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Abstract

It is well known that one way to study canonical quantum cosmology is through the
Wheeler DeWitt (WDW) equation where the quantization is performed on the
minisuperspace variables. The original ideas of a deformed minisuperspace were done
in connection with noncommutative cosmology, by introducing a deformation into the
minisuperspace in order to incorporate an effective noncommutativity. Therefore, study-
ing solutions to Cosmological models through the WDWequation with deformed phase
space could be interpreted as studying quantum effects to Cosmology. In this chapter,
we make an analysis of scalar field cosmology and conclude that under a phase space
transformation and imposed restriction, the effective cosmological constant is positive.
On the other hand, obtaining the wave equation for the noncommutativity Kantowski-
Sachs model, we are able to derive a modified noncommutative version of the entropy.
To that purpose, the Feynman-Hibbs procedure is considered in order to calculate the
partition function of the system.

Keywords: noncommutativity, quantum cosmology, thermodynamics of black holes

1. Introduction

Since the initial use of the Hamiltonian formulation to cosmology, different issues have been

studied. In particular, thermodynamic properties of black holes, classical and quantum cos-

mology, dynamics of cosmological scalar fields, and the problem of cosmological constant

among others. In this chapter, we present some results in deforming the phase space variables,

discussing recent advances on this special topic by presenting three models. In the first model

(Section 2), we analyze the effects of the phase space deformations over different scenarios, we

start with the noncommutative on Λ cosmological and comment on the possibility that the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



origin of the cosmological constant in the (4 + 1) Kaluza-Klein universe is related to the

deformation parameter associated to the four-dimensional scale factor and the compact extra

dimensions. In Section 3, we study the effects of phase space deformations in late time cosmol-

ogy. To introduce the deformation, we use the approach given in Refs. [1]. We conclude that for

this model an effective cosmological constant Λeff appears.

In Section 4, the thermodynamic formalism for rotating black holes, characterized by

noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic

relation, the equations of state are explicitly given, and the effect of noncommutativity and

quantum correction is discussed; in this sense, the goal of this section is to explore how these

considerations introduced in Bekenstein-Hawking (BH) entropy change the thermodynamic

information contained in this new fundamental relation. Under these considerations, Section 4

examines the different thermodynamic equations of state and their behavior when considering

the aforementioned modifications to entropy.

In this chapter, we mainly pretend to indulge in recollections of different studies on the

noncommutativeproposal that has been put forward in the literature by the authors of this chapter

[2–4]; in this sense, our guideline has been to concentrate on resent results that still seem likely to be

of general interest to those researchers that are interested in this noncommutative subject.

2. Model 1: Kaluza-Klein cosmology with Λ

Let us begin by introducing the model in a classical scenario which is an empty (4+1) theory of

gravity with cosmological constantΛ as shown in Eq. (1). In this setup, the action takes the form:

I ¼
ð

ffiffiffiffiffiffiffi�g
p ðR�ΛÞdtd3rdρ; ð1Þ

where ft; rig are the coordinates of the 4-dimensional spacetime and ρ represents the

coordinate of the fifth dimension. We are interested in Kaluza-Klein cosmology, so a

Friedmann-Robertson-Walker (FRW)-type metric is assumed, which is of the form

ds2 ¼ �dt2 þ a2ðtÞdridri

1þ κr2

4

� �2
þ φ2ðtÞdρ2

; ð2Þ

where κ ¼ 0; � 1 and a(t), φ(t) are the scale factors of the universe and the compact dimension,

respectively. Substituting this metric into the action Eq. (1) and integrating over the spatial

dimensions, we obtain an effective Lagrangian that only depends on (a, φ):

L ¼ 1

2
aφ _a2 þ a2 _aφ� κaφþ 1

3
Λa3φ

� �

: ð3Þ

For the purposes of simplicity and calculations, we can rewrite this Lagrangian in a more

convenient way:
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L ¼ 1

2
_x2 � ω2x2

� �

� _y2 � ω2y2
� �h i

; ð4Þ

where the new variables were defined as

x ¼ 1
ffiffiffi

8
p a2 þ aφ� 3κ

Λ

� �

, y ¼ 1
ffiffiffi

8
p a2 � aφ� 3κ

Λ

� �

; ð5Þ

and ω ¼ � 2Λ
3 . The Hamiltonian for the model is calculated as usual and reads

H ¼ p2x þ ω2x2
� �

� p2y þ ω2y2
� �h i

; ð6Þ

which describes an isotropic oscillator-ghost-oscillator system. A full analysis of the quantum

behavior of this model is presented in Ref. [1].

2.1. Noncommutative model

As is well known, there are different approaches to introduce noncommutativity in gravity [5].

