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Abstract

Ephedra compounds are well known due to their biological activity. They have been 
widely used in asymmetric synthesis during the last decades. Recently, we have pre‐
pared reviews about the synthesis of acyclic and heterocyclic ephedra derivative com‐
pounds reported in the literature. In this chapter, the synthetic methodology to access 
acyclic and heterocyclic compounds derived from ephedra alkaloids and its structural 
analysis are discussed, included those due to the substitution of the hydroxy group by 
chlorine, sulfur, selenium, or nitrogen atoms. Biological activity analysis of some synthe‐
sized compounds was done, and some of them have displayed biological activity.

Keywords: ephedrines, chirality, configuration, biological activity, stereoespecificity

1. Introduction

Chirality in biological systems is of main significance since in enzymes and drug receptors, 
the active sites are chiral, and they only interact with molecules of specific configuration. 
This has synthetic chemists became convinced to accept that all compounds used as pharma‐

ceuticals must be in one of their enantiomeric forms. As a consequence, in the 1980s decade, 

the Food and Drug Administration (FDA) required pharmaceutical industry to acquire drug 

candidates in details of the toxic effects of the enantiomers. By this, chemical substances to be 
used as drugs candidates must be synthetized as optically pure compounds or to be highly 

enriched.

Biologically active chiral molecules have been extracted from natural products has plants. 

Extracts from the Ephedra sp. genus have been traditionally used in Chinese medicine as nasal 
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descongestives, cardiac stimulant, and antiasthma agents. The active principle from this plant 

was first extracted in 1885, isolated, and then purified in 1887 by Nagai [1] who called it ephed‐

rine. The herb, “Ma‐Huang” is the best source of ephedrine, up to 1% bulk weight has been 

obtained from this material. Amounts of pseudoephedrine, N‐methylephedrine, N‐methylpseu-
doephedrine, norephedrine, and norpseudoephedrine were found from this herb [2]. Since phar‐

macologycal studies done by Chen and Schmidt in 1924 [3], the chemists have been interested 

in the synthesis of physiologically active analogous of ephedrine derivatives [4]. At the present 

time, large quantities are used in Western medicine to relieve mucous membrane congestion 

[5].

Today, ephedrine is a pharmaceutical classified as sympathomimetic agent, weaker but lon‐

ger acting than adrenaline. It acts as cardiac stimulant, hypertensive agent, hyperglycaemic, 

and bronchodilator. Ephedrine has been clinically used against hay feber, bronchial asthma, 

myasthenia gravis, whooping cough, Heart block (Stokes‐Adam syndrome), and dysmenor‐

rhea. Because ephedrine crosses the hematoencephalic and placentary barriers, have effects 
on the central nervous system, in consequence, decrease fatigue, sleep (insomnia), and hun‐

gry sensations (anorexia) [4].

The no‐polar structure of ephedrine makes this substance more liposoluble than catecholamines. 

It is thermodynamically more stable, in consequence, it is not a substrate for monoamineoxi‐

dase (MAO) or the catechol‐O‐methyltranspherase. Thus, it is a diffusible pharmaceutical that 
has a more prolonged effect as catecholamines [6].

On the other hand, the modern chemistry is interested in the development of new synthetic meth‐

ods to produce drugs, antibiotics, alimentary additives, etc., with high optical purity. Asymmetric 

synthesis design requires catalysts, chiral auxiliaries, and reagents able to control the stereochem‐

istry of the reaction products and to be efficiently recycled [7]. Ephedrines, norephedrines and 

its derivatives, have been broadly used as chiral auxiliaries in asymmetric synthesis [8]. Thiols, 

sulfides, and disulfides obtained from ephedrines have been proven to be very good chiral cata‐

lysts [9]. It has been found the use of polymer‐supported catalysts applied to organic synthesis 

with emphasis given to the use of ephedrine chiral catalyst to promote asymmetric reactions [10].

2. Structure of ephedrines

The structure of ephedrine and pseudoephedrine was studied by Ladenburg and Oelschägel. 

They suggested the formula PhCH(OH)CH(CH
3
)NHCH

3
 now accepted for the alkaloids [11]. 

Studies that support this formula were provided by Schmith and Bümming [12]. The more 

important fact that ephedrine and pseudoephedrine are stereoisomers is easy with which 

ephedrine can be isomerized to pseudoephedrine by acylation or by boiling with HCl (25%) 
[13], this change has been found to be reversible [14, 15].

Freudenberg and Leithe investigated the configuration about C1 and C2 for ephedrine and 
pseudoephedrine [16–18], and represented the distribution about these centers of asymmetry, 

for ephedrine by structure 1a and for pseudoephedrine by structure 2a, Figure 1.
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Zhu et al. analyzed the relationship of the substituents of the stereogenic center and to the specific 
optical rotation. The variables used as matrix elements include (1) the substituent masses (m), (2) 

radii (r), (3) symmetries (s), and (4) electronegativities (χ) of the atoms or groups bounded to the 

stereogenic center. For ephedrine and pseudoephedrine, the calculated values were approximate 

to the observed rotation values [19]. The preferred conformation of ephedrine 1 and pseudoephed‐

rine 2 was theme of controversy [20–25]. The questions could be answered by the X‐ray technique.

Several crystal structures of ephedrine salts were reported: the hydrochloride by Bergin [26] 

and the hydrogen and the di‐hydrogen phosphates by Bugg [27, 28] showed the conformation 

1b. On the other hand, in an X‐ray study, Mathew et al. demonstrated the conformation 2b in 

structures of (+)‐pseudoephedrine and (+)‐pseudoephedrine hydrochloride [29]. There was found 

one strong intermolecular hydrogen bond OH….N in pseudoephedrine which links the molecules 

into infinite chains around the screw axis. An intramolecular contact N—H‐‐‐O was observed, 
but the angle of 108° is not favorable. On the other hand, the C(2)—N bond is nearly parallel to 
the C(1)—C(ipso) bond. This conformation was also found in a bis‐(+)‐pseudoephedrine complex 

of Koper II [30], (−)‐noradrenaline [31], and dopamine [32]. Similar conformations for norephed‐

rines were found [33] but the difference in energy levels between the various possible conforma‐

tions in the nor‐series is less than in the ephedrine series, and interconversion is carried out with 

ease. This was explained because of the hindering effect of the N‐methyl group, Figure 2 [34].

