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Abstract

The distinctive feature of systemic lupus erythematosus (SLE) is an immune reaction 
directed to diverse spectrum of autoantigens, which tends to change along with the disease 
spreading. The most common targets of the autoantibodies are protein and nucleoprotein 
components of cell nuclei: dsDNA, histones, nucleosomes, Sm antigen, and Ro and La 
antigens. Considering that the exact causes of this tolerance loss are unknown, a certain 
number of hypotheses are now discussed. One of the most promising is “waste disposal” 
concept, which makes a link between broken elimination of cellular debris, mononuclear 
phagocyte system dysfunction, and initiation of autoimmunity by the antigen presenting 
cells in SLE. This chapter concerns the ways nuclear antigens release from cells, necrosis, 
and apoptosis, as well as the key molecular mechanisms of transport and elimination of 
these antigens, its disturbances in SLE, and connection with innate immunity by mono-
nuclear cells. Special attention is paid to nucleosomes and DNA degradation process, its 
principal factors (DNase I, C1q, SAP), blood DNA transportation by immune complexes, 
and immune stimulating action of DNA in SLE. Current pros and cons for the waste dis-
posal concept and existing research trends in this field are discussed.

Keywords: systemic lupus erythematosus, autoantigens, DNA, nucleoproteins, DNase I, 
antigen cleavage

1. Introduction

Systemic lupus erythematosus (SLE) is a prototypic diffuse autoimmune disease of connec-

tive tissue with multiple organ involvement. The history of its exploration is not so long, 

compared with some other rheumatic diseases, such as osteoarthritis and gout. But, there is 
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surprisingly few breakthrough advances in its basic conception since the 1950s, when this 

condition was established as a separate autoimmune disease and glucocorticoids became a 

groundwork in its treatment. The absence of integral and fully consistent theory of SLE etio-

pathogenesis appears to be the main problem for researchers, trying to improve the treatment 

mainly by empirical approach.

SLE etiology and pathogenesis are generally interpreted now as a multifactorially driven 

autoimmune process [1]. According to this conception, SLE is induced by multiple interac-

tions of immunological, genetic, hormonal, microbial, and environmental factors. Meanwhile, 

first three ones apparently play the lead [2]. Genetic predisposition to SLE is suggested to be 

constituted mainly by definite HLA alleles, especially DR2 and DR3, by congenital deficiency 
of early complement components (C1, C2, C4) and by other genetic associations, including 

TNF, TCR, IL-6, and other genes [3]. There are genes of C-reactive protein (CRP), C1q, Fcγ-
receptors, DNase I, serum amyloid P (SAP), and PDCD1 within seven loci, which are strongly 

linked with SLE [4]. Moreover, knocking out of these genes in mice induces autoimmune 

condition with glomerulonephritis [5, 6].

SLE occurs predominantly in women of childbearing age and, to a lesser extent, in prepuberta 

or menopause, whereupon a contribution of sex hormones could be assumed. Both men and 

women with SLE have high estrogen levels, the men also have low testosterone and high 

luteinizing hormone concentrations [7]. The connection between these deviations and SLE 

could be explained considering their influence on immune system cells, in particular, promo-

tion of B cell proliferation and antibody synthesis under high estrogen levels [8].

Among all the events that can be proposed to initiate SLE onset, the leading one is suggested to 

be virus infection [9]. Although this “trigger agent” is not definitely identified, a wide spectrum 
of viruses, including Epstein-Barr virus, retroviruses, and herpesviruses, could make a sub-

stantial contribution [10]. Other influencing factors are insolation, drugs, and some pollutants.

