni/TiO
2 
photocatalyst (crystallite size:13.8 nm, surface area: 98.35 m2/g, and 

bandgap energy: 2.41 eV) had the maximum hydrogen production rate of 361.64 µmol/h.gcat 
compared to other metal loading ratios under a 500 W Xenon lamp equipped with a 400 nm 
cut-off glass filter in an aqueous ethanol solution. This result was corresponded to better ability 
of charge carrier separation, restriction of their recombination and red shifting absorption edge 
to 514 nm compared to TiO

2
. In the other works, Sun et al. [54] successfully synthesized Ag 

and Fe doped TiO
2 
using sol-hydrothermal method. The water photosplitting was conducted 

in an aqueous ethanol solution with two light sources: A 16-W high-pressure inner irradiation 
Hg lamp (λ = 254 nm) with intensity of 11.7 mW/cm2 as the UV light source and 500 W Xe 
lamp equipped with a 400 nm cut-off glass as the visible light source. 4.5% Fe-4.5% Ag/TiO

2 

photocatalyst (crystallite size: 12.1 nm, bandgap energy: 2.03 eV, and particle size: 12 nm) had a 
higher hydrogen production rate of 515.45 µmol/h.gcal compared to monometallic doped and 
undoped TiO

2
. They concluded that the interaction of Fe and Ag with TiO

2
 reduces particle size 

(~12 nm), shifts absorption edge into the visible region compared to anatase phase of TiO
2
 (λ ≤ 

367 nm), reduces charge carrier recombination, and enhances the photocatalytic performance. 
Tables 3 and 4 show a summary of reported related work to modify TiO

2 
with metal dopants.

Cocatalyst Finding Ref Year

Ni The extending absorption edge of NiO/TiO
2
 to the long wavelengths between 

600 and 800 nm and combination of single-step sol-gel process with pore-
controlling surfactant caused high photocatalytic performance

[51] 2005

Fe 0.2 at.% Fe/TiO
2 
had the lowest bandgap energy of 2.89 eV, maximum jp 

~0.92 mA/cm2 at zero external bias, donor density (ND):4.3 × 1019 cm−3 and 
more negative flat band potential (Vfb): −0.92 compared with TiO

2

[52] 2008

Cr, Mn, Fe, Co, 
Ni, Cu, and Zn

The most active photocatalyst was Fe/TiO
2
 with maximum photocatalytic 

degradation rate for AB92 degradation. The reason for the highest activity 
could be the lowest crystalline size, the highest surface area and the minimum 
band gap energy

[50] 2009
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4. Conclusion

Here, the previous research works confirm that sol-gel process is a simple and easy means 
of synthesizing nanoparticles at ambient temperature under atmospheric pressure, and 
this technique does not require complicated setup. The results of the investigation con-

clude that optimization of preparation conditions is essential for obtaining nanocrystalline 
TiO

2
  materials with notably higher activity than Degussa (P-25) TiO

2
. Doping TiO

2
 with 

metals is favorable to improve the photocatalytic efficiency of the catalyst in sol-gel method 
compared to other methods. Furthermore, from the results available, it can be concluded 
that co-doping of TiO

2
 generally enhances the photocatalytic efficiency of the catalyst com-

pared to single doped TiO
2
.
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Cocatalyst Finding Ref Year

Ag 1 mol% Ag/TiO
2
 compared with other ratios: 0, 1, 2, 5, 10 and 20 mol% had the 

maximum hydrogen production rate of 196 µmol/h, ND: 16.3 × 1021 cm−3, Vfb: 
−1.14 V and jp ~8 mA/cm2.

[45] 2012

Cu-Ag The Cu-Ag/TiO
2
 improved the H

2
 production rate up to1093 mmol/h [53] 2012

Fe-Ni 4wt% Fe–5%Ni/TiO
2
 with low bandgap energy and more red shifting of 

absorption edge had a high hydrogen production rate of 361.64 µmol/h
[28] 2012

Ag-Fe The higher photocatalytic hydrogen production with the rate of 515.45 µmol/h.
gcat was belong to 4.5%Ag–4.5% Fe/TiO

2 
compared to hydrogen production 

rate single metal doped and undoped TiO
2

[54] 2013

Table 4. Summary of transition metal–doped TiO
2
 (single and co-doped).
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