In particular, to study noncommutative cosmology [6, 7], there exist a well-explored path to

introduce noncommutativity into a cosmological setting [6]. In this setup, the noncommu-

tativity is realized in the minisuperspace variables. The deformation of the phase space struc-

ture is achieved through the Moyal brackets, which are based on the Moyal product. However,

a more appropriate way to introduce the deformation is by means of the Poisson brackets

rather than the Moyal ones.

The most conventional way to understand the noncommutativity between the phase space

variables (minisuperspace variables) is by replacing the usual product of two arbitrary func-

tions with the Moyal product (or star product) as

ðf⋆gÞðxÞ ¼ exp
1

2
αab

∂
ð1Þ
a ∂

ð2Þ
b

	 


f ðx1Þgðx2Þjx1¼x2¼x; ð7Þ

such that

αab ¼
θij δij þ σij

�δij � σij βij

� �

; ð8Þ

where the θ and β are 2 · 2 antisymmetric matrices and represent the noncommutativity in

the coordinates and momenta, respectively, and σ ¼ θβ=4. With this product law, a straight-

forward calculation gives

fxi; xjg ¼ θij; fxi; pjg ¼ δij þ σij; fpi; pjg ¼ βij: ð9Þ

The noncommutative deformation has been applied to the minisuperspace variables as well as to

the corresponding canonical momenta; this type of noncommutativity can be motivated by

Deformed Phase Space in Cosmology and Black Holes
http://dx.doi.org/10.5772/intechopen.68282

179



string theory correction to gravity [6, 8]. In the rest of this model, we use for the noncommutative

parameters θij ¼ �θεij and βij ¼ βεij.

If we consider the following change of variables in the classical phase space {x; y; px; py}

ŷ ¼ y�
θ

2
px; x̂ ¼ x�

θ

2
py

p̂y ¼ py þ
β

2
x; p̂x ¼ px �

β

2
y;

ð10Þ

it can be verified that if {x;y;px;py} obeys the usual Poisson algebra, then

ŷ; x̂f g ¼ θ; x̂; p̂x
� �

¼ ŷ; p̂y

n o

¼ 1þ σ; p̂y; p̂x

n o

¼ β: ð11Þ

Now that we have defined the deformed phase space, we can see the effects on the proposed

cosmological model. From the action Eq. (4), we can obtain the Hamiltonian constraint

Eq. (6); inserting relations Eq. (11), a Wheeler DeWitt (WDW) equation can be constructed

as:

HΨðx̂; ŷÞ ¼

(

p̂x �
2ðβ� θω2Þ

4� ω2θ2
ŷ

� �2

� p̂y þ
2ðβ� θω2Þ

4� ω2θ2
x̂

� �2

þ
4ðβ� θω2Þ2

ð4� ω2θ2Þ2
þ
4ðω2 � β2=4Þ

4� ω2θ2

 !

x̂2 �
4ðβ� θω2Þ2

ð4� ω2θ2Þ2
þ
4ðω2 � β2=4Þ

4� ω2θ2

 !

ŷ2

)

Ψðx̂; ŷÞ ¼ 0;

ð12Þ

By a closer inspection of the equation, it is convenient to make the following definitions:

ω02 �
4ðβ� θω2Þ2

ð4� ω2θ2Þ2
þ
4ðω2 � β2=4Þ

4� ω2θ2
;

Ax̂ �
�2ðβ� θω2Þ

4� ω2θ2
ŷ; Aŷ �

2ðβ� θω2Þ

4� ω2θ2
x̂;

ð13Þ

With these definitions, we can rewrite Eq. (12) in a much simpler and suggestive form:

H ¼ p̂x � Ax̂

� �2
þ ω02x̂2

	 


� p̂y � Aŷ

� �2
þ ω02ŷ2

	 
 �

; ð14Þ

which is a two-dimensional anisotropic ghost-oscillator [1]. From Eq. (14), we can see

that the terms ðpi � AiÞ can be associated to a minimal coupling term as is done in

electromagnetic theory. From this vector potential, we find that B ¼
4ðβ�ω2θÞ

4�ω2θ2 and the vector

potential A can be rewritten as Ax̂ ¼ � B
2 ŷ and Aŷ ¼ B

2 x̂. On the other hand, we already

know from Eq. (11) that p̂y; p̂x

n o

¼ β and if we set θ = 0 in the above equation for B, we

can conclude that the deformation of the momentum plays a role analogous to a mag-

netic field.
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2.2. Discussion

We found that ω is defined in terms of the cosmological constant, then modifications to the

oscillator frequencywill implymodifications to the effective cosmological constant. Here,we have

done a deformation of the phase space of the theory by introducing amodification to themomenta

and to the minisuperspace coordinates, this gives two new fundamental constants θ and β. As

expected,we obtain a different functional dependence for the frequencyω and themagneticB field

as functions of β and θ. With this inmind, we can construct a new frequency ~ω in terms ofω02 and

the cyclotron term B2=4:

~ω2 ¼ ω02 �
B2

4
¼

4ðω2 � β2=4Þ

4� ω2θ2
: ð15Þ

This ~ω was obtained by a definition of the effective cosmological constant Λ˜ ef f ¼ � 3
2
~ω2 as was

done in Section 2, to finally get a redefinition of the effective cosmological constant due to

noncommutative parameters:

Λ
˜

ef f ¼
4ðΛef f þ

3
8 β

2Þ

4� 2
3θ

2jΛef f j
: ð16Þ

Now if we choose the case β = 0, this should be equivalent to the noncommutative minisuperspace

model, hence we get an effective cosmological constant given by:

Λ
˜

ef f ¼
4Λef f

ð4� 2
3θ

2jΛef f jÞ
ð17Þ

We can see from Eq. (17) that the noncommutative parameter θ cannot take the place of the

cosmological constant, but depending on the value of θ, the effective cosmological constant

Λ
˜

ef f is modified. Equation 17 is in agreement with the results given in Refs. [9, 10].

3. Model 2: Scalar field cosmology

Let us start with a homogeneous and isotropic universe with a flat Friedmann-Robertson-Walker

(FRW) metric:

ds2 ¼ �N2ðtÞdt2 þ a2ðtÞ dr2 þ r2dΩ
� �

ð18Þ

Asusual, a(t) is the scale factor andN(t) is the lapse function.Weuse theEinstein-Hilbert actionand

a scalar fieldφ as thematter content for themodel. In units 8πG ¼ 1, the action takes the form:

S ¼

ð

dt �
3a _a2

N
þ a3

_φ
2

2N
�NΛ

 !( )

ð19Þ

Now, we make the following change of variables:
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x ¼ m�1a3=2sinhðmφÞ, y ¼ m�1a3=2coshðmφÞ: ð20Þ

where m�1 ¼ 2
ffiffiffiffiffiffiffiffi

2=3
p

. Then the Hamiltonian is

Hc ¼ N
1

2
P2
x þ

ω2

2
x2

� �

�N
1

2
P2
y þ

ω2

2
y2

� �

; ð21Þ

with ω2 ¼ � 3
4Λ. To find the dynamics, we solve the equations of motion; for this model, it can

easily be integrated [9].

To construct the deformed model, we usually follow the canonical quantum cosmology

approach, where after canonical quantization [11], one formally obtains the WDW equation.

In the deformed phase space approach, the deformation is introduced by the Moyal brackets

to get a deformed Poisson algebra. To construct a deformed Poisson algebra, we use the

approach given in Refs. [1, 9]. We start with the same transformation on the classical phase

space variables {x;y;Px;Py} that satisfy the usual Poisson algebra as shown in Section 2.1,

Eqs. (10) and (11). With this deformed theory in mind, we first calculate the Hamiltonian

which is formally analogous to Eq. (21) but constructed with the variables that obey the

modified algebra Eq. (11)

H ¼
1

2
P2
x � P2

y

� �

� ω2
1 xPy þ yPx

� �

þ ω2
2 x2 � y2
� �

h i

: ð22Þ

where we have used the change of variables Eq. (10) and the following definitions:

ω2
1 ¼

β� ω2θ

1� ω2θ2=4
; ω2

2 ¼
ω2 � β2=4

1� ω2θ2=4
: ð23Þ

Written in terms of the original variables, the Hamiltonian explicitly has the effects of the

phase space deformation. These effects are encoded by the parameters θ and β. In Ref. [9],

the late time behavior of this model was studied. From this formulation, two different

physical theories arise, one that considers the variables x and y and a different theory

based on x̂ and ŷ. The first theory is interpreted as a “commutative” theory with a

modified interaction, and this theory is referred as being realized in the commutative

frame “(C-frame)” [12]. The second theory, which privileges the variables x̂ and ŷ, is a

theory with “noncommutative” variables but with the standard interaction and is referred

to as realized in the noncommutative frame “(NC-frame).” In the “C-frame,” our deformed

model has a very nice interpretation that of a ghost-oscillator in the presence of constant

magnetic field and allows us to write the effects of the noncommutative deformation as

minimal coupling on the Hamiltonian and write the Hamiltonian in terms of the magnetic

B-field [9].

To obtain the dynamics for the model, we derive the equations of motion from the Hamilto-

nian Eq. (22). The solutions for the variables x(t) and y(t) in the “C-frame” are:
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xðtÞ ¼ η0 e
�ω2

1
2 tcoshðω0tþ δ1Þ � ζ0 e

ω2
1
2 tcoshðω0tþ δ2Þ;

yðtÞ ¼ η0 e
�ω2

1
2 tcoshðω0tþ δ1Þ þ ζ0 e

ω2
1
2 tcoshðω0tþ δ2Þ;

ð24Þ

where ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

β2�4ω2

4�ω2θ2

q

. For ω02 < 0, the hyperbolic functions are replaced by harmonic functions.