Finally, ephedrines 1,2 and norephedrines 3,4 have the β‐aminoalcohol structure where the phe‐

nyl and methyl groups create two chiral centers on each carbon atom and generate four opti‐

cally active stereoisomers, Figures 4 and 5. Freudenberg et al. [16] and Leithe [17] established 

CH3

NHCH3H

C6H5

OHH

CH3

NHCH3H

C6H 5

HHO

1a (-)-ephedrine 2a (+ )-pseudoephedrine

Figure 1. Freudenberg and Leithe representation of ephedrine 1a and pseudoephedrine 2a.
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Figure 2. Stable conformations of ephedrine 1b and pseudoephedrine 2b.
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the  relative configuration about the asymmetric centers for (−)‐ephedrine and its optical isomers, 
hence the configurational relationship between ephedrines 1a,b and pseudo‐ephedrines 2a,b series 

is well known. The stereoisomers with methyl on nitrogen atom are l‐(1R,2S)‐ephedrine 1a and 

 d‐(1S,2R)‐ephedrine 1b; d‐(1S,2S)‐pseudoephedrine 2a, and l‐(1R,2R)‐pseudoephedrine 2b, Figure 3.

The l‐ephedrine 1a is the stereoisomer that produces a more pronounced stimulus on the 

central nervous system, compared with other drugs [35].

The stereoisomers without methyl on nitrogen atom are called norephedrines: l‐(1R,2S)‐ 

norephedrine 3a and d‐(1S,2R)‐norephedrine 3b; d‐(1S,2S) norpseudoephedrine 4a, and l‐(1R,2R)‐ 

norpseudoephedrines 4b, Figure 4.

Figure 3. Ephedrine stereoisomers.

Figure 4. Norephedrine stereoisomers.
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3. Physical properties of ephedrines

Physical properties of some optical isomers of ephedrines as free bases or as acidic salts have 

been summarized, Tables 1–4 [36].

Characteristic mp (°C) [α]
D

Free base (B) 37–39 −41°

Hemihydrate 39–43 −6.3° (EtOH)
+11.2° (H

2
O)

Hydrochloride 216–220 −34° (H
2
O)

Hydrobromide 205 –

Sulphete 243 −30° (H
2
O)

Oxalate 249 (dec) Insol. H
2
O

Aurichloride 128–131 –

Platinichloride 186 –

Table 1. (1R, 2S)‐(−)‐ephedrine forms.

Characteristic mp (°C) [α]
D

Free base (B) 118–120 −51°(EtOH)

Hemihydrate – –

Hydrochloride 185–188 −62. (H
2
O)

Hydrobromide – –

Sulphete – −52.5° (H
2
O)

Oxalate 218 (dec) Insol. H
2
O

Aurichloride 126.5–127.5 –

Platinilchloride – –

Table 2. (1R, 2R)‐(−)‐pseudoephedrine forms.

Characteristic mp (°C) [α]
D
 (°)

Free base (B) 51–54 −14.56(EtOH)

Hemihydrate – –

Hydrochloride 172–175 −33° (H
2
O)

Hydrobromide – –

Sulphete 285–286 (dec) −31.99 (H
2
O)

Oxalate 245 (dec) –

Aurichloride 188 –

Platinichloride 221 (dec.) –

Table 3. (1R, 2S)‐(−)‐ norephedrine forms.
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4. Biological activity of ephedra heterocycles

A wide approach for the synthesis of new compounds that possess some kind of biologi‐

cal activity is the cyclization of substituted phenethylamines as ephedrines into heterocycles, 

such as morpholine (phenmetrazine) [37] and 2‐amine‐oxazolines (4‐methylaminorex and 

3,4‐dimethylaminorex) [38], in such a way that the ephedrine skeleton becomes part of the 

heterocyclic ring, Figure 5.

Some other heterocycles as oxazolidine [39], di‐ and tetrahidro‐1,3,4‐oxadiazines 

[40, 41], 2‐thiazoline [42], thiazolidine [43], dihidro‐1,3,4‐thiadiazine [44], tetrahydro‐

triazine [45], and imidazolidine [46] derived from ephedrines and norephedrines have 

been reported. Certain of these heterocycles exhibit different biological effects as central 
nervous system, stimulating, appetite‐depressing [37, 38], monoamine oxidase inhibiting 

antidepressant [40g, 44b], central nervous system depressant [40e, f, 41, 45], analgetic [45], 

hypocholesterolemic [41], anti‐inflammatory [41], antimicrobial [41, 44b], or catechol‐

amine‐potentiating [43] activities. On the other hand, 3,4‐dimethyl‐5‐phenyl‐oxazolidine 
is used as a prodrug [47].

Characteristic mp (°C) [α]
D

Free base (B) 77–8 (corr.) −37.9 (MeOH)

Hemihydrate – –

Hydrochloride 180–183 (corr.) −41.7° (H
2
O)

Hydrobromide – –

Sulphete 295 (dec.) −48.7° (H
2
O)

Oxalate 235 (dec.) –

Aurichloride 137–138 –

Platinilchloride 198 –

Table 4. (1R, 2R)‐(−)‐ norpseudoephedrine forms.

Figure 5. Some heterocyclic compounds with biological activity.
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5. Reactions to get chlorodeoxyephedrine derivatives

The bromination reaction of ephedrine hydrochloride 2a with PBr5 produce the bro‐

modeoxy‐derivative [48]. On the other hand, ephedrine 1a or norephedrine 3a or its 

hydrochlorides reacts with SOCl
2
 to give chlorodeoxypseudoephedrine 5a or chlorode‐

oxynorpseudoephedrine 5b. The same reaction with pseudoephedrines 2a or 4a give a 60:40 

diastereomeric mixture of threo:erytho 5a:6a, Scheme 1 [49]. In order to improve the stere‐

oselectivity, chlorination reaction of pseudoephedrine stereoisomers 2 at 0°C was carried 

out. In these conditions, only the corresponding threo chlorodeoxystereoisomers 3 were 

stereoselectively obtained (SNi mechanism), Scheme 1, the X‐ray diffraction structure of 5a 

is depicted in Figure 6.

6. Heterazolidines‐2‐heterounsaturated from ephedrines

In 1950, Close reported the solvent‐free dehydration of ephedrine hydrochloride 1 in the pres‐

ence of urea at 180–200°C to afford the imidazolidinone 11a‐(t) and oxazolidinone 15a‐(c), 

Figure 6. X‐ray diffraction structure of Chlorodeoxyephedrine hydrochloride 5a.

