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Abstract

In this chapter, a novel feature extraction and data fusion approach for structural damage
detection and localisation is presented. This approach combines adaptive network-based
fuzzy inference systems (ANFIS) and two-dimensional wavelet transform (2D-WT) tech-
nologies. Simultaneous multi-sensor feature extraction and data fusion based on 2D-WT is
carried out by forming a 2D multivariate signal, which is used to analyse the structure
vibration response bymeasuring all sensors jointly. Energy values obtained from two-level
db3 wavelet decomposition are arranged in a so-called energy percentage matrix (EPM),
which is taken as an input for the ANFIS. The system is further trained by defining its
output as the structural condition represented by a condition index. A set of output index
patterns are defined depending on the level of damage assessment performed. The pro-
posed method was tested through experiments using a cantilever beam structure. The
testing results showed that the method is successful in detecting and localising damage
by vibration analysis in structural health monitoring.

Keywords: sensor fusion, structural health monitoring, structural damage, ANFIS, 2D
wavelet transform

1. Introduction

Structural health monitoring (SHM) refers to the process of damage detection, localization,

quantification, or prediction, in infrastructure associated to fields such as aerospace, civil, or

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



mechanical engineering. In engineering structures, damage is regarded as changes to physical

and/or geometric properties of these systems which adversely affect their current or future

performance [1, 2]. The interest in the ability to detect and locate structural damage at the earliest

possible stage relies on safety issues with a consequence in economic benefits. Damage identifi-

cation methods can be classified into four levels of damage assessment: level 1 (detection):

determination that damage is present in the structure; level 2 (localisation): level 1 plus determi-

nation of the geometric location of the damage; level 3 (quantification): level 2 plus quantification

of the severity of the damage; and level 4 (prediction): level 3 plus prediction of the remaining

service life of the structure [3–5]. A variety of signal processing techniques have been attempted

with good results in the field of SHM, such as statistical time series models, Fourier analysis,

Wigner-Ville transform, Cohen class, Hilbert-Huang transform and different variations of wave-

let analysis [6]. Data interpretation includes approaches such as neural networks, support vector

machine, fuzzy and neurofuzzy schemes, Bayesian classifiers, or hybrid classifiers [7–11].

Among these, wavelet techniques (WT) have been proven to be an effective approach for

damage detection, based on their characteristics to analyse non-stationary signals in both time

and frequency domains. This analytical tool has gained preference in the research community to

explore its applicability to perform structural damage assessment. Therefore, a variety of

wavelet-based methods for damage detection have been proposed [12–14]. These methods can

be broadly classified into three categories [15]: (1) variation of wavelet coefficients, (2) local

perturbation of wavelet coefficients in a space domain and (3) reflected wave caused by local

damage. The first category is generally used to find the existence and severity of damage. The

second category is used to localise the damage in structures. The third category is used to

measure the severity as well as the location of damage.

Under the premise that damage (e.g., cracks) in a structure will cause structural response

perturbations at damage sites, a number of wavelet-based variants have been reported in

the last decade in the field of SHM. In Ref. [16], an algorithm based on the wavelet packet

transform and the Karhunen-Loéve transform is used to decompose the signals coming from an

accelerometer on a vibrating composite beam. Wavelet packet transform was used as a feature

extraction tool in SHM with good results. Integration of the discrete wavelet transform, an

autoregressive model, damage-sensitive features, and support vector machine are proposed in

Ref. [17] as a novel and efficient framework for damage detection of smart structures.

Winkelman et al. [18] reported a novel signal-processing technique based on wavelet

thresholding/denoising and Gabor wavelet transform. A damage identification method using

unsupervised blind source separation with a wavelet-based pre-processing is presented in Ref.

[19]. The authors report that independent component analysis biases to extract sparse compo-

nents from the observed mixture signals, revealing damage instant and location.

In this chapter, an approach to structural damage detection and localisation (i.e. level 1 and

level 2 damage assessments) based on the combination of two-dimensional WT (2D-WT) and

adaptive network-based fuzzy inference system (ANFIS) techniques is described. The main

novelty of the proposed approach resides in using 2D-WT to simultaneously perform multi-

sensor data fusion and feature extraction for structural damage detection and localisation

purposes. In addition, the use of an ANFIS system provides a fuzzy index damage representa-

tion for simultaneous identification and location of the damage.