There is a different solution for β ¼ 2ω, the solutions in the “C-frame” are:

xðtÞ ¼ ðaþ btÞe
�ω2

1
2 t þ ðcþ dtÞe

ω2
1
2 t;

yðtÞ ¼ ðaþ btÞe
�ω2

1
2 t � ðcþ dtÞe

ω2
1
2 t:

ð25Þ

To compute the volume of the universe in the “C-frame,” we use Eqs. (24) and (20).

a3ðtÞ ¼ V0 cosh
2ðω0tÞ; ð26Þ

where we have taken δ1 ¼ δ2 ¼ 0. For the case ω02 < 0, the hyperbolic function is replaced by a

harmonic function. For the case β ¼ 2ω, the volume is given by

a3ðtÞ ¼ V0 þ Atþ Bt2; ð27Þ

where V0;A and B are constructed from the integration constants. To develop the dynamics in

the “NC-frame,” we start from the “C-frame” solutions and use Eq. (10), we get for the volume

â3ðtÞ ¼

V̂ 0 cosh2ðω0tÞ �
ω02θ2

ð2� ω2
1θÞ

2
sinh2ðω0tÞ

" #

for ω02 > 0;

V̂ 0 þ Btþ Ct2 for ω02 ¼ 0;

V̂ 0 cos 2ðjω0jtÞ �
jω0j2θ2

ð2� ω2
1θÞ

2
sin 2ðjω0jtÞ

" #

for ω02 < 0;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð28Þ

where V̂ 0 is the initial volume in the “NC-frame.” We can see that for θ = 0, the descriptions in

the two frames are the same.

3.1. Discussion

As already discussed, phase space deformation gives two physical descriptions. If we say that

both descriptions should be equal, then comparing the late time behavior for the two frames

with the scale factor of de Sitter cosmology, an effective positive cosmological constant exists

and is given by

Λef f ¼
1

3

β2 þ 3Λ

1þ 3
16Λθ

2

 !

: ð29Þ
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This result is the same as the one obtained from theWDW formalism of Kaluza-Klein cosmology.

Therefore, one can start taking seriously the possibility that noncommutativity can shed light on

the cosmological constant problem.

4. Model 3: Thermodynamics of noncommutative quantum Kerr black hole

Thermodynamics of black holes has a long history, focusing mainly on the problem of thermo-

dynamic stability. It is known for a long time that this problem can be extended beyond the

asymptotically flat spacetimes [13]. For example, in de Sitter spacetimes, thermodynamic

information of black holes exhibit important differences with the previous case [14, 15]. Gib-

bons and Hawking found that, in analogy with the asymptotically flat space case, such black

holes emit radiation with a perfect blackbody spectrum and its temperature is determined by

their surface gravity. However, a feature of de Sitter space is that exists a cosmological event

horizon, emitting particles with a temperature which is proportional to its surface gravity. The

only way to achieve thermal equilibrium is when both surface gravities are equal, which

corresponds to a degenerate case [16, 17].

Regarding AdS manifolds, it was shown that thermodynamic stability of black holes in this

spacetime can be achieved [18]. In this manifold, gravitational potential produces a confine-

ment for particles with nonzero mass, which acts as an effective cavity of finite volume,

containing the black hole. An important feature of black holes in AdS manifolds is that their

heat capacity is positive, opposite to the asymptotically flat case; additionally, this positiveness

allows a canonical description of the system.

It is also known that thermodynamic stability of black holes is related with dynamical stability of

those systems, which brings an additional motivation to study it. For example, in the asymptot-

ically flat spacetime case, it is well known that Schwarzschild black holes are thermodynamically

unstable, although they are dynamically stable [19]. For AdS spacetimes, however, it is known

that both thermodynamic and dynamical stability are closely related [20, 21].

In this study, we study black holes in asymptotically flat spacetime, whereby it seems very

legitimate to ask whether corrections like the above discussed noncommutativity or even

semiclassical ones can modify thermodynamic properties of black holes in order to have

thermodynamic stable systems.

In a number of studies [22–24], black hole entropy proposed by Bekenstein and Hawking is

postulated to be the fundamental thermodynamic relation for black holes, which contains all

thermodynamic information of the system. Under this assumption, corresponding classical

thermodynamic formalism is constructed, finding that its thermodynamic structure resembles

ordinary magnetic systems instead of fluids.