Scheme 1. Chlorodeoxyephedrine hydrochlorides from chlorination reaction of ephedrines 2.
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Scheme 2 [34]. In that work, it was proposed that urea is converted into ammonium oxo‐

cyanate at 180–200°C, which in the presence of hydrogen chloride, ammonium chloride and 

oxocyanic acid are produced. Finally, ephedrine reacts with oxocyanide acid to produce the 

nonisolated urea intermediate 7a‐(e), which cyclization by dehydration affords the trans‐imid‐

azolidone 11a‐(t). On the other hand, in a simultaneous manner, cyclization of urea 7a‐(e) by 

nucleophylic attack of the oxygen atom of ephedrine to the ureidic carbonyl and ammonia 
elimination produces the oxazolidone heterocycle 15a‐(c).

The same reaction was revisited with the use of K+NCO− instead of urea, and the study was 

extended with thiocyanates and pseudoephedrine 2a‐(th), norephedrine 3b‐(e), and norpseu-

doephedrine 4b‐(th), as stereoisomers to produce a series of optically active 1,3‐heteroazoli‐

dine‐2‐heterounsaturated compounds 9–15, Scheme 3.

6.1. Reaction of ephedrines with oxocyanate

Urea intermediate 7a‐(e), proposed in the Close’s reaction, was isolated when K+NCO− is 

reacted with ephedrine hydrochloride 1 in refluxing ethanol for 72 h (78% yield). The reac‐

tion was also performed with pseudoephedrine 2, norephedrine 3, and norpseudoephedrine to 

afford, the urea derivatives 7a‐(th), 7b‐(e), and 7b‐(th) in 83, 80, and 86% yield, respectively 

Scheme 2. Dehydration of ephedrine 1a‐(e) with urea according to Close.

Scheme 3. 1,3‐heterazolidines‐2‐heterounsaturated from ephedrines.
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(Scheme 4). In the case of the reaction of Na+NCS− with ephedrine stereoisomers series 1–4, 

only chloride by thiocyanate anion was exchanged to give the corresponding hydrothiocya‐

nates 8a,b (e,th) (Scheme 4). The urea intermediate 7a‐(e) derived from ephedrine could be 

crystallized from ethanol and its structure studied by X‐ray diffraction (Figure 7).

An intramolecular hydrogen bonding interaction between the hydrogen atom of the hydroxyl 

group and the ureidic oxygen atom to form a seven membered ring was observed. The 

O1H1···O6 distance of 1.820(24) Å [angle of 166.72° (2.25)] represents a strong interaction [50]. 

The formed hydrogen bond forces the NH
2
 group to adopt a syn conformation to the N‐Me 

group [C8N4C5N7 angle of −6.00 (0.26)°]. In addition, both N—CO bond distances are of inter‐

mediate value between a single (1.469 Å) and a double (1.279) N—C bond (1.35 Å mean) [51].

When the intermediate 7a‐(e) was free of solvent heated at 180–200°C for 1 hour, an equi‐

molar mixture of imidazolidone 11a‐(c) and oxazolidone 15a‐(c) was formed (Scheme 5). 

Imidazolidinone 11a‐(c) was separated by precipitation from a CHCl
3
 and purified by recrys‐

tallization from ethanol. The structure of cis (c) isomer instead of the expected trans (t) iso‐

mer [52] was observed on the 1H and 13C NMR spectra and confirmed by X‐ray diffraction 
analysis. The formation of an aziridinim isocyanate I then the isocyanate II as intermediates 

Scheme 4. Reaction of K+NCO− and NH
4

+NCS− with ephedrines 1a,b‐(e,th) in refluxing ethanol.

Figure 7. Molecular structure of ephedrine‐urea 7a‐(e).
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are  proposed to explain the retention of C1 configuration in the formation of the cis‐imidazoli‐

done 11a‐(c) (Scheme 5) [53]. On the other hand, the oxazolidone 15a‐(c) is formed in accord 

to the Close’s idea (Scheme 2). The in situ formation of amides from aminoalcohols involved 

in oxazolidine formation has been reported in the literature [34, 54].

On the basis of these previous findings, the free of solvent reaction of ephedrines 1,4 with 

sodium or ammonium thiocyanates were performed.

6.2. Reaction of ephedrines with thiocyanate

In the direct heating of one equimolar of Na+NCS− with ephedrine 1 at 180–200°C during 0.5 h, 
ephedrine hydrothiocyanate 8a‐(e) from the aqueous phase and trans‐thiazolidine‐2‐imino 

hydrothiocyanate 9a‐(t) from the chloroform phase (10% yield) were separated, after CHCl
3
/H

2
O 

partition, Scheme 6. Deamination of ephedrine hydrothiocyanate 8a‐(e) proceeded to give 

Ethylphenylketone as lateral product.

The reaction with two molar equivalents of NH
4
SCN for 4 hours afforded the thiazoli‐

dine‐2‐imino hydrothiocyanate 9a‐(t) in 50% yield as precipitate from CHCl
3
. The use of 

NH
4
SCN instead of NaSCN salt, avoided deamination, due to its lower melting point (153°C). 

Compound 9a‐(t) was identified on comparing the structure obtained from chlorodeoxypseu-

doephedrine [55]. On the other hand, several heterocycles were separated when the remaining 

chloroform mixture was eluted in a chromatographic column. The mass spectrometry of the 

separated fractions showed the presence of heterocycles summarized in Table 5.

As described above for ephedrine 1, two molar equivalents of NH
4
+NCS− were heated with 

pseudoephedrine 2, norephedrine 3, and norpseudoephedrine 4. The identified compounds are 
listed in Table 5.

The reaction mixture of pseudoephedrine hydrochloride 2 was treated with a 50:50 of CHCl
3
/

H
2
O mixture. The chloroform phase was eluted in a column chromatography. Using chloro‐

form as eluent, the imidazolidine‐2‐thione 10a‐(c) was separated in 40% yield as first fraction. 

Scheme 5. Mechanistic pat way for the cyclization of ephedrine‐urea 7a‐(e) to get imidazolidinone 11a‐(t).