Structural Health Monitoring - Measurement Methods and Practical Applications110



2. Background on 2D-WTand ANFIS

2.1. Wavelet transform (WT)

In the WT, a signal f(t) is written as a series expansion in terms of wavelet families [20]:

f ðtÞ ¼
Xþ∞

k¼�∞

< f ðtÞ,ϕðt� kÞ > ϕðt� kÞþ

X�1

j¼�∞

Xþ∞

k¼�∞

< f ðtÞ,ψj,kðtÞ > ψj,kðtÞ

ð1Þ

where the father wavelet family {ϕðt� kÞ, k∈Z} is used to describe the smooth part of f(t) and

the mother wavelet family {ψj,kðtÞ, j ≥ 0} is used to describe the details of f(t) at different levels.

This expansion can expose the information originally hidden in f(t).

An efficient way to implement the WT, and its inverse (IWT), is to use filter banks and

downsampling/upsampling techniques. Moreover, the connection of WTwith filter banks is a

tool to understand the frequency allocation property of WT. Figure 1 shows a two-level

discrete wavelet decomposition and reconstruction, which demonstrates the idea of using filter

banks to calculate WT and IWT.

The original signal f(t) is broken down into three sub-signals: A2, D1, and D2. From f(t) to A2, D2,

andD1, the whole process could be seen as passing f(t) through three filters (see Figure 1b). Each

filter has different frequency characteristics and thus a frequency allocation is achieved through

wavelet analysis. For example, the spectrum of the three filters associated with a two-level Haar

wavelet analysis is shown in Figure 2. Note that the spectrum is plotted over the range [0, 0.5],

where 0.5 corresponds to the Nyquist frequency (half of the sampling frequency).

The figure shows that the filter 1 acts as a low pass filter, the filter 2 serves as a band-pass filter

and the filter 3 can be taken as a high-pass filter. Hence, by passing through these three filters,

the original signal is split into three sub-signals and each sub-signal holds a different frequency

content of the original signal f(t): A2 conserves most low-frequency content of f(t), that is why it

is called ‘approximation’; D1 contains the high-frequency content of f(t), that is why it is called

‘detail’;D2 is another detail signal including the information of f(t) which is not contained in A2

and D1. In this case, D2 covers most of the middle-frequency content. These details and

approximations at various levels may reveal valuable information of the signal characteristics

that may not be clearly seen in the original signal f(t).

2.2. Two-dimensional wavelet transform (2D-WT)

The two-dimensional (2D) wavelet representation is a straightforward generalisation of the one-

dimensional (1D) wavelet representation. As in 1D, a 2D signal f(x, y) can also be represented in

terms of wavelet families. One difference between the 2D-WT in comparison with the 1D version

is that all the signals in these wavelet families are 2D signals. In 1D wavelets, the mother wavelet

family is generated by a basis wavelet function, i.e. a mother wavelet ψ(t), and the father wavelet

Multi-Sensor Feature Extraction and Data Fusion Using ANFIS and 2D Wavelet Transform in Structural Health…
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family is generated by another basis wavelet function, i.e. a father wavelet ϕ(t). Similarly, in 2D-

WT, wavelet families can also be generated from basis 2D wavelet functions [21, 22]. These basis

2D wavelet functions can be constructed by taking the tensor product (denoted as ‘⊗’ in the

following equations) of a horizontal basis 1D wavelet function and a vertical basis 1D wavelet

function. This leads to four different types of 2D basis wavelet functions:

Φðx, yÞ ¼ ϕhðxÞ⊗ϕvðyÞ ¼ horizontal father ⊗ vertical father ð2aÞ

Ψ
vðx, yÞ ¼ ψhðxÞ⊗ϕvðyÞ ¼ horizontal mother ⊗ vertical father ð2bÞ

Ψ
hðx, yÞ ¼ ϕhðxÞ⊗ψvðyÞ ¼ horizontal father ⊗ vertical mother ð2cÞ

Ψ
dðx, yÞ ¼ ψhðxÞ⊗ψvðyÞ ¼ horizontal mother ⊗ vertical mother ð2dÞ

Figure 1. Filtering process of DWT and IDWT. (a) Two-level DWT decomposition and IDWT reconstruction using filter

banks and (b) the three filters in (a).