The prominent immunological feature of SLE is the production of autoantibodies directed 

to a wide spectrum of self-antigens. According to Sherer et al. [11], more than 100 autoanti-

gens, which could react with SLE-related antibodies, were mentioned in previously reported 

researches. However, antibodies to chromatin and its particular elements, nucleosomes, 
dsDNA, histones, components of DNA replication, and transcription apparatus are most rep-

resentative for SLE. The second important cluster of antigens involves ribonucleoproteins and 

its constituents: RNA, small nuclear ribonucleoprotein (snRNP), Sm antigen, and Ro (SS-A) 

and La (SS-B) antigens. The third group, antiphospholipid antibodies, is common in SLE as 

well. Anti-DNA antibodies, and specifically anti-double-stranded DNA (dsDNA) antibodies, 
are thought to have most pathogenetic and diagnostic importance in SLE [12]. Their titers cor-

relate with disease activity, and participation of anti-dsDNA antibodies in lupus nephritis is 

well established [13, 14].

The realization of anti-dsDNA pathogenic potential can occur by several ways. The most impor-

tant contribution to systemic inflammation is generally attributed to the formation of immune 
complexes (IC), with both circulating and tissue-fixed antigens [15]. Nephritogenic action of ICs 

is mediated primarily by interaction with Fc receptors and Toll-like receptors, and, to a lesser 

extent, through classical pathway of complement activation [16]. In addition, autoantibodies 

could interfere in functioning of circulating, membrane, or even intracellular molecules [17].
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However, pathogenic action is not an overall feature of anti-DNA antibodies. Both healthy 
individuals and SLE patients have at least two types of serum anti-DNA antibodies, unrelated 

directly with autoimmunity. First, there are low affinity antibodies, directed mainly against 
single-stranded DNA, which can be attributed to natural autoantibodies repertoire [18]. 

Another type consists of antibodies that are highly specific to microbial single-stranded DNA 
[19]. The essence of differences, influencing the pathogenic potential of these three types, is 
given in Table 1.

The way pathogenic anti-DNA antibodies appear in SLE is not well established until now. 

Several conjectures were made for explaining disturbed tolerance to autologous DNA. One of 

the hypotheses is implication of molecular mimicry, when immune response to autoantigens 

is induced by exogenous molecules with similar epitopes [24]. Epitope spreading mechanism 

may also participate in it, subsequently producing antibodies to hidden epitopes after initial 

reaction to major epitope [25]. Disturbance of T and/or B cellular function is third possible cause 

of it. Th2-polarization of CD4+ T-cellular response and predominance of Th2-associated cyto-

kines generally distinguish SLE [26]. In addition, there is low content of regulatory CD4+CD25+ 

T cells that restrict effector functions of CD4+ and CD8+ T cells and diminished suppressor 

activity of CD8+T cells [27, 28]. Circulating B cells are usually low, mainly due to decrease of 

resting subpopulations, naïve and memory B cells, being in possible connection with high 

levels of mature plasmocytes in bone marrow [29]. Causes and mechanisms of the lymphocyte 

imbalance in SLE are incompletely disclosed now, as well as its pathogenetic relevance.

For the reviewing problem, information about structure of anti-dsDNA V genes, obtained 

from the mouse models and SLE patients, is of particular importance. Compared to their pro-

genitors, mature genes were found to have multiple somatic hypermutations, which lead to 

very high avidity of these anti-dsDNA IgG [30]. Increase of arginine, asparagine, and lysine 

Factor Natural autoantibodies SLE-associated 

autoantibodies

Antibodies, induced by 

immunization

Class Mainly IgM Mainly IgG IgM or IgG

Avidity to DNA Low Moderate or high High

Type of DNA to react Preferentially with ssDNA Usually both with ssDNA 

and dsDNA, more rarely—

specific to dsDNA

Highly specific to ssDNA

Leading DNA epitope No data Deoxyribose-phosphate 

backbones

Immunogen-specific 
sequence of bases

Interaction with antigens, 

other than DNA

With wide spectrum of 

antigens

With restricted pattern of 
antigens

Extrinsic

Isotype switching and 

complement fixation
Extrinsic Typical Extrinsic

Somatic mutations of V 

gene

Few or absent Typical Typical

Ability to penetrate cells In many idiotypes In particular idiotypes No data

Table 1. Tentative differences of pathogenic anti-DNA antibodies in SLE [20–23].
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in the Complementarity-determining regions (CDR) due to hypermutations results in high 

isoelectric point of the antibodies, named cationic because of it [31]. Cationic anti-dsDNAs are 

more nephritogenic apparently through interaction with either negatively charged elements 

of glomerular basement membrane or DNA-containing antigens in situ [32].