Scheme 6. Heating reaction of ephedrine 1 with NaSCN.
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Imidazolidones 11a‐(c) and 11a‐(t), thiazolidinedione 12a‐(c), and thiazolidinones 13a‐(c) and 

13a‐(t) were separated in small quantities in the subsequent three remaining fractions, respec‐

tively. On the other hand, after evaporation of the aqueous phase, thiazolidine‐2‐imino hydro‐

thiocyanate 9a‐(c) and oxazolidinones 15a‐(c) and 15a‐(t) as solid mixtures were identified by 
mass spectrometry. NMR spectral data of compound 10a‐(c) show a broad signal at 6.32 ppm 

(1H) and at 183 ppm (13C) of the N—H and C—S groups, respectively. The molecular ion  
[z/e = 206 (100%), M+] and X‐ray diffraction analysis confirmed the structure, Figure 8. The 

bond distances C2—N1 [1.345(14) Å] and C2—N3 [1.332(13) Å] show an intermediate value 
between a single and a double bond [51], due to a conjugation through the N1—C2—N3 
fragment.

From the reaction mixture of norephedrine hydrochloride 3, compounds 13b‐(c) and 13b‐(t) 

in a 1:8 proportion were separated by chromatography. Compound 13b‐(t) (40% yield) was 

separated from 13b‐(c) in a second column using CHCl
3
. The spectra data, molecular ion 

[z/e = 193 (25%), M+], and the X‐ray diffraction structures of compound 13b‐(t) confirm the 
trans configuration (Figure 9). A conjugation through the N—C2—S fragment is observed 
because the bond distances C2‐N [1.332(3) Å] and C2‐S [1.775(2) Å] are shorter than the cor‐

responding single bonds.

The reaction mixture of norpseudoephedrine hydrochloride 4 was separated in a chromato‐

graphic column and each fraction analyzed by mass spectrometry, Table 5. The fourth frac‐

tion contained thiazoline‐2‐amine hydrothiocyanate 9b‐(c).

Heterocycle 9 10 11 12 13 14 15

Ephedrine X S NH NH S S O O

Y NH
2
SCN S O S O S O

1a‐(e) Cis 184 (2) 163 (3)

[190(27)]
196 (7)
[223 (100)]

172 (4) 160 (2)

[191 (19)]

Trans 168(50)

[206(98)]
183 (7) 162 (7) 195 (2)

[223 (100)]
171(7) 191 (23)

1a‐(th) Cis 169(15)
[206(15)]

184 (40)

[206 (100)]
163 (5)
[190(27)]

196 (6)

[223 (100)]
172
[207(64)]

160 (5)
[191 (19)]

Trans 162 (2) Traces

[223 (100)]
171
[207(41)]

159 (20)

[191 (23)]

1b‐(e) Cis Traces

[192 (100)]
200 (5)
[209 (100)]

176 (5)
[193(16)]

189 (2)

[193 (35)]
160 (40)

[177 (8)]

Trans Traces 199 (2)

[209 (100)]
175(40)

[193(25)]

1b‐(th) Cis 173(40)

[192(62)]
183 (10)

[192 (100)]
200 (15)
[209 (100)]

175(10)
[193(16)]

160 (3)

Tans 172(10) 174 (5) 159 (3)

Table 5. Carbonyl carbon chemical shift in ppm, proportion (%) and mass spectrometry data [M+ (%)] of heterocycles 

9–15.
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At least four competitive mechanisms are proposed to explain the formation of heterocy‐

cles 9‐15a,b in the heating reaction of NH
4
SCN with ephedrines 1,2 and norephedrines 3,4 

(Scheme 7). In general, with exception of heating reaction of norephedrine 3, a SN2 dehydra‐

tion mechanism by the thiocyanate = isothiocyanate anions as nucleophiles and the subsequent 
cyclization of the ephedrinethiocyanate (IV) and/or ephedrineisothiocyanate (III) intermedi‐

ates formed operate to give the corresponding thiazolidine‐2‐imino hydrothiocyanates 9a,b 

and/ or imidazolidinetiones 10a,b. The product from thiocyanate predominate in the heating 

reaction of ephedrine 1, and for pseudoephedrine 2, the product from isothiocyanate predomi‐

nate. A stable alkyl ephedrinethiocynate analogue to IV has been isolated, which support the 

proposed mechanism [56].

In the heating reaction of norephedrine 3, the H
2
S obtained by hydrolysis of thiocyanate acts 

as nucleophyle in competitive SN1 and SN2 mechanisms to form the thiolephedrine  thiourea 

Figure 8. Structure of imidazolidinethione 10a‐(c).

Figure 9. Structure oftrans‐thiazolidinone 13b‐(t).
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VI‐(e,th), which cyclization afford thiazolidinethiones 12b(c,t). A desulphurization by hydro‐

lysis of thiazolidinethiones 12b‐(c,t) explains the formation of thiazolidinones 13b‐(c,t). A 

mechanism through thioureidic intermediate V operates simultaneously, its cyclization 

affords oxazolidinethione 14b‐(c), which desulphurization gives oxazolidinone 15b‐(c).

Desulphurization of the oxazolidinethione 14a‐(t) explains the formation of oxazolidinone 

15a‐(t) (20%) in the heating reaction of pseudoephedrine 2, Scheme 6, this mechanism is 

favored when one molar equivalent of NH
4

+NCS− is used. In this case, oxazolidinone 15a‐(t) 

(40%) and imidazolidinethione 10a‐(c) (20%) were obtained as the major products. Similar 

results were observed in the heating reaction of norpseudoephedrine 4. If NH
4
+NCS− is changed 

from two to one molar equivalents, thiazoline‐2‐amine hydrothiocyanates 9b‐(c) decreased 

from 40 to 15% and oxazolidinone 15b‐(t) increased from 3 to 45%.

In general, in the 1H NMR spectral data of ephedracycles, the C—CH
3
 group of the cis isomers 

appears at low frequency shifts in the range between 0.9 and 0.7 ppm, compared with the 
same group of the trans isomers, appearing between 1.1 and 1.4 ppm, this is due to the shield‐

ing effect of the phenyl group.