Figure 2. Frequency spectrum of the three filters associated with a two-level Haar wavelet analysis.
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From Eq. (2a) to (2d), the basis 2D wavelet functions include one father wavelet and three

mother wavelets. The corresponding four 2D wavelet families {Φm,nðx, yÞ}, {Ψ
v
j,m,nðx, yÞ, j ≥ 0},

{Ψh
j,m,nðx, yÞ, j ≥ 0} and {Ψd

j,m,nðx, yÞ, j ≥ 0} are generated by scaling and translating these four-

basis 2D wavelet functions as follows:

Φm,nðx, yÞ ¼Φðx�m, y� nÞ ð3aÞ

Ψ
v
j,m,nðx, yÞ ¼2�j

Ψ
vð2�jx�m, 2�jy� nÞ ð3bÞ

Ψ
h
j,m,nðx, yÞ ¼2�j

Ψ
hð2�jx�m, 2�jy� nÞ ð3cÞ

Ψ
d
j,m,nðx, yÞ ¼2�j

Ψ
dð2�jx�m, 2�jy� nÞ ð3dÞ

As with 1D wavelets, the father wavelet family is good at representing the smooth part and the

mother wavelets are good at representing the details of a 2D signal. Hence, in 2D wavelets, the

father wavelet family {Φm,nðx, yÞ} is used to describe the smooth part of f ðx, yÞ, and three

mother wavelet families, {Ψv
j,m,nðx, yÞ, j ≥ 0}, {Ψh

j,m,nðx, yÞ, j ≥ 0}, and {Ψd
j,m,nðx, yÞ, j ≥ 0}, are

used to capture the vertical detail, the horizontal detail, and the diagonal detail of f(x, y),

respectively.

2.3. Adaptive network-based fuzzy inference system (ANFIS)

The combination of artificial neural networks (ANN) and fuzzy inference systems (FIS) has

attracted the interest of researchers in various scientific and engineering areas due to the

growing need of adaptive intelligent systems to solve real-world problems. ANNs learn by

adjusting the interconnections between layers. FIS is a popular computing framework based

on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. There are several

approaches that integrate ANN and FIS, and ANFIS is one of them. ANFIS can be treated as a

FIS with a network-like structure or as an ANN containing fuzzy rules. Due to that, by

adopting ANFIS in the form of an ANN clearly reveals its training ability, this form of treating

ANFIS is explained as follows. For the explanation of ANFIS as a FIS, the interested reader is

referred to Ref. [23]. For simplicity, it is assumed that a zero-order Sugeno fuzzy model has

been adopted in the ANFIS structure. Hence, the ANFIS under consideration has two inputs x

and y and one output z. Each input is assumed to have two fuzzy sets defined as their possible

values, from the FIS point of view. Therefore, the ANFIS structure in this case can be seen as

the five-layer ANN shown in Figure 3. The output of the ith node in layer j is denoted as O
j
i.

The function of each layer is as follows:

Layer 1: The function of nodes in the first layer is equivalent to the ‘fuzzification’ process in a

fuzzy system.

O1
i ¼ μAi

ðxÞ, for i ¼ 1, 2 ð4aÞ

O1
i ¼ μBi�2

ðyÞ, for i ¼ 3, 4 ð4bÞ
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where μAi
and μBi�2

are the activation functions or membership functions (MF) defining the

fuzzy sets for the inputs x and y, respectively.

Layer 2: Every node in this layer generates an output which is the product of all the incoming

signals to that node. This process is equivalent to applying an ‘AND’ operator in the counter-

part fuzzy system.

O2
i ¼ O1

1O
1
iþ2, for i ¼ 1, 2 ð5aÞ

O2
i ¼ O1

2O
1
i , for i ¼ 3, 4 ð5bÞ

The output of this layer O2
i is the wi, i

th firing strength, in the fuzzy system.

Layer 3: The ith node in this layer calculates the ratio between the output of the ith node in the

previous layer and the sum of the outputs of all nodes in that layer:

O3
i ¼

O2
i

X4

j¼1

O2
i

ð6Þ

The step in the counterpart fuzzy system is the normalisation of firing strengths.

Layer 4: Every node in this layer has a function of O4
i ¼ diO

3
i , which applies the normalised

firing strength (O3
i ) to the corresponding consequent parameter (di). The function of this layer

corresponds to applying the implication method from a FIS point of view.