4.1. Schwarzschild and Kerr black holes

As previously discussed, it is well known that for an asymptotically flat spacetime, tempera-

ture of black holes is proportional to its surface gravity κ, as T ¼ κħ=2πkBc, which is commonly

Trends in Modern Cosmology184



known as Hawking temperature [25]; this semiclassical result, along with Bekenstein bound

for entropy, leads to the Bekenstein-Hawking entropy,

SBH ¼
c3

4Għ
A: ð30Þ

Where A stands for the area of the event horizon of the black hole. The Kerr metric, which

describes a rotating black hole, can be written as:

ds2 ¼ � 1�
2Mr

Σ

� �

dt2 �
4Mra sin 2θ

Σ
dtdθþ

Σ

Δ
dr2 þ Σdθ2 þ

B sin 2θ

Σ
dφ2; ð31Þ

where, Σ ¼ r2 þ a2 cos 2θ, Δ ¼ r2 � 2Mrþ a2, B ¼ ðr2 þ a2Þ2 � a2Δ sin 2θ and a ¼ J=Mc. The

area of the event horizon of a black hole is given by A ¼

ð

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detjgμνj
q

ds. Applying for the

elements of the metric tensor given in Eq. (31), the resulting area is:

A ¼ 8πG2M2c�4 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
c2J2

G2M4

s2

4

3

5: ð32Þ

Assumed thermodynamic fundamental relation for Kerr black holes is found substituting the

above result in Eq. (30); where U = Mc2 is the internal energy of the system and J is its angular

momentum. This relation can be written as [22]:

SBHðU; JÞ ¼
2πkB
ħc

GU2

c4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2U4

c8
� c2J2

s0

@

1

A; ð33Þ

where the following constants appear: G is the universal gravitational constant, c is the speed

of light, ħ is the reduced Planck constant, and kB is the Boltzmann constant. In recent years, in

the search of suitable candidates of quantum gravity, that is, in the quest to understand

microscopic states of black holes [26, 27], a number of quantum corrections to Bekenstein-

Hawking (BH) entropy SBH have arisen. We are interested not only in the possible thermody-

namic implications of quantum corrections to this entropy but also in the consequences of

introducing noncommutativity as proposed by Obregon et al. [28], considering that coordi-

nates of minisuperspace are noncommutative. From a variety of approaches that have

emerged in recent years to correct SBH, logarithmic ones are a popular choice among those.

These corrections arise from quantum corrections to the string theory partition function [29]

and are related to infrared or low-energy properties of gravity. They are also independent of

high-energy or ultraviolet properties of the theory [26, 29–31]. We will denote the selected

expression for quantum and noncommutative corrected entropy as S*, which is obtained by

following the ideas presented in [28]. The starting point is the diffeomorphism between the

Kantowski-Sachs cosmological model, describing a homogeneous but anisotropic universe

[32], and the Schwarzschild interior solution, whose line element for r < 2M is given by:
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ds2 ¼ � 2M

t
� 1

� ��1

dt2 þ 2M

t
� 1

� �

dr2 þ t2ðdθ2 þ sin 2θdφ2Þ; ð34Þ

where the role of temporal t and the spatial r coordinates is swapped, that is, transformation

t $ r is performed, leading to a change on the causal structure of spacetime; considering the

Misner parametrization of the Kantowski-Sachs metric it follows:

ds2 ¼ �N2dt2 þ eð2
ffiffi

3
p

γÞdr2 þ eð�2
ffiffi

3
p

γÞeð�2
ffiffi

3
p

λÞðdθ2 þ sin 2θdφ2Þ: ð35Þ

Parameters λ and γ play the role of the cartesian coordinates in the Kantowski-Sachsminisuperspace.

If Eqs. (34) and (35) are compared, it is straightforward to notice correspondence between compo-

nents of the metric tensor, which allows us to identify the functions N, γ, and λ as:

N2 ¼ 2M

t
� 1

� ��1

; eð�2
ffiffi

3
p

γÞ ¼ 2M

t
� 1; eð�2

ffiffi

3
p

γÞeð�2
ffiffi

3
p

λÞ ¼ t2:

Next, the Wheeler DeWitt (WDW) equation for Kantowski-Sachs metric with the above

parametrization of the Schwarzschild interior solution is found, along with the corresponding

Hamiltonian of the system H through the Arnowitt-Deser-Misner (ADM) formalism. This

Hamiltonian is introduced into the quantum wave equation HΨ ¼ 0, where Ψðγ;λÞ is the

wave function. This process leads to the WDW equation whose solution can be found by

separation of variables.