Scheme 7. Proposed mechanisms to explain the formation of heterocycles 9–15.
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7. Heterazolidines‐2‐heteroinsaturated from chloropseudo ephedrines

In continuation with our investigations on the design of new heterocycles derived from 

ephedrines 1, in this work, we revisited the cyclization reactions of chlorodeoxypseudo-

ephedrine hydrochloride 5a‐(th) (R = Me) with one or two molar equivalents of potassium 
oxocyanate, sodium thiocyanate, and potassium selenocyanate nucleophiles as cyclizing 

agents in refluxing ethanol. In addition, the results of the reaction of chlorodeoxynorp‐

seudoephedrine hydrochloride 5b‐(th) (R = H) with the above mentioned nucleophiles 
are reported. An interesting finding of this study was the synthesis of the trans isomer of 

1,3‐oxazolidine‐2‐iminium chloride 18a‐(t) through the in situ chlorinated urea intermedi‐

ate 7a‐(e), Scheme 8.

7.1. Reaction of chlorodeoxypseudoephedrine hydrochlorides 5 with potassium oxocyanate

Chlorodeoxypseudoephedrine hydrochloride 5a‐(th) was reacted with two molar equiva‐

lents of KOCN in stirring ethanol at room temperature. The reaction was monitored at 24, 
48, and 72 h by 1H NMR. Two compounds, in 80:20, 60:40, and 40:60 proportions, respec‐

tively, were observed. The NMR tube of the 40:60 proportion in DMSO‐d
6
 was heated at 

92°C during 1 h, to quantitatively transform the minor proportion compound into the 

1,3‐oxazolidine‐2‐iminium oxocyanate 18a‐(c) identified as the only product. The N‐(1‐

chloro‐1‐phenyl‐2‐methyl‐ethyl)‐N‐methyl urea 17a‐(th) in the 80:20 mixture with 18a‐(c) 

was identified as the intermediate. The use of one molar equivalent of potassium oxocya‐

nate in the same reaction in  refluxing 16 h afforded the hydrochloride of the oxazolidine‐2‐
imine 18a‐(c), which was crystallized from ethanol to be analyzed by X‐ray diffraction, the 
structure is shown in the Figure 10.

The reaction is general; the reaction of one molar equivalent of KOCN with chlorodeoxynorp-

seudoephedrine hydrochloride 5b‐(th) (R = H) in refluxing ethanol 8 h afforded the chlorourea 
derivative 17b‐(th). The proposed mechanistic pathway represented in Scheme 9 explains 

why the reaction is carried out with inversion of the Cl configuration to get the cis isomer.

Scheme 8. Reactivity of chlorodeoxypseudoephedrine hydrochlorides 5 with heterocyanates.
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Chlorourea compound 17b‐(th) could be isolated and characterized by NMR. Two signals are 
observed in the 1H NMR spectrum 6.04, (d, 3J = 8.5 Hz) and 5.55 ppm (s, broad) in a 1:2 propor‐

tion, respectively, assigned to NH and NH
2
 urea hydrogen atoms, respectively. The NH coupling 

constant value proposes a hydrogen bonding NH‐‐‐Cl interaction, which makes this hydrogen 
and H2 to be in an antiposition. In addition, the small H1, H2 coupling constant (3J = 5.28 Hz) 
 supports this proposed interaction, Figure 11. The 13C NMR spectrum shows the carbonyl car‐

bon signal at 159.6 ppm, according to the proposed structure.

The chlorourea derivative 17b‐(th) was refluxed in ethanol during 24 h. The 1H NMR 
spectrum of the solid precipitated showed a 80:20 mixture of two heterocycles. The 1H 

NMR chemical shift of the +NH
3
 group appears in 9.65 ppm as a broad signal, H5 and H4 

appear at 6.49 (d) and 4.56 ppm (dq), for the major compound. For the minor compound, 
H5 and H4 appear at 5.26 (d) and 5.41ppm (dq), respectively. In both compounds, the 

Figure 10. Molecular structure of hydrochloride compound 18a‐(c).

Scheme 9. Mechanistic pathway involved in the synthesis of compounds 18a‐(c) and 18b‐(c).
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coupling constants are of the same value. In addition, the multiplicity of these signals 

are interchanged for the minor compound, which are correlated with 13C NMR signals 
at 65.9 (C4) and 84.6 (C5) ppm, respectively. These results allowed us to assign the cis‐4‐

methyl‐5‐phenyloxazoline‐2‐ammonium chloride 18b‐(c) as the major compound the 

cis‐5‐methyl‐4‐phenyl‐oxazoline‐2‐ammonium hydrochloride 23b‐(c), as the minor com‐

pound, whose formation is explained due to the participation of an aziridine intermedi‐

ate III, Scheme 10 [52].

It is known that in chlorination reaction of ephedrine derivatives with thionyl chloride, 

the C1 configuration is retained through a SNi mechanism, when ephedrine bears a bulky 

group as oxamide or sulfonamide on the nitrogen atom [57]. In this sense, we obtained 

the erythro isomer of ephedrineurea intermediate 7a‐(e) by the reaction of ephedrine hydro‐

chloride 1a‐(e) with KOCN [58]. This ephedrineurea was chlorinated with thionyl chlo‐

ride in CHCl
3
 to get, in situ, 1‐(2‐chloro‐1‐methyl‐2‐phenyl‐ethyl)‐1‐methyl‐urea 17a‐(e). 

Compound 17a‐(e) was refluxed in ethanol during 8 h. 1H and 13C NMR spectroscopic 
data of the solid obtained after solvent removal allowed us to identify the trans isomer 

of 3,4‐dimethyl‐5‐phenyl‐oxazolidine‐2‐iminium chloride 18a‐(t). This result showed 

that  chlorodeoxyephedrine urea 17a‐(e) was obtained with retention of C1 configuration, 

which was cyclized with the inversion of C1 configuration to obtain 18a‐(t). In a similar 

Figure 11. Hydrogen bonding interaction proposed in compound 17b‐(th).

Scheme 10. Mechanistic pathway proposed to explain the formation of compound 23b‐(c).
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manner, the same reaction with norephedrine hydrochloride 1b‐(e) is stereoselective to 

get the cis isomer of the oxazoline‐2‐ammonium chloride 18b‐(c). In contrast, the same 

procedure for pseudoephedrine 1a‐(th) and norpseudoephedrine 1b‐(th) hydrochlorides 

gave a mixture of oxazolidine‐2‐iminium chlorides 18a (60:40, c:t) and oxazoline‐2‐ammo‐

nium chlorides 18b (75:25, c:t), respectively [59].

7.2. Reaction of chlorodeoxypseudoephedrine hydrochlorides 2 with sodium thiocyanate

It is known that the condensation reaction of chlorodeoxypseudoephedrine hydrochloride 

5a‐(th) with two molar equivalents of NaSCN in refluxing ethanol for 8 h stereoselectively 
affords the trans‐thiazolidine‐2‐iminio thiocyanate 9a‐(t) [51].