Layer 5: For the current ANFIS, there is only one node in this output layer. The node computes

the overall ANFIS output through the summation of all incoming signals:

Figure 3. ANFIS architecture for a two-input Sugeno fuzzy model with four rules (from ANN point of view).
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O5 ¼
X4

i¼1

O4
i ð7Þ

The function of this node combines the steps of aggregation and defuzzification from the FIS

point of view. Therefore, given a training set (input and output data pairs), ANFIS adjusts its

parameters using well-developed learning algorithms. The parameters to be estimated in ANFIS

are the premise parameters which define the membership functions in Layer 1, and the conse-

quent parameters in Layer 4. ANFIS uses a hybrid-learning algorithm to estimate these param-

eters: a back-propagation learning algorithm is used to determine the premise parameters and

least mean square estimation is adopted to determine the consequent parameters [23].

3. Multi-sensor data fusion and feature extraction using 2D-WT

The most common, as well as the most successful, application of 2D-WT is image compression.

For instance, 2D-WT-based compression algorithms for transmitting and storing digitised

fingerprints have been widely studied and used in the last decade [24, 25]. However, not much

literature can be found of using the 2D-WT in structural health monitoring. In most applica-

tions, a set of many sensors are placed along different sections of a structure to measure its

vibration response, accordingly the information from all the sensors needs to be integrated in

some meaningful way. In this section, a novel method of using 2D-WT to carry out damage

detection and localisation tasks is introduced. The 2D-WT provides an efficient and natural

way to simultaneously extract features and integrate the information of many sensors, which

makes the structural damage identification reliable and efficient.

The main idea of using the 2D-WTas a feature extraction and sensor data fusion mechanism is

as follows: the structural response measured by one sensor i is a vector denoted as:

f iðtÞ ¼ ½ f iðt1Þ f iðt2Þ … f iðtnÞ �
T ð8Þ

where n denotes the sampling number. Without losing any generality, it is assumed that l

sensors (from sensor 1 to sensor l) are used to measure the vibration response of the structure

under consideration. Thus, there are l measurement response vectors {f 1ðtÞ, f 2ðtÞ … f lðtÞ}. If

these vectors are concatenated along rows and the result denoted as F, it gives:

F ¼ ½ f 1ðtÞ f 2ðtÞ … f lðtÞ � ð9Þ

with F being an n-by-lmatrix, which can be seen as an image, a 2D signal. A certain column of

this image represents n vibration response samples measured by a sensor at some particular

point of the structure, and a certain row of this image represents the vibration response

samples measured by each sensor at l different location points of the structure at a particular

sample time. The image F includes the information provided by all of the sensors throughout

the measurement experiment duration and therefore gives a whole picture describing

the dynamic behaviour of the structure under study. Therefore, if 2D-WT is applied to image

Multi-Sensor Feature Extraction and Data Fusion Using ANFIS and 2D Wavelet Transform in Structural Health…
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F, then its important features are revealed. A feature vector can be formulated in the following

way: at the L-level 2D-WT, the original 2D signal (image) F is decomposed into 1 + 3L sub-2D

signals (images): i.e. A1, D
v
1, D

h
1, D

d
1, for a level 1 2D-WT decomposition.

The ratio of energy content of the 1 + 3L sub-signals in F is then defined as:

V ¼
ε1

εf
,
ε2

εf
::::

ε1þ3L

εf

� �

ð10Þ

By arranging the 2D signal as a 1D signal, the terms ε1,ε2, …ε1+3L in Eq. (10) are calculated

using:

εx¼
defX

N

n¼1

jxnj
2 ð11Þ

which determines the energy of a discrete signal x ¼ ½x1,x2,…,xN�
T . The ε1,ε2, …,ε1+3L terms

represent the energy content in the sub-signals obtained from the 2D-WT. The term εf is the

energy content in the original signal F. Each one of the components of V represents the energy

percentage content of each of the 1 + 3L sub-signals in F. Therefore, a feature vector can be

formed selecting some p components of V, which in turns would mean choosing some of the

sub-2D signals as significant sub-signals contributing large energy percentages in F. The

selection can be based on the following two criteria:

1. The sub-signals selected should be significant sub-signals contributing large energy per-

centages in F. The reason for this criterion lies in the fact that the insignificant sub-signals

generated by WT are normally contributing to noise and should be removed. Empirically,

it is assumed that a sub-signal is significant if its ratio of energy contribution to the

original signal is no less than 3%.