However, we are not interested in the usual case, rather our point of interest is the solution that

can be found when the symplectic structure of minisuperspace is modified by the inclusion of

a noncommutativity parameter between the coordinates λ and γ, that is, the following com-

mutation relation is obeyed: ½λ;γ� ¼ iθ, where θ is the noncommutative parameter; this rela-

tion strongly resembles noncommutative quantum mechanics. It is also possible to introduce

the aforementioned deformation in terms of a Moyal product [7], which modifies the original

phase space, similarly to noncommutative quantum mechanics [33]:

These modifications allow us to redefine the coordinates of minisuperspace in order to obtain a

noncommutative version of the WDWequation:

∂
2

∂γ2
� ∂

2

∂λ2
þ 48eð�2

ffiffi

3
p

λþ
ffiffi

3
p

θPγÞ
	 


Ψðλ;γÞ ¼ 0; ð36Þ

where Pγ is the momentum on coordinate γ. The above equation can be solved by separation

of variables to obtain the corresponding wave function [6]:

Ψðλ;γÞ ¼ ei
ffiffi

3
p

νγKiν½4eð�
ffiffi

3
p

ðλþ
ffiffi

3
p

νθ=2Þ�; ð37Þ

where ν is the separation constant and Kiν are the modified Bessel functions. We can see in Eq. (37)

that the wave function has the form Ψðλ;γÞ ¼ ei
ffiffi

3
p

νγ
ΦðλÞ; therefore, dependence on the coordi-

nate γ is the one of a plane wave. It is worth mentioning that this contribution vanishes when

thermodynamic observables are calculated.
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With the wave function presented in Eq. (37) for the noncommutative Kantowski-Sachs cos-

mological model, a modified noncommutative version of the entropy can be obtained. In order

to calculate the partition function of the system, the Feynman-Hibbs procedure is considered

[34]. Starting with the separated differential equation for λ:

� d2

dλ2
þ 48e�2

ffiffi

3
p

λþ3νθ

	 


ΦðλÞ ¼ 3ν2ΦðλÞ; ð38Þ

In this equation, the exponential in the potential term VðλÞ ¼ 48 exp ½�2
ffiffiffi

3
p

λþ 3νθ� is

expanded up to second order in λ and if a change of variables is considered, resulting differ-

ential equation can be compared with a one-dimensional quantum harmonic oscillator, which

is a non-degenerate quantum system. In the Feynman-Hibbs procedure, the potential under

study is modified by quantum effects, for the harmonic oscillator is given by:

UðxÞ ¼ VðxÞ þ βħ2

24m
V 0 0ðxÞ;

where x is the mean value of x and V 0 0ðxÞ stands for the second derivative of the potential. For

the considered change of variables, the noncommutative quantum-corrected potential can be

written as:

UðxÞ ¼ 3

4π

Ep

l2p
e3νθ x2 þ

βl2pEp

12

" #

: ð39Þ

The above potential allows us to calculate the canonical partition function of the system:

ZðβÞ ¼ C

ð

∞

�∞
e�βUðxÞdx; ð40Þ

where β�1 is proportional to the Bekenstein-Hawking temperature and C ¼ 2πl2pEpβ
h i�1=2

is a

constant. Substituting U(x) into Eq. (40) and performing the integral over x, the partition

function is given by:

ZðβÞ ¼
ffiffiffiffiffiffi

2π

3

r

e3νθ=2

Epβ
exp �

β2E2
p

16π
e3νθ

" #

; ð41Þ

This partition function allows us to calculate any desired thermodynamic observable by means

of the thermodynamic connection of the Helmholtz free energy A ¼ �kBTlnZðβÞ, with the

internal energy and the Legendre transformation:

〈E〉 ¼ � ∂

∂β
lnZðβÞ; S

kB
¼ lnZðβÞ þ β〈E〉:

With this equation for 〈E〉, the value of β can be determined as a function of the Hawking

temperature βH ¼ 8πMc2=Ep, obtaining:
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β ¼ βHe
�3νθ 1�

1

βHe
�3νθ

1

Mc2

	 


; ð42Þ

With the aid of this relation and the Legendre transformation for Helmholtz free energy presented

above, an expression for the noncommutative quantum-corrected black hole entropy can be found:

S⋆ ¼ SBHe
�3νθ �

1

2
kBln

SBH
kB

e�3νθ

	 


þOðS�1
BHe

�3νθÞ: ð43Þ

Functional form of S* is basically the same than quantum-corrected commutative case, besides

the addition of multiplicative factor e�3νθ to Bekenstein-Hawking entropy. From now on, we

will denote the noncommutative term in this expression, for the sake of simplicity, as:

Γ ¼ exp ½�3νθ�:

Likewise, natural units, G ¼ ħ ¼ kB ¼ c ¼ 1, will be considered through the rest of this chapter.