The reaction of chlorodeoxynorpseudoephedrine hydrochloride 5b‐(th) (R = H) with two molar 
equivalents of KSCN in refluxing ethanol, only chloride is interchanged by thiocyanate anion 
to give chlorodeoxynorpseudoephedrine hydrothiocyanate 16b‐(th) (ν = 2057 cm−1, −SCN), even 
at 24 h of reflux. If hydrothiocyanate 16b‐(th) in DMSO‐d

6
 is heated (90°C) 1 h in a NMR tube, 

a 50:50 cis/trans mixture of 1,3‐thiazoline‐2‐ammonium thiocyanate 9b was detected in the 1H 

NMR spectrum. However, only the cis isomer of 9b‐(c) was stereoselectively produced if the 

reaction is solvent free heated at 170°C during 3 hours, Scheme 8.

7.3. Reaction of chlorodeoxypseudoephedrine hydrochlorides 2 with potassium 

selenocyanate

As previous result reported for chlorodeoxypseudoephedrine hydrochloride 5a‐(th) [51], the 

reaction of chlorodeoxynorpseudoephedrine hydrochloride 5b‐(th) with two equivalents of 

KSeCN in refluxing ethanol for 10 hours affords trans‐selenazoline‐2‐ammonium selenocya‐

nate 19b‐(t). On the other hand, if only one equivalent of KOCN, NaSCN, or KSeCN is used in 
the reactions, the corresponding hydrochloride salts of the 2‐aminoheterocyles are obtained. 

Both XCN− (X = O, S, Se) and Cl− salts were liberated with aqueous NaOH to give the cor‐

responding imine 20–22a or amine 20–22b compounds. Compound 20b‐(c) and 22b‐(t) were 

crystallized from ethanol and chloroform, respectively. The structures could be established 

for X‐ray diffraction analysis, Figures 12 and 13, respectively.

Figure 12. X‐ray diffraction structure of 20b‐(c).
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8. CIS‐thiazolidinethiones from chloropseudoephedrines

In 1995, we reported the reaction of chlorodeoxypseudoephedrine.hydrochloride 5a‐(th) with 

33% aqueous solution of sodium trithiocarbonate (Na
2
CS

3
) in refluxing ethanol to give cis‐

thiazolidinethione 12a‐(c) (53% yield), Scheme 11 [60]. However, the same reaction with chlo‐

rodeoxynorpseudoephedrine 5b‐(th) failed to give the corresponding cis‐thiazolidinethione 

derivative 12b‐(c).

By this, we encourage us the goal to selectively obtain cis‐ or trans‐thiazolidinethiones 12a,b 

from either chlorodeoxynorpseudoephedrine 5b or chlorodeoxypseudoephedrine 5a derived 

from ephedrines 1,3.

To get thiazolidinethiones 12a,b, the chlorhydrates of chlorodeoxypseudoephedrines 5a or 5b 

were reacted with one molar equivalent of sodium dithiocarbonate in ethanol solution at room 

temperature. In the case of chlorodeoxynorpseudoephedrine·HCl 5b, a white powder solid was 

precipitated in stirring ethanol for 6 h. The cis and trans relationships between the phenyl 

and the methyl groups in thiazolidinethiones 12b was deduced from the analysis of their 1H 

and 13C NMR spectral data and are in agreement with data reported [49d]. On this bases, the 

product represented a mixture of cis:trans‐thiazolidinethiones of 8 in a 9:1 proportion. A SN2 

mechanism to explain the C1 inversion of configuration, then cyclization to get the cis‐isomer 

is proposed to be carried out, Scheme 11. In addition, a competitive double SN2 mechanism 

on C1, then cyclization in which cis‐aziridine 24b‐(c) as intermediate is involved to explain 

the presence of the trans‐isomer 12b‐(t). Analogous mechanistic observations were proposed 

Figure 13. X‐ray diffraction structure of 22b‐(t).

Scheme 11. Mechanistic transformation to get cis‐thiazolidinethiones from chlorodeoxypseudoephedrines.
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to get stereospecifically thiazolidinethiones from the reaction of viciodoalkanecarbamates  
with potassium ethylxanthate [61]. When the same reaction at 0°C for 6 h was performed, only 

cis‐thiazolidinethione 12b‐(c) was precipitated as a white powder in 95% yield. Thiazolidine‐
thione 12b‐(c) is stable as thione tautomer in concentrated solution (δ NH at 8.3 ppm). However, 
in a diluted solution, the thiol tautomer is present (δ SH at 1.6 ppm).

The reaction of chlorodeoxypseudoephedrine·HCl 5a at 0°C was performed, and after 3 days 

off, white orthorhombic crystals of cis‐thiazolidinethione 12a‐(c) precipitated in 81% yield. 

The X‐ray diffraction structure showed the cis‐isomer.

To confirm that the cis‐aziridine is responsible of the trans‐thiazolidinethione formation, the 

Kelloggs method was used with the previously obtained cis‐aziridine 24a‐(c) and 24b‐(c) [62] 

from chlorodeoxypseudoephedrines 5a or 5b. The corresponding cis‐aziridine was reacted 

with CS
2
 in stirring ethanol by 48 h at 0°C. In the case of the reaction of cis‐aziridine 24b‐(c), 

two compounds in a 70:30 mixture were observed in the 1H NMR spectra. The CH
3
 groups of 

the two compounds were in 1.35 and 1.44 ppm, respectively. After comparison with reported 
data, both compounds were identified as trans isomers of thiazolidinethiones [63]. The major 

heterocycle was the trans‐thiazolidine‐thione 12b‐(t) and the minor heterocycle, the trans‐iso‐

thiazolidinethione 25b‐(t). The ring opening on C3 and C2 of the aziridinium by the aziridi‐

nethiocarbamate anion of the intermediate III explains the formation of both heterocycles, 

Scheme 12. This aziridinium opening reaction has been observed elsewere [59, 62].

When cis‐aziridine 24a‐(c) was reacted with CS
2
, in the same reaction conditions, cis‐thia‐

zolidinethione 12a‐(c) was stereoselectively obtained instead of the expected trans‐isomer in 

agreement with the Kellog’s method, Scheme 13. In this case, the retention of the C1 configu‐

ration is explained by attack of the aziridinium thiocarbamate zwitterion VI on the benzylic 

carbon, followed by the closure of the intermediate VII to recover the initial C1 configuration.