2. The sub-signals selected should be sensitive to the damage. Damage usually has different

effects on different frequency bands. For example, the effect of a crack on a beam is only

noticeable within a high frequency band. Hence different sub-signals have different sensi-

tivities to damage. By selecting the sub-signals sensitive to the damage, it is guaranteed

that the damage could be effectively captured. The sensitivity analysis can be derived

either by finite element modal analysis of the structure (analytical method) or by prior

experiments (experimental method).

Although the two criteria above can be used, in this study, for convenience, we only choose the

significant sub-signals, the ones with higher energy percentage content values, to form the

feature vector.

Having chosen the energy percentage vector as the feature, the procedures for damage identi-

fication depend on the availability of the a-priori data. In an ‘unsupervised learning mode’,

where data are only available from the undamaged structure, damage identification methods

are based on feature comparison: two features, one extracted from the system in undamaged

condition and the other from the current system, are compared in some way to obtain the
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damage indicator. The damage indicator is then compared to some threshold value and the

conclusion about if the structure has deviated from the reference condition is obtained. On the

other hand, in a ‘supervised learning mode’, where data from a system in different structural

conditions (including the undamaged and some damaged conditions) are known in advance,

the damage identification techniques are based on pattern classification: a database including

models of the structure in different conditions is established using feature vectors for the a-

priori data sets. Given a new data set which is to be classified as one of the conditions of the

system, the task is to search through the database for the model which gives the best fit to the

data. The corresponding condition of this database model is then applied to the data.

4. Structural damage detection combining 2D-WTand ANFIS

In this section, a detailed description on how to use the proposed ANFIS-2D-WT feature

extraction method in structural damage identification is presented. As described before, the

measurements of all the sensors are processed at the same time. Firstly, the measurements from

all the l sensors in each test are arranged as a matrix and seen as a 2D signal (image), as it was

explained in Section 3. Therefore, let us assume that the number of all possible conditions for

the system is r + 1 (one healthy condition denoted as D0 and r damaged conditions D1 : Dr). It

is assumed also, that for each condition, and considering all the sensors, a total of N images, or

2D data measurements are available. This results altogether in ðrþ 1Þ·N image data sets that

can be arranged as a data matrix:

Data Matrix 2D ¼

{αD0_1}, {αD0_2}, … {αD0_N}
{αD1_1}, {αD1_2}, … {αD1_N}

:

:

:

:

:

:

:

:

{αDr_1}, {αDr_2}, … {αDr_N}

2

6

6

6

4

3

7

7

7

5

ð12Þ

where the 2D signals {αDj_i}(i ¼ 1…N, j ¼ 0…r) correspond to output measurement data

images from the ith test at condition Dj (2D signals, considered as images) from all the sensors.

Each row of the matrix contains all the available image data sets for a certain condition.

Then, select a typical measurement 2D signal (or image) {α} in the data matrix and perform 2D-

WT analysis on it. The original 2D signal {α} is decomposed into a number of sub-2D signals

and the energy percentage contribution of each sub-2D signal into the original 2D signal is

calculated. Based on the calculated energy percentages, p sub-signals are selected and the

corresponding energy percentage feature vector is formulated. The energy percentages of the

selected sub-signals are the inputs to the ANFIS model. Therefore, the number of input vari-

ables to the ANFIS is p. Three linguistic values characterised using linguistic terms as ‘small’,

‘medium’ and ‘large’ are defined for each of the p input variables. The type of these MFs for

these linguistic values is ‘bell-shape’ and is defined by:

μsðxÞ ¼
1

1þ j x�ci
ai

j2bi
ð13Þ
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Note that the linguistic values such as ‘small’, ‘medium’ or ‘large’ have different meanings for

different input variables. There is only one output variable defined in the ANFIS: the structural

health condition. For convenience, it is normally represented by a condition index. A zero-

order Sugeno fuzzy model has been adopted in the ANFIS structure, which means that

singleton values are defined for the output variable and the type of the corresponding MF is a

distinct constant. So far, only the architecture of the ANFIS model has been determined: it

contains p inputs (corresponding to p energy percentages) and one output (condition index).

Each input variable has ‘small’, ‘medium’ and ‘large’ linguistic values characterized by three

bell-shape MFs. The number of ANFIS rules is determined by the combination of linguistic

values for the input variables. For p input variables, each with three linguistic values, the

number of resultant combinations is 3p. Correspondingly, the number of rules is 3p. For

example, assume that only two sub-signals are selected (p = 2). The two input variables and

one output variable are denoted respectively as x1, x2 and z. For each input variable, three

linguistic values denoted as {Mx1
1 , Mx1

2 , M
x1
3 } (for x1) and {Mx2

1 , Mx2
2 , M

x2
3 } (for x2) are defined.