In this section, the previous result found in Eq. (43) for the Schwarzschild noncommutative

black hole is extended to the rotating case, that is, the Kerr black hole. This is not straightfor-

ward as an analog expression for the noncommutative entropy of the rotating black hole is

required, implying the application of a similar procedure to the one presented above: A

diffeomorphism between the Kerr metric and some appropriated cosmological model and the

procedure is presented in Ref. [28]. To our knowledge, the implementation of this procedure

has not been yet reported. However, we are interested to have an expression to study not only

the static case but also the effect of angular momentum over the physical properties of the

system. Our proposal to have an approximated relation for the extended Kerr black hole entropy

starts with the assumption that for entropy found in Eq. (43), Bekenstein-Hawking entropy for

Schwarzschild in this relation SBH can be also substituted for its Kerr counterpart given in

Eq. (33). As the noncommutative relation for quantum Schwarzschild black hole entropy is

correct, it is clear that our proposal to the quantum noncommutative Kerr black hole entropy

will be a good approximation for small values of J when compared to the values of U2,

whatever be the exact expression for the rotating case. For our proposal, in the vicinity of small

values of angular momentum, λ and γ, the coordinates of the minisuperspace are the same

than in the Schwarzschild case. Therefore, the corrected entropy that will be analyzed is:

S⋆ ¼ 2π Γ U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

� �

�
1

2
ln 2π Γ U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

� �	 


: ð44Þ

A clarification must be made that Eq. (44) is not a unique valid generalization for the quantum-

corrected noncommutative entropy of a rotating black hole in the neighborhood of small J.

However, we claim that this is the most natural extension from the Schwarzschild case to the

Kerr one. Although, to our knowledge, there is no general argument to support that Eq. (43)

remains valid for any other black hole besides the Schwarzschild one. However, there is some

evidence that for the case of charged black holes, the functional form of Eq. (43) is maintained,

at least partially [35].
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Through the rest of this section, all thermodynamic expressions with superindex ⋆ will stand

for noncommutative quantum-corrected quantities derived from Eq. (44), meanwhile, all ther-

modynamic functions without subindexes or superindexes will represent the corresponding

noncommutative Bekenstein-Hawking counterparts. It is known that noncommutativity

parameter θ in spacetime is small, from observational evidence [36, 37]; although in this study,

noncommutativity on the coordinates of minisuperspace is considered instead, it is expected

such parameter to be also small [38]; nonetheless, its actual bounds are not well known yet. We

will consider that parameter Γ is bounded in the interval 0 < Γ ≤ 1. As previously mentioned

for the non-corrected Kerr black hole, Eq. (44) is now assumed to be a fundamental thermody-

namic relation for the rotating black hole, when noncommutative and quantum corrections are

considered. It is well known from classical thermodynamics that fundamental equations con-

tain all the thermodynamic information of the considered system [39], and, as a consequence,

modifications introduced by corrections to entropy (which imply modifications to thermody-

namic information) are carried through all thermodynamic quantities.

In Figure 1, plots for both Bekenstein-Hawking entropy and its quantum-corrected counter-

part are presented for Γ ¼ 1. Figure 1a shows plots for S ¼ SðUÞ and S⋆ ¼ S⋆ðUÞ; Bekenstein-

Hawking entropy is above the quantum-corrected one, in all its dominion, even in the region

of low masses, where entropy is thermodynamically stable [22, 24]. Figure 1b presents the

same curves as function of angular momentum instead, for U ¼ 1; a similar behavior can be

noticed in this case. If this analysis is performed over the noncommutative relation, it is found

that for small values of θ, differences between both SBH and S* are negligible.

4.2. Equations of state

Working in entropic representation, fundamental Bekenstein-Hawking thermodynamic rela-

tion for a Kerr black hole has the form SBH ¼ SBHðU;JÞ. For these systems, partial derivatives of

SBH T � ð∂SUÞJ and Ω � ð∂JUÞS play the role of thermodynamic equations of state; here, T

(a) (b)

Figure 1. A comparison between Bekenstein-Hawking entropy (solid line) and its quantum-corrected counterpart (dash-

dot line) is presented; both relations exhibit a region where entropy is a concave function, implying the existence of

metastable states. (a) Entropy as a function of internal energy, J = 1. (b) Entropy as a function of angular momentum for U

= 1, S ¼ Sð1; JÞ.
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stands for Hawking temperature and Ω is the angular velocity. In entropic representation,

equations of state are defined by:

1

T
�

∂SBH

∂U

� �

J

;
Ω

T
� �

∂SBH

∂J

� �

U

: ð45Þ

For the entropy of the quantum-corrected entropy S*, the above relations remain valid. In

entropic representation, T and Ω for the noncommutative quantum-corrected entropy are

given by:

1

T⋆
¼

U 4π Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

þ 4π ΓU2 � 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q ; ð46aÞ

Ω
⋆

T⋆
¼

1

2

J 4π Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

þ 4π ΓU2 � 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

U2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

� � : ð46bÞ

The same relations for noncommutative Bekenstein-Hawking entropy are calculated as:

1

T
¼

4π ΓUðU2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q

Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q ; ð47aÞ

Ω

T
¼

2π ΓJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U4 � J2
q : ð47bÞ

When the overall effect over T and T* of noncommutativity was analyzed, different values of

parameter Γ were tested, including Γ ¼ 1 (commutative case). The corresponding curves

present a noticeable effect by the presence of Γ; nonetheless, functional behavior either of T

or T* is not modified. A comparison of the plots of both temperature is presented in Figure 2

for Γ = 1, in order to illustrate how quantum corrections introduced in entropy affect ther-

modynamic properties of black holes. Resulting curves of T and T* are very similar, although

the latter one is slightly higher than TðU;JÞ, an opposite result to the one obtained when

entropy was studied; it indicates that for a given change in its internal energy, variations of

entropy are greater for quantum-corrected entropy when compared to the Bekenstein-

Hawking one.