Both somatic hypermutations and isotype switching are distinctive features of antigen-

dependent B cell selection by T helper cells. High avidity of these autoantibodies points out 
the similarity of epitopes of the relevant autoantigen to dsDNA. Meanwhile, purified homo-

logic DNA have been considered to be poorly immunogenic in health and in SLE models for 

a long time [33]. In view of this contradiction, there is emerging attention to different classes 
of endogenous nucleoproteins as anti-dsDNA inductors in SLE.

Besides anti-DNA antibodies, anti-nucleosome antibodies are also attributed to have a special 
pathogenetic significance in SLE [34]. Priority of anti-nucleosome immune response compared 

to anti-DNA and anti-histone ones is indirectly confirmed by revelation of earlier subtype of 
anti-nucleosome antibodies that do not interact with both DNA and histones [35]. There is 

close association of these antibodies with SLE activity and the kidney involvement [36]. But, 

unlike anti-dsDNA, anti-nucleosome antibodies do not develop glomerular deposits in the 

absence of nucleosomal antigens; further perfusion of nucleosome-containing ICs through 

the kidneys results in appearance of linear immunoglobulin deposits along glomerular base-

ment membrane [37]. In addition, after interaction with antinuclear antibodies, nucleosome-

containing apoptotic bodies, deposited on glomerular basement membrane or in mesangial 

space, turn into so-called electron-dense deposits, an attribute of IC-mediated nephritis. There 
is no immunoglobulin fixation in the kidneys outside these deposits [38].

In most SLE cases, serum anti-dsDNA and anti-nucleosome antibodies are presented at the 

same time [39]. Furthermore, chromatin immunization induces not only anti-nucleosome but 

also anti-dsDNA and anti-nucleosome antibodies, possibly through epitope spreading [40]. 

High avidity of anti-nucleosome antibodies is achieved by the same somatic hypermutations, 
as for anti-dsDNA production; reversion of these mutations to the initial sequence results in 

the loss of capability to interact with nucleoproteins and, interestingly, in obtaining antiphos-

pholipid activity [41].

Altogether, increasing research data suggest that nucleosomes are just the best candidate anti-

gen to induce and/or maintain production of anti-chromatin autoantibodies and to influence 
pathogenicity of preexisting immunoglobulins. In view of it, efficient elimination of endog-

enous nucleoproteins in SLE seems to be an important factor that counteracts the disease 

spreading.

2. Normal generation and clearance of extracellular DNA

Normal extracellular DNA concentrations are usually quite low, but the values may substan-

tially differ depending on the detection approach and contamination of plasma with leukocytic 
DNA [42]. Circulating DNA is found to be not in free state but mainly as a part of mono- and 
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oligonucleosomes; this conclusion is based upon its particular molecular weight and bind-

ing with histones [43]. Nucleosomes can release from cells during several physiological and 

pathological processes, namely apoptosis, necrosis, and formation of extracellular traps.

Apoptosis is considered to be predetermined death followed by the removal of damaged or 

unnecessary cells that is genetically, morphologically, and biochemically standalone of other 

kinds of cell destruction [44]. An essential condition for normal course of apoptosis is cleavage 

and utilization of chromosomal DNA. Internucleosomal fragmentation of chromatin is per-

formed by specific apoptotic nucleases during early phase of the process [45]. Nuclear anti-

gens, including nucleosomes, moved then to little bulbs of cell membrane, so-called apoptotic 
bodies [46]. Interestingly, in some virus infections, endogenous nucleoproteins are bundled 

together with virions and, thereby, can be jointly presented in apoptotic bodies [47].