Therefore, a total of nine rules are contained in the ANFIS model:

Rule 1: If x1 is M
x1
1 and x2 is M

x2
1 , then z is d1

Rule 2: If x1 is M
x1
1 and x2 is M

x2
2 , then z is d2

Rule 3: If x1 is M
x1
1 and x2 is M

x2
3 , then z is d3

Rule 4: If x1 is M
x1
2 and x2 is M

x2
1 , then z is d4

…….

Rule 9: If x1 is M
x1
3 and x2 is M

x2
3 , then z is d9

Once the ANFIS architecture and rules are determined, it is necessary to prepare data sets for

training use. For each available output data {yDj_i} (i ¼ 1…N, j ¼ 0…r) in the data matrix, perform

the same 2D-WTanalysis and the same p sub-signals are selected to form the feature vector. Their

energy percentages are arranged as a vector denoted as PerDj_i. This procedure is applied to all the

data set in Eq. (12), and a matrix referred to as energy percentage matrix (EPM) is obtained:

EPMðWPTÞ ¼

{PerD0_1}, {PerD0_2}, … {PerD0_N}
{PerD1_1}, {PerD1_2}, … {PerD1_N}

:

:

:

:

:

:

:

:

{PerDr_1}, {PerDr_2}, … {PerDr_N}

2
6664

3
7775 ð14Þ

The vector {PerDj_i}, containing p elements, is taken as an input vector for the ANFIS. EPMMatrix

contains a total of ðrþ 1Þ·N such input vectors for ANFIS. They are used as training data for

ANFIS. The current ANFIS use a supervised learning algorithm, which means that the target

output for each input vector is needed. It has been mentioned earlier that the ANFIS output is

the structural condition represented by a condition index. Depending on the level of damage

assessment conducted, different output index patterns are adopted. If the ANFIS is used only to

identify damage occurrence (level 1 damage assessment), the output indices are Boolean values

(0 for healthy condition D0, 1 to r for damaged cases D1eDr). In this situation, the EPM data

matrix can be appended to contain a total of ðrþ 1Þ·N input and desired output data pairs:
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Data MatrixðLevel 1Þ ¼

{PerD0_1, 0}, {PerD0_2, 0}, … {PerD0_N, 0}
{PerD1_1, 1}, {PerD1_2, 1}, … {PerD1_N, 1}

:

:

:

:

:

:

:

:

{PerDr_1, 1}, {PerDr_2, 1}, … {PerDr_N , 1}

2

6

6

6

6

4

3

7

7

7

7

5

ð15Þ

If the ANFIS is used for the damage localisation (level 2 damage assessment), a total of r + 1

condition indices each corresponding to a structural condition need to be defined. Defining j as

the index for condition Dj, the data matrix containing the input and desired output data pairs is:

Data MatrixðLevel 2Þ ¼

{PerD0_1, 0}, {PerD0_2, 0}, … {PerD0_N, 0}
{PerD1_1, 1}, {PerD1_2, 1}, … {PerD1_N, 1}

:

:

:

:

:

:

:

:

{PerDr_1, r}, {PerDr_2, r}, … {PerDr_N , r}

2

6

6

6

6

4

3

7

7

7

7

5

ð16Þ

Data matrices Level 1 and Level 2 (Eqs. (15) and (16)) are used, respectively, for training ANFIS

with two different levels of damage assessment.

The next step is ANFIS training. The number of the premise parameters to be determined is

3· 3 · p. This comes from the fact that for each of the p input variables, three MFs, each defined

by three premise parameters, were established. The number of the consequent parameters to

be determined is 3p. The ANFIS architecture uses a hybrid learning algorithm [23] to estimate

these 9pþ 3p premise parameters all together with the consequent parameters.

Usually, in the implementation of a structural health monitoring system, a large number of

sensors on the structure under analysis are strategically placed to provide an early indication of

damage. The problem then is the processing of the signals collected from all the sensors. This

problem is approached in this work by using the 2D-WT to process all the information provided

by the sensors at once. This is possible by integrating all the signals into a matrix that can be

considered as a 2D image. In this way the information provided by each sensor individually is

taken into account, preserved and fused with the information from the other sensors.