Crystals of Cis‐thiazolidinethione 12a‐(c) were separated from ethanol and its structure studied 

by X‐ray diffraction analysis, Figure 14. The N3—C2(S2)—S1 conjugated system is proposed 
since the distances are of an intermediate value between a single (1.469 Å) and a double (1.279 Å) 
N—C bond (N3—C2 = 1.35 Å) and a single (1.789 Å) and a double (1.600 Å) C—S bond (S1—C2 
= 1.741Å and S2—C2 = 1.659) [51]. Conjugation makes N3 to be in a sp2 hybridation, as the angles 

C(4)—N(3)—C(12) = 119.9(3), C(2)—N(3)—C(4) = 116.2(3), and C(2)—N(3)—C(12) = 121.6(3) 
show values close to 120°. On the other hand, the five membered ring is almost planar since 

Scheme 12. Mechanistic transformation of cis‐aziridine 4c into a mixture of trans‐thiazolidinethione 8t and trans‐

isothiazolidinethione 10t.
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the torsion angles N(3)—C(2)—S(1)—C(5) of 5.3(3)°, S(2)—C(2)—N(3)—C(12) of −1.8(5)° are 
very close to 0°, and S(2)—C(2)—S(1)—C(5) of −177.4(2)°, S(1)—C(2)—N(3)—C(12) of 175.1(3) 
are close to 180°. An intramolecular contact between a hydrogen atom of the N—CH

3
 group and 

the sulfur atom of the thiocarbonyl group occurred to form a five member ring. The C12H12…S2 

distance of 2.72(4) Å [angle of 111(3)°] is in the range for a strong interaction [50].

9. Thiazaborolidines from thioephedrines

The synthesis of N‐alkyloxazaborolidines 26–28 derived from ephedrines has been reported 

(Figure 15) [64]. In 1995, we reported the analogous compounds made from thioephedrines, 
and herein, we report several borohydrides derived from thioephedrine (compounds 12a, 

29–37) following the syntheses depicted in Scheme 14.

Hydrolysis of thiosulfate 29 obtained with retention of C1configuration from the substitution 
reaction of chloride 5 give the disulfide 30, Scheme 14. The disulfide 30 reacts with BH

3
‐THF 

Scheme 13. Mechanistic transformation of cis‐aziridine 24a‐(c) into cis‐thiazolidinethione 12a‐(c).

Figure 14. X‐ray diffraction structure of cis‐tiazolidinethione 12a‐(c).
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to give a mixture of the stable N‐epimers disulfide amine boranes 31 and 32 detected by 11B 

NMR. This N‐epimers are comparable with the N‐BH
3
 adducts of pseudo‐ephedrines.

Heating the N‐epimers mixture of 31 + 32, affords the borinic ester 33 as the only product, 

which in the 11B NMR spectra appears as a triplet [(δ = −6.4 ppm, J(BH) = 103 Hz, in CDCI
3
 or 

δ = −4.5 ppm, in THF‐d
8
]. Two methyl groups in trans position was found for borinic ester 33 

on the 1H and 13C NMR data. This allows us to assign the configuration at the nitrogen atom. 
No borinic esters with a BH

2
 group derived from ethanolamines as stable compounds have 

been observed. Borinic ester 33 was distilled in vacuo, and on the 11B NMR spectra of the dis‐

tillated, a mixture of thiazaborolidine 33, 10%, and thiazaboroline 34 were observed. Slowly 

elimination of H
2
 transforms borinic ester 33 into thiazaboroline 34. In the 11B NMR spectrum, 

compound 34 shows a doublet (δ = +40.8 ppm, J(BH) = 154 Hz). From the distilled, a crystal of 
compound 33 was separated and its X‐ray diffraction structure obtained (Figure 16). The thia‐

zaboroline 34 reacted with BH
3
‐THF to afford the N—BH

3
 adduct 35 (Scheme 1). The struc‐

ture has been deduced from the 11B NMR data, which indicated a N—BH
3
 bond (quadruplet 

at δ = −22.0 ppm, J(BH)= 71 Hz) and a doublet which is strongly shifted to lower frequencies 
(δ = −7.0, J(BH)= 148 Hz). A diborane group in which a hydrogen atom from the N—BH

3
 

adduct is bridging the boron atom of the heterocycle was found. These findings are similar to 
that found in the pseudoephedrine oxazaborolidine [64a].

Figure 15. Borolidines from ephedrines.

Scheme 14. Thiazaborolidines from ephedrines.
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Thiazolidine‐2‐thione 12a‐(c) obtained from compound 5a with sodium trithiocarbonate has 

been isolated and its reactivity towards BH
3
‐THF studied, Scheme 14. The reaction was fol‐

lowed by 11B NMR, and a S—BH
3
 adduct 36 (δ = −23 ppm, broad signal) was first detected. The 

analysis of 1H NMR spectrum of compound 36 indicates that BH
3
 is linked to the thione sulfur 

atom. Heating the S—BH
3
 adduct 36 afforded the thiazaborolidine 37 which is a triplet at 

δ = −3.8 ppm (J(BH) = I I 1.5 Hz) in 11B NMR spectra. This compound 37 is obtained pure when 

12a‐(c) is reacted with 3 equivalents of BH
3
‐THF. The 1H and 13C NMR were recorded. The 

diasterotopic N‐methyl groups show that the nitrogen has a stable configuration, the assign‐

ment of the 1H and 13C signals was done by comparison with similar compounds [64b, 65].

Compound 33 has the C‐5 atom out of the plane of an envelope conformation of the five member 
ring. The N—B bond distance is 1.58(1) Å and B—S of 1.922(9) Å. Boron and nitrogen atoms are 
tetrahedral. The nitrogen atom was found to be of “S” configuration, as deduced from the 1H and 
13C NMR data. The methyl groups are trans position. The angles on the nitrogen atom are close to 

a sp3 hybridation, C4—N3—C13 112.3(5)°, B2—N3—C13 111.3(5)°, and C4—N3—B2 112.0(5)°.