The next phase includes transition of aminophospholipids, phosphatidylserine, and phos-

phatidylethanolamine to external side of cell membrane, and their opsonization by serum 

proteins, especially by C-reactive protein, C1q, and serum amyloid P (SAP) [48, 49]. This com-

plex becomes a signal to mononuclear phagocytes for recognition and uptake. Interaction of 

phosphatidylserine and its circulating cofactors (C1q, β
2
-glycoprotein I) with C1q receptor 

and Mer receptor of phosphatidylserine, expressed on macrophage surface, probably plays 

the lead in this complicated and insufficiently explored process [50, 51]. The ultimate destruc-

tion of engulfed nucleoproteins is provided by lysosomal enzymes, primarily by DNase II 

and cathepsins D, B, and L [52]. This way of clearance, which is supposed to be a major one, 

allows to keep the continuity of cell membrane as its distinctive feature and, thus, enables to 

prevent full-scale release of intracellular compounds to interstitial space [53]. Another pecu-

liarity is the production of proinflammatory cytokines (TGF-β and IL-10), inhibiting antigen 
presentation by dendritic cells [54].

Appearance of circulating oligonucleosomes in apoptosis depends, to a large extent, on the 

activity of phagocytes [55]. Functional blocking of these cells in mice in vivo with clodronate 

is demonstrated to abolish plasma DNA spike after loading by apoptotic or necrotic cells [56]. 

Additional factor of substantial influence on DNA release is sex hormone balance, so far as 
above-mentioned DNA spike is much more higher in female mice compared to males and 

spays [57]. The causes of partial dissipation of DNA-containing substance during phagocyto-

sis are now unsure. Tentative persistence of apoptotic cells, until their secondary necrosis and 

membrane disruption begin, is an alternative way of DNA release if elimination potential of 

mononuclear phagocytes is insufficient.

The second important source of extracellular DNA is cell necrosis. Unlike apoptosis, it is char-

acterized by early cell membrane, proinflammatory effect as a result of different influences, 
and induction of dendritic cell maturation [58]. In necrosis, DNA is degraded at a later stage 

compared to apoptosis, with DNase I playing a considerable part in it [59].

The newly discovered and promising phenomenon, characterized by DNA release out of its 

natural compartment, is a formation of so-called extracellular traps. They were first found in 
neutrophils, thus being named neutrophil extracellular traps (NETs) [60]. NET are unusual 

extracellular structures, which are suggested to be a spare defense mechanism, activating 
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when there are pathogens or particles, too big to be englobed by phagocytes [61]. In this case, 

large fibers, consisting of chromatin, serve as an external scaffold for immobilized enzymes, 
antimicrobial peptides, and ion chelators with locally high levels [62]. The components of NET, 

including dsDNA, histones, nucleosomes, and ribonucleoproteins, become bound to exog-

enous molecules when NET eliminates its target and thus may obtain new antigenic features.

In general, there is sustained release of nucleoproteins to extracellular space in health, and 

its rate can be considerably increased under certain conditions. Efficiency of its elimination 
strongly depends on circulating cofactor molecules, such as C1q, CRP, SAP, as well as DNase 

I and IgM [63]. They opsonize chromatin and keep it soluble, thus promoting digestion of 

long chromatin segments, transportation through circulation, and further recognition by mac-

rophages [64]. The terminal points of this transfer are mononuclear phagocyte cells, primarily 

in the liver and spleen [65]. Overall efficiency of this elimination mechanism is quite high, 
since after injection of considerable amount of exogenous DNA, or after spontaneous release 

of endogenous nucleoproteins during hemodialysis, half-life of the DNA in circulation is 

within 4–15 min [66].