ANFIS is used for the purpose of structural damage identification. However, there are various

levels of damage assessments. Two ANFIS models, ANFIS1 and ANFIS2 are established

accordingly. ANFIS1 is used to identify damage occurrence (level 1 damage assessment) while

ANFIS2 is used for damage localisation (level 2 damage assessment). The architecture of these

two ANFIS models is the same, but they produce different output values. ANFIS1 is only used

to distinguish healthy and damaged conditions; therefore the output is a Boolean value (0 for

healthy, 1 for damaged). The output of ANFIS2 is designed to differentiate all the possible

conditions, which is performed by defining a numerical value j (j = 0 to 5), where j corresponds

to damage condition Dj.

5. Experimental setup with a cantilever beam

For the sake of repeatability and insight, cantilevered beam experiment settings have been

used by several researchers to demonstrate the feasibility of their proposed approaches to
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damage detection and localisation using a plethora of techniques, examples include Refs.

[26–28]. Furthermore, several aerospace and civil structures such as rotor blades and

bridges could be modelled as cantilever beams. Therefore, in this section the results of an

experimental study involving shaker-excited vibration tests of an aluminium cantilever

beam carried out in the laboratory are presented. The beam is 90 cm length and cross-

section 2.545 · 0.647 cm. Zero-mean band-limited (0–500 Hz) Gaussian white noise was

used as the input signal to the amplifier. The amplifier gain was controlled manually and

the shaker provided an approximately 10 N peak, via a random force input to the beam. A

force gauge screwed on the bottom surface of the beam was used to directly measure the

input. The shaker was attached with this force transducer through a stinger. Figure 4

shows the experimental setup.

Six accelerometers (7 g each) were screwed to the top surface along the centreline at selected

positions (15, 30, 45, 60, 75, and 90 cm from the left fixed point, respectively). The data from

each test came from these six accelerometers and one force transducer. The data were

collected at a sampling rate of 10 kHz for a duration of 4 seconds. Five damage scenarios

(D1 to D5) were simulated by adding a lumped mass (22 g) at 30, 45, 60, 75, and 90 cm,

respectively (see Figure 4). A summary of the experimental damage conditions is provided

in Table 1.

Figure 4. Cantilever beam experiment; setup schematic representation.

Damage case Location of damage Damage description

D1 0.30 m Adding a lumped mass of 0.022 kg

D2 0.45 m Adding a lumped mass of 0.022 kg

D3 0.60 m Adding a lumped mass of 0.022 kg

D4 0.75 m Adding a lumped mass of 0.022 kg

D5 0.90 m Adding a lumped mass of 0.022 kg

Table 1. Summary of damage case D1–D5: adding a lumped mass at different locations.
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6. Results

The experiment was repeatedly carried out under each of the six possible conditions of the

system. The system response data and the corresponding condition were recorded during the

test. From each condition, 20 test data are used, within which the first 10 are for the training use

and the remaining 10 are for the testing use. Therefore, altogether there are 60 training data sets

and 60 test data sets available. Thus, ANFIS is used for the purpose of structural damage

identification. However, there are various levels of damage assessments. Two ANFIS models,

ANFIS1 and ANFIS2 are established accordingly. ANFIS1 is used to identify damage occurrence

(level 1 damage assessment) while ANFIS2 is used for damage localisation (level 2 damage

assessment). The architecture of these two ANFIS models is the same, but they produce different

output values. ANFIS1 is only used to distinguish healthy and damaged conditions; therefore

the output is a Boolean value (0 for healthy, 1 for damaged). The output of ANFIS2 is designed to

differentiate all the possible conditions, which is performed by defining a numerical value j (j =

0–5), where j corresponds to damage condition Dj.

As previously described, in the proposed ANFIS-2D-WTmethod the measurements from all six

sensors in each test are arranged as a matrix. The two-level db3 2D-WT is performed on this

matrix. From the obtained seven sub-signals, three are selected and their energy percentages are

taken as inputs for ANFIS. Note that only one ANFIS1 model is needed for level 1 damage

assessment and one ANFIS2 model is required for level 2 damage assessment. Each of these two

ANFIS models includes the information of all six sensors. The mapping between the three inputs

and one output of the trained ANFIS1 using ANFIS-2DWTmethod is shown in Figure 5. While

Figure 6 shows the results when applying the trained ANFIS1 to the testing data. In this figure,

Exp means expected values, and Act means actual values. The testing error of ANFIS1 is 2.7567e-

5. For the level 2 damage assessment, ANFIS-2D-WT also performs well. Figure 7 shows the

mapping relationship of the ANFIS2 model. The testing result of the trained ANFIS2 model is

shown in Figure 8. We can see that the testing error of the ANFIS2 model is 0.0021.

