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Abstract

Interfacial electron transfer kinetics of the haem (FeIII/FeII) group in human hemoglobin 
molecules were investigated on glass/tin-doped indium oxide electrodes. Factors such as 
surface roughness, crystallinity, hydrophilicity and partial polarization of the working 
electrode played an important role to provide a more compatible microenvironment for 
protein adsorption. Results suggested that direct electron transfer from electrode to haem 
(FeIII)-H

2
O intermediate is coupled to proton at near physiological pH (I = 0.035, pH = 7.2).

Keywords: cyclic voltammetry, direct-electron-transfer, human hemoglobin, tin-doped 
indium oxide electrode, surface electron transfer rate constant

1. Introduction

Haem-containing proteins such as hemoglobin (Hb), also spelled haemoglobin, are macro-

molecules that consist in an assembly of four globular polypeptide chains, tightly associated 

with a nonprotein haem group by means a complex arrangement folding pattern (α-helix). 
The haem group consists of an iron atom chelated to a porphyrin ring (cf. Figure 1), which 

allow to carry the oxygen in the red blood cells to whole body of all vertebrates as well as 

some invertebrates. Although the iron atom can take any of its oxidation states (FeII or FeIII), 

the ferrihemoglobin (methemoglobin, metHb) (FeIII) cannot bind oxygen [1]. In adult humans, 

the most common Hb type is a tetramer well-known as Hb A, consisting of two α and two β 
subunits noncovalently bound (α

2
β

2
). These subunits are structurally similar to themselves 

and about the same molecular size. The total molecular weight of the Hb A is ca. 64 kDa. 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The four polypeptide chains are bound to each other by salt bridges, hydrogen bonds, and 

hydrophobic interaction. While Hb does not function physiologically as an electron transfer 

carrier, it does undergo oxidation and reduction at the haem group in certain cases in vivo [2]. 

Therefore, the focused research on its electron transfer process might lead to a more profound 

understanding of electron flow in biological systems.

Throughout almost half of the century, there has been shown that the direct electrochemistry of 

haem proteins on bare electrodes is fairly difficult [3]. Arrival to this conclusion may be caused by 

several factors that were overcame to progress, among them: (a) the extended three-dimensional 

protein conformation due to strong interaction between the protein and the substrate or the lack 

of an effective microenvironment for adsorption; (b) the inaccessibility of electron communication 
between the electroactive center of the protein and the electrode due to misalignment of the redox 

center of the protein; (c) the adsorption of denatured protein onto electrodes, resulting in a loss 
of bioactivity; and (d) the unsymmetrical distribution of surface charges on protein molecules. 
According to point (c), a general problem commonly found with used metal electrodes, such 

as Au, Ag, Pt, and Hg, is that all of them lead to denaturation and irreversible adsorption of the 

resulting inactive protein, and they are easily fouled by contaminants, i.e., the water molecules 

that are normally bound at the electrode/electrolyte interface are easily displaced (cf. Figure 2).

Since the pioneering studies of Rusling and co-workers [4, 5] in the 1990s, the most suc-

cessful electrode materials for haem proteins have been carbon or metal oxides, which bear 

well-defined natural surface functionalities. Semiconducting metal oxides are often optically 
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Figure 1. The structure of haem a.
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transparent across the visible spectrum and thus provide additional possibilities for spectral 

studies, e.g., fluorescence and Raman spectroscopies. In the last decade, a few studies have 
been conducted on mammalian’s Hb, for example, Topoglidis et al. [6] reported that tita-

nium oxide and tin oxide allow the reduction of bovine metHb without the addition of any 

promoters and mediators. Later, Ayato et al. [7, 8] reported that tin-doped indium oxide can 

induce the electron transfer of the haem (FeIII/FeII) redox center in bovine Hb molecules; they 
also found that the protein directly adsorbed on the electrode surface was not significantly 
denatured. More recently, Martinez-Mancera and Hernandez-Lopez [9] reported that thin 

films of solid solutions like In
2-x

Sn
x
O

3
 on flat glass substrates can act as both electron acceptors 

and electron donors, and can be considered a simple model system for mimicking a charge 

interface of the physiological-binding domain. Herein, the electron transfer properties of the 

haem (FeIII/FeII) redox center in human Hb molecules were investigated, in vitro, on commer-

cial glass/tin-doped indium oxide (ITO) electrodes. Special emphasis is put in theory of cyclic 

voltammetry and in the Butler-Volmer model, developed by Laviron, for studying the elec-

tron transfer between electrode and protein film, the morphological, structural, and surface 
properties of the electrode, as well as the influence of the physiological milieu that was con-

ditioned into the three-electrode cell system by means of a phosphate-buffered saline (PBS) 
solution (0.01 mol L−1 Na