An alternative pathway of DNA elimination, that is just a subsidiary one in the absence of 

SLE, carries out by means of circulating immune complexes (CIC). Their clearance is deter-

mined principally by the activity of complement system. Binding of C1q with CIC results in 

the restriction of its further growth, prevention of precipitation, and induction of C3b and 
C4b occurrence [67]. Coupling of these molecules with CIC allows it to interact with CR1 

complement receptor (CD35) of red blood cells [68]. Normal CIC transfer to macrophages 

of the spleen and liver presumably goes on in connection with erythrocytes, probably for 

prevention of CIC outflow from circulation, and the binding is more tight when CIC contains 
high molecular DNA (nearly 6000 kDa), then in case of shorter DNA segments (200–600 kDa) 

[69]. Both CIC and DNA, complexed with circulating opsonins, are captured by macrophages 

through Fcγ-receptors, the former alongside with CR1 cleavage [70]. However, elimination of 
DNA by means of CIC is much slower compared to CRP-SAP-linked DNA [71].

Apart from the elimination, binding of circulating ligands with DNA makes an obstacle 

for access of immune cells to nucleosome etitopes. This is especially important in view of 

chromatin immunology. It is generally considered that pure extracellular DNA have limited 

immunogenicity unless CpG motifs [72]. On the contrary, conjugation of protein with oligo-

deoxyribonucleotide can strongly promote interaction of the protein portion with antigen 

presenting cells, enhance antibody production, and presumably induce Th2-polarization [73]. 

From the other side, protein could serve as a carrier for oligonucleotide hapten. Circulating 

DNA ligands might also interfere in reaction of preexisting autoantibodies with apoptotic 

debris [74]. In light of all mentioned above, endogenous DNA elimination pathway, espe-

cially serum clearance mediators and mononuclear phagocytes, should be regarded in SLE.

3. DNA elimination pathway in SLE

Extracellular DNA levels in SLE patients tend to be appreciably elevated, their circulating 

DNA have predominantly low molecular weight and contain only human sequences [75]. It 
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is also almost completely double-stranded and mainly included in oligonucleosomes, linked 

with serum proteins and immunoglobulins [76]. High plasma DNA concentration is usually 
associated with SLE flares and vascular involvement, being inversely correlated with anti-
dsDNA titers, and decreases after efficient SLE treatment [77].

Functioning of the clearance mediators in SLE has some differences. Increase of disease activ-

ity does not generally combine with substantial elevation of plasma SAP and CRP levels; SAP 

molecular weight as well as its affinity to nucleosomes and heparin are also changeless [78]. 

Moreover, SAP-linked DNA levels are substantially decreased in SLE, despite elevation of 

total extracellular DNA; they reversely correlate with anti-dsDNA and disease activity [79]. 

On the contrary, plasma C1q concentrations tend to be lower in high SLE activity and in lupus 

nephritis, also directly correlating with CIC-linked DNA levels [80]. These changes taken one 

with another can be accounted for reallocation of plasma DNA pool to CIC in the presence of 

high-avidity anti-dsDNA. As C1q binds with both CIC and CRP-SAP-chromatin complex and 

participates in elimination of every type, simultaneous decrease of C1q and CIC-linked DNA 

is supposed to be a result of joint tissue deposition [81]. Some evidences were indeed revealed 

after analysis of DNA-containing CIC in SLE.

Compared to normal individuals, SLE patients commonly have elevated CIC-linked DNA 

concentration, which further increases along with disease activity, but its decrease is more 

inherent in extreme SLE flares and overt nephritis [82]. DNA from SLE CIC is double-stranded 

and mainly consists of fragments, which correspond to oligonucleosomes in their length, 150–

250 and 370–460 bp, compared to 20 and 30–40 bp in normal controls [83]. It is revealed in 

SLE that in this DNA pool CpG motifs are 5–6 times more frequent than in human genome 

[84]. Apart from DNA and immunoglobulins, SLE CICs contain CRP, C1q, C3b, and C4b [85].