10. Biological properties of ephedrines and their derivatives

10.1. Ephedrines

Mao (Ephedra sinica Stapf), which provides similar effects to ephedrine [66, 67], is used as 

a component of several herbal medicines. It has been utilized in the treatment of cold and 

allergy [68, 69]. Clinically, it is utilized to lower fever, relieve pain and headaches, control 

body weight, relieve inflammatory responses [70, 71], and also rheumatoid arthritis [72].

Ephedrine 1a and pseudoephedrine 2a are also used to treat cancerous diseases in modern 

clinical practice, they combined with other preparations relieve arterial spasms, neurotoxic 

reactions after radiation therapy and chemotherapy [73, 74].

Figure 16. X‐ray diffraction structure of borolidine 33.
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Since 1938, ephedrine was regulated as a drug; however, the herbal source was regulated as a 

food. However, after the Dietary Supplement Health and Education Act of 1994 (DSHEA) [75] 

was passed, the herbal products escaped drug regulation. As a consequence, ephedra extracts 

remains available as a “dietary supplement.” However, after years of battling, stimulant com‐

bination products (e.g., ephedra and caffeine) are yet available.

10.2. Chloroephedrine derivatives

Previously was demonstrated that N‐β‐chloroalkylamine derivatives 5a,b (Figure 17) possess a 

different spectrum of anticancer activities [76]. On the other hand, cytotoxic and antitumor activ‐

ities of ephedrine and N‐β‐chloroalkylamine derivatives 5a(1–3), 5b(1–3) were determined [77].

It was found compounds 5b1, 5b2, and 5b3 were active in the cytotoxicity test for 3H‐thymi‐

dine incorporation. The concentrations causing 50% cytotoxicity were in the range 11.0–45.0 
mg/mL. However, derivatives 5a1, 5a2, and 5a3 were more active.

Compounds 5a2, 5b2, 5a3, and 5b3 investigated in vitro suppressed growth of EAC and S‐180 

tumor strains to various degrees.

It has been shown that the introduction of phosphorus‐and sulfur‐containing fragments con‐

siderably lowers the toxicity of the alkaloids.

With respect to substances 5a1 and 5b1, they had similar toxicity to l‐ephedrine, while the other 

substances were less toxic. It has been found that the replacement of the oxygen atom in the 

structure of a thio salt of/l‐ephedrine 5a3 by a second sulfur atom led to a slight rise in toxicity.

10.3. Dithiocarbamate derivatives

N‐methyl‐l‐ephedrinedithiocarbamates derived from l‐ephedrine 1a and d‐pseudoephedrine 

2a has been obtained. Dithiocarbamic acid derivatives exhibit a broad‐spectrum physiologi‐

cal activity [78]. They were found to act as fungicides, herbicides, insecticides, acaricides, 

zoocides, nematocides, growth regulators, bactericides, etc. Such dithiocarbamic acid deriva‐

tives as Carbathion, Cineb, Vegadex, and Cyram have found practical application in agricul‐

ture as pesticides.

10.4. Oxazolidines derivatives

Due to the reversibility of the reaction of ephedrines 1–4 with aldehydes or ketones to get oxa‐

zolidine heterocycles (Scheme 15), these compounds could be used as prodrugs [79]. Some 

Figure 17. Structures of N‐β‐chloroalkylamine derivatives 5a,b.
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of these compounds significantly increased locomotor activity in rats at 50‐mg/kg dose. The 
formaldehyde derivative had similar activity as ephedrine. All other compounds were less 

active.

Four such compounds were tested in rats for ephedrine‐like activity using the hyperthermia 

and anorexia models. The results showed that all of the compounds decreased food intake 

significantly, but only the acetone and the salicylaldehyde derivatives caused a significant 
elevation of body temperature [80].

On this bases, we probed the antioxidant and antimicrobial activity of some heterocyclic com‐

pounds derived from ephedrines 1–4 previously synthetized.

11. Determination of biological activity of ephedracycles

Ephedrine is a very good pharmaceutical but it acts as central nervous system stimulant, and 

ephedrine and their derivatives have been used as drugs of abuse so its prescription has been 

restricted, we proposed ephedra heterocycles as new derived compounds as pharmaceutical 

candidates with low central nervous system. We decided to prove the antioxidant and anti‐

biotic activities of several heterocycles synthetized in our laboratory represented in Tables 6 

and 7, respectively.

Scheme 15. Oxazolidines from ephedrine.

Table 6. Antioxidant activity (IC50 mol/L) of some synthetized heterocyclic compounds.
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11.1. Antioxidant activity

The DPPH radical scavenging activity of plants was estimated according to the method 

explained by Cheung, with some modifications. Aliquots of 2 ml of 6 × 10−5 M DPPH methanol 

were mixed with 50 μL of the extracts. The mixtures were vigorously shaken and left to stand 
for 10 min under subdued light. The absorbance at 540 nm was measured against methanol 
as a blank. The decolorization was spectrophotometrically measured at 517 nm. The radical 
scavenging activity (RSA) was calculated using the equation:

  %RSA = 100 ×   (  1 −  A  
E
   / AD )     

A
E
 is the absorbance of the solution containing antioxidant extract, whereas AD is the absor‐

bance of the DPPH* solution.

Compounds 34, 19t, and 12t showed antioxidant activity, Table 6.

11.2. Antimicrobial activity

Disk diffusion assay: extracts were tested for antibiotic activity against Escherichia coli, Salmonella 

thypi, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. About 50 μL of extract was 
solubilized in ETOH and placed on the surface of the inoculated agar and incubated at 30°C, 

using antibiotic no. 1 medium, and the antibiotic activity was recorded as the diameter of clear 

zones of inhibited microbial growth around the paper disk.

The antimicrobial activity was determined using strains S. aureus, B. subtilis, S. thypi, and  

E. coli using sensidiscs. The antioxidant activity was measured by the radical 2‐2‐diphenyl‐1‐

picrihydrazil. Compound 34 presented antimicrobial activity against all microorganisms 

used and the compound 21a showed activity only against S. aureus and B. subtilis, Table 7.

Compuesto Salmonella typhi Staphylococcus aureus Escherichia coli Bacillus subtilis

21b NA NA NA NA

34 20 8 10 20

9t NA NA NA NA

21a NA 6 NA 9

19t NA NA NA NA

22a NA NA NA NA

12t NA NA NA NA

12ac NA NA NA NA

Inhibition in mm.

No actividad found (NA).

Table 7. Antibiotic activity of some synthetized heterocyclic compounds derived from ephedrine 1–8.
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