The effect of noise is an influencing factor always present in the vibration response signals of

structures. Therefore, to study the effect of noise on the proposed ANFIS-2D-WT method,

random Gaussian white noise is added to the response of these 120 test cases. The noise

intensity is defined by the signal-to-noise ratio (SNR):

SNRðdBÞ ¼ 20log10
Asignal

Anoise
ð17Þ

where Asignaland Anoise refer to the root mean square (rms) amplitude of signal and noise,

respectively. Figures 9–11 show the testing results of ANFIS1 (level 1 damage assessment) with

SNR = 20, 10, 5, respectively. The ratios of the RMS values between the noise and the signal for

these three cases are 10, 31.6 and 56.2%, respectively. As can be seen in the figures, by using the

ANFIS-2D-WTmethod, the damage can be correctly detected when SNR is no smaller than 10 dB.

Figures 12–14 show the testing results of ANFIS2 (level 2 damage assessment) at these

noise levels. It can be seen that ANFIS2 can locate damage even when SNR = 10 dB. These
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Figure 5. Output surface between ANFIS output and inputs: (a) input 3 is fixed to be 50.387 and (b) input 1 is fixed to be

20.5281 (ANFIS1, ANFIS-2D-WT method, using ALL six sensors).

Figure 6. Testing results and the corresponding error curves (ANFIS1, ANFIS-2D-WT method, using all six sensors).
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Figure 7. Output surface between ANFIS output and inputs: (a) input 3 is fixed to be 50.387 and (b) input 1 is fixed to be

20.5281 (ANFIS2, ANFIS-2D-WT method, using all six sensors).

Figure 8. Testing results and the corresponding error curves (ANFIS2, ANFIS-2D-WT method, using all six sensors).
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Figure 9. Testing results and the corresponding error curves (ANFIS1, ANFIS-2D-WT method, SNR = 20).

Figure 10. Testing results and the corresponding error curves (ANFIS1, ANFIS-2D-WT method, SNR = 10).
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Figure 11. Testing results and the corresponding error curves (ANFIS1, ANFIS-2D-WT method, SNR = 5).

Figure 12. Testing results and the corresponding error curves (ANFIS2, ANFIS-2D-WT method, SNR = 20).

Multi-Sensor Feature Extraction and Data Fusion Using ANFIS and 2D Wavelet Transform in Structural Health…
http://dx.doi.org/10.5772/intechopen.68147

125



results suggest that measurement of noise does not seem to affect much of the proposed

method for these two levels of damage assessment. This property can be attributed to the

Figure 13. Testing results and the corresponding error curves (ANFIS2, ANFIS-2D-WT method, SNR = 10).

Figure 14. Testing results and the corresponding error curves (ANFIS2, ANFIS-2D-WT method, SNR = 5).
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wavelet transform: the effect of noise can be alleviated by choosing sub-signals less affected

by noise.

7. Conclusions

In this chapter, the ANFIS and 2D-WT technologies were combined to perform structural

damage identification. The structure vibration response is decomposed by 2D-WT into a number

of sub-signals, from which some are selected based on their energy percentages. The energy

percentages of the selected signals are taken as inputs to the ANFIS model. The output of the

ANFIS is a condition index, which can be a Boolean value (0 or 1) for level 1 damage assessment

use, or a number of values for level 2 damage assessment use. Provided an ANFIS model is well-

trained by the available data, it can be used for health monitoring and damage localisation. The

proposed feature extraction method was applied to the data from a cantilever beam for damage

detection and localisation. The testing results showed that the proposed method is successful in

performing the two described levels of damage assessment. In addition, the ANFIS-2D-WT can

process efficiently information from many sensors at the same time, performing simultaneously

multi-sensor feature extraction and data fusion. The proposed damage assessment methodology

of combining ANFIS with wavelet transform has great potential to implement systems which are

able to interrogate sensor measurements autonomously for indications of structural damage.
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