Clearance of CIC is reduced in SLE, and their half-life negatively correlates with SLE activ-

ity and extent of lupus nephritis manifestation [86]. This might be due to either impairment 

of CIC transportation or disturbance of phagocytosis. Furthermore, active SLE is known to 

have C3/C4 hypocomplementemia and low CR1 on red blood cells, probably because of its 
consumption [87]. It leads to persistence of CIC mostly out of erythrocytic pool, both free and 

connected with other blood cells [88]. This circumstance may be the cause of increased uptake 

of CIC by the liver macrophages and decreased one in the spleen, revealed by injection of 

labeled ICs to SLE patients [89]. Another unexpected finding from this experiment is substan-

tial reversed release of partially digested ICs outside of phagocytes, which begins 40–60 min 

after the injection, coinciding with internalization period [90]. The causes and mechanisms of 

this phenomenon are now unknown. There is single publication about tentative disturbance 

of interaction between Fcγ receptors and intermediate filaments of mononuclear cells in SLE, 
what might affect internalization [91]. It is also known that knocking out of Axl/mer/tyro3 
tyrosin kinase gene in Merkd mice is followed by disturbance of apoptotic debris internaliza-

tion together with development of spontaneous autoimmunity. [92].

Delivery of endogenous nucleoproteins to the resident liver and spleen macrophages is thus 

realized in SLE presumably by way of CIC, while circulating protein mediators are respon-

sible for this function in health. Pathogenetic importance of this shift is not restricted only to 

extravasation and tissue deposition of “free” DNA-containing CIC. Apart from phagocytosis, 

contact of CIC with macrophage Fcγ receptors initiates synthesis of proinflammatory signals, 
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which can induce and maintain autoimmune responses [93]. Conversely, CRP-SAP-linked 

DNA promotes release of cytokines and chemokines, which suppress inflammation and auto-

immunity as well as raise activation threshold of dendritic cells [94].

It is supposed that immune stimulating action of DNA-containing CIC in SLE is mediated by 

TLR9 Toll-like receptors, together with Fcγ receptors. After CIC internalization by phagocyte, 
TLR9 move from endoplasmic reticulum to phagosomes and then bind with CpG motifs of 

DNA-IgG-FcγRII complex [95]. According to the data reported by Lövgren et al. [96] and 

Means et al. [97], DNA-containing IC obtained from SLE patients promote macrophages and 

dendritic cells in vitro by means of TLR9 to produce α and γ interferons, IL-8, IL-1β, IL-6, 
IL-18, IL-12p40, TNF, and to generate chemokine signals to peripheral mononuclear cells, 

immature dendritic cells, T and NK cells. IC derived from patients with rheumatoid arthritis, 

Sjogren’s disease, and DNA-lacking IC from SLE patients does not demonstrate these effects. 
Treatment of the IC from SLE patients with DNase I makes cytokine and chemokine induc-

tion down by 90–100% [98]. One may conclude that abundance of “free” DNA-containing CIC 

could amplify inflammation in SLE both directly and indirectly.

Using gene knockout approach, a possible relation between disturbance of cell debris removal 

and autoantibody synthesis is managed to establish. Mice with disabled SAP, C1q, Mer, 

secreted IgM genes develop spontaneous autoimmune disease with glomerular lesion and 

production of antinuclear antibodies [99]. This connection could also appear in human SLE.

As follows from the above, additional factors, that could digest extracellular DNA, mainly 

DNase I, become of special importance in SLE, when ordinary clearance pathway is dis-

abled. Results of DNase I gene knockout had been published in 2000 [100], and since then 

the enzyme is considered to be a mediator of DNA clearance. Earlier data about low serum 

DNase I activity in SLE [101, 102] made this factor even more challenging for exploration of 

immunological tolerance to autologous DNA.