As previously mentioned, when values in the vicinity of Γ = 1 are considered, temperature is

minimally affected by noncommutativity. We also tested smaller values of noncommu-

tativity parameter, it was found that the maximum values that T and T* are able to reach are

noticeably increased. However, the shape of both curves is not modified by changing the

value of Γ.
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An interesting result is obtained for angular velocityΩ, this property seems to be independent

of both quantum and noncommutative corrections to entropy, namely:

Ω ¼ Ω
⋆ ¼

J

2U U
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U
4 � J2

q

� � : ð48Þ

In Figure 3, plots for angular velocity are presented. As this equation of state is not modified

by any of the considered corrections, only one curve per graphic appears; first, in Figure 3a, Ω

as a function of the black hole internal energy is presented, as can be noticed, angular velocity

steadily decreases as black hole mass is increased, asymptotically going to zero. Figure 3b

considers instead the case where the black hole mass is fixed at U ¼ 10, for which Ω grows

until it reaches a maximum value determined by the square root that appears in the denomi-

nator of Eq. (48), beyond this value angular velocity becomes complex.

(a) (b)

Figure 3. Angular velocity for Bekenstein-Hawking entropy and the quantum-corrected version are presented in Eq. (44).

(a) Ω as a function of internal energy considering a fixed value of angular momentum (J = 1). (b) Angular velocity as a

function of angular momentum considering U ¼ 10.

(a) (b)

Figure 2. Temperature in the commutative case Γ = 1 for Bekenstein-Hawking usual entropy and its quantum-corrected

counterpart. (a) Plots of TðU; 1Þ (solid line) versus T⋆ðU; 1Þ (dash-dot line) as a function of internal energy for a fixed value

of angular momentum J = 1. (b) The same curves, considering instead for variations in J at a fixed U ¼ 1.
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5. Conclusions

In section 2, if we turn our attention to the case where there is no deformation on the coordinates.

Taking the noncommutative parameter θ = 0, we have that the frequency and the effective

cosmological constant are given by:

~ω2 ¼ ω2 �
β2

4
; and Λ

˜

ef f ¼ Λef f þ
3β2

8
: ð49Þ

From the last equation, we get the most interesting result of this section. We can see that

noncommutative parameter β and Λef f compete to give the effective cosmological constant

Λ
˜

ef f . If we consider the case of a flat universe with a vanishing Λef f , we see that Λ˜ ef f ¼
3β2

8 . This

shows the relationship between the cosmological constant and the deformed parameter.

Recently, some evidence on the possibility that the effects of the phase space deformation

could be related to the late time acceleration of the universe as well as to the cosmological

constant were presented [8]. Interestingly, in the particular case of β ¼ ω2θ, we find that

frequency reduces to ~ω2 ¼ ω2 and we have that Λ˜ ef f ¼ Λef f . In this case, even as we have done

a deformation on the minisuperspace of the theory, the effects cancel out and the resulting

theory behaves as in the commutative theory. The results are similar for model 2 (Section 3),

where under a totally classical regime, we find the same functional relationship between the

cosmological constant and the deformation parameter β. Therefore, we conclude that

noncommutative phase space deformations can hold the answer to the cosmological constant

problem.

Then, in Section 4, an analysis on the thermodynamic properties of noncommutative quantum-

corrected Kerr black holes using an approximate relation was presented. Although the

resulting expressions are mathematically more complicated, the thermodynamic properties

still retain the same functional behavior with respect to those calculated through Bekenstein-

Hawking entropy. It can be proved that Kerr black holes do not pass through a first-order

phase transition [4]; since the local criteria to find the critical point are not fulfilled for any

value in the domain, corresponding isotherms do not exhibit van der Waals loops, and the

Maxwell construction cannot be obtained; all of which are characteristic of this kind of transi-

tion. Regarding the effective noncommutativity incorporated in the coordinates of

minisuperspace, outside the vicinity where Γ ≈ 1, changes introduced by this parameter over

the thermodynamic information of the system are relevant. For a complete analysis using this

phase deformations, for example, thermodynamic response functions, thermodynamic stabil-

ity, and phase transitions for Kerr black holes, see Ref. [4].
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