4. The DNase I riddle

DNase I is a DNA-specific endonuclease, which participates in DNA destruction in the pres-

ence of Mg2+ or Mn2+ cations. DNase I is able to destruct single-stranded, double-stranded, 

and protein-bound DNA; in the latter case, DNA breakdown is performed presumably in 
segments, free from protein, for example, in internucleosomal connectors of chromatin or 

in DNA segments where expression is going on [103]. Serum DNase I is usually supposed 

to be synthesized in gastrointestinal tract, and normal serum nuclease activity is provided 

almost completely by its function [104]. Proteases enhance DNase I effect on chromatin DNA, 
possibly due to removal of histones or liberation of basic amino acids, histidine, arginine, 

and lysine, which are known to be DNase I activators [105]. In general, little is known about 
physiological DNase I activators, including those, by which serum DNase I activity become 

significantly increased shortly after injection of purified DNA in vivo [106]. G-actin is widely 

considered to be a predominant physiological DNase I inhibitor [107].
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Despite extensive examination, our knowledge about DNase I functions is quite superficial. 
Its digestive function as a participant of pancreatic secretion is the only universally recog-

nized one. Other possible roles, including apoptotic chromatin degradation, cellular debris 

removal after necrosis, destruction of DNA genome viruses and some other, need to be fully 

established [108–110]. An important aspect of DNase I action is the loss of antigenic proper-

ties; it can be achieved for nucleoproteins and ICs, both circulating and in situ [111].

The rise of interest to DNase I in SLE became after the research performed by Napirei and col-

leagues had been published [100]. DNase I knockout in mice led to anti-dsDNA production, 

glomerular IC deposition, and lupus-like glomerulonephritis pathology. SLE patients and 

NZB/NZW F
1
 lupus mice models were found to have low serum DNase I activity [112, 113]. 

Subsequently, it was shown with some preanalytic corrections that change of serum DNase 

I activity in SLE was bidirectional, with only about 30% of low enzyme activity, while other 
patients had moderately increased serum DNase I activity [114].

The origin of these changes is now unknown. The attempt to connect low DNase I activity 
with high serum actin concentrations was then rejected [114]. Numerous efforts to identify 
genetic changes, which can influence on the enzyme activity, resulted in very rare incidence 
of functionally significant gene alterations, about two per 1000 sequenced SLE patients 
[115–117]. Other important information, provided by geneticists, was markedly increased 

expression of DNase I gene in SLE [115]. One consistent explanation for it, enhanced DNase 

I inhibition in SLE, was challenged by Prince and colleagues [118]. Another hypothesis can 

be the inhibition of DNase I by specific autoantibodies, which were found by Yeh and col-
leagues [119]. Several factors are more likely to influence DNase I activity in SLE, as it was 
later shown, with about 50% cases of predominant inhibition by autoantibodies and/or actin, 

and the other half, impacted by unknown factor [114]. Without extensive research, this riddle 

is now difficult to solve.

5. Conclusion

If we could try to bring together all the facts, mentioned above, to puzzle them all into a single 

reasonable explanation, we will inevitably create so-called waste disposal hypothesis first pub-

lished by Walport [120]. This concept defines that in SLE the most likely source of autoantigens 
and also leading autoimmunity inductor could be apoptotic bodies on the surface of apop-

totic cells, containing almost all characteristic SLE antigens, or, as an alternative, necrotic cell 

debris. Another obligate condition for autoimmunity induction is postulated to be impaired 

clearance of the cellular “waste” and, as a consequence, antigen uptake by immature dendritic 

cells and their activation [121]. Several different impairments of the clearance pathway are 
proposed to induce SLE. Although this hypothesis seems to be consistent, and accounts for 

many clinical peculiarities and controversies of SLE, it has some weak points. There is no good 

inducible SLE model based on this concept. There is no explanation of late SLE onset, espe-

cially long after pregnancy, within this theory. The cases of spontaneous remission without 

glucocorticoid treatment are quite rare, despite obvious variability of “waste” generation rate. 
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Results of treatment with DNase I are generally discouraging. An enthusiast can, however, 

object to it that any correct theory usually has multiple discordances at the beginning of its life. 

So we shall wait a little and collect pros and contras for the final assessment of this hypothesis.
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