3
PO

4
, 0.015 mol L−1 NaCl, pH 7.2) and T = 25°C. To this chapter, we 

have added supplementary information. Subsection 2.2.1. A procedure of chromatography 

in-column, which underlines the importance of preparing and purifying the protein solution. 

Subsection 2.6. A model of theoretical prediction for determining the point of zero charge of 

the working electrode.

2. Experimental

2.1. Chemicals

Human hemoglobin (Product No. H7379, pH
iep

 = 6.87, MW = 64.5 kDa) and phosphate-buffered 
saline (PBS) packs (0.01 mol L−1 Na

3
PO

4
, 0.015 mol L−1 NaCl, pH 7.2), BupH™ were purchased 

from Sigma-Aldrich® and Thermo Scientific®, respectively, and used without further purifica-

tion. Sodium dithionite (Na
2
S

2
O

4
), FW = 174.110 g mol−1 was purchased from J.T. Baker and used 

X

DenaturationPhysisorptionDiffusion

Figure 2. Cartoon illustrating the importance of the protein adsorption process whose conformation may become 

distorted on interaction with a metallic surface leading to denaturation.
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without further purification. BACKBOND speTM, Sephadex® G-25, disposable extraction columns 

were purchased from J.T. Baker. The concentration of Hb was adjusted to 1 × 10−4 mol Hb L−1 using 

the PBS solution.

2.2. Characterization of the protein by UV-visible spectroscopy

Absorption spectra of human Hb were measured at λ = 200–1000 nm with an UV-Visible 
spectrophotometer 101 GBS (Cintra), using the following parameters: step size = 0.16 nm, 

scan speed = 400 nm/min, slit width (SW) = 2 nm. The concentration of Hb referred above was 

estimated by this technique using the following absorptivity value: A
540

 (1%) = 5.97 cm−1 [10] 

(cf. Figure 3).

2.2.1. Preparation of reduced hemoglobin from oxidized hemoglobin

Reduced hemoglobin can be prepared from oxidized hemoglobin in accordance to the work 

reported by Dixon and McIntosh [11] with modifications. Briefly, the procedure is as follows: 
(a) equilibrate a column of Sephadex G-25 (25 × 2.5 cm) with a 20 × 10−3 mol L−1 PBS solution, 

pH 7.0, containing 1 × 10−3 mol L−1 EDTA; (b) apply to the column 2 mL of the same buffer 
to which 1 × 10−3 mol of Na

2
S

2
O

4
 have been added, and help it drain into the gel by adding 

1 mL of the PBS solution; (c) apply to the column about 10 mL of sample containing oxidized 
hemoglobin and elute with the PBS solution; (d) saturate the reduced hemoglobin eluent with 
oxygen gas; and (e) dialyze the oxygenated eluent against an oxygen-saturated PBS solution 
in order to eliminate any excess of S

2
O

4
2− and achieve complete conversion to oxyhemoglobin.
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Figure 3. The UV-visible absorption spectra for metHb and oxyHb exhibiting the highly conjugated porphyrin 
macrocycle with intense features at 405.7 and 412.1 nm (the “Soret” bands), respectively, followed by several weaker 

absorptions (Q bands) at higher wavelengths (from 450 to 650 nm) [12–14].
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2.3. Electrochemical measurement system

Glass/tin-doped indium oxide (ITO) substrates were purchased from TIRF Technologies, Inc. 

The ITO film surface was cleaned according to the following standard procedure [15]: immer-

sion for 15 min each in a series of ultrasonically agitated solvents (acetone, ethanol, water) 

then for 15 min each in ultrasonically agitated: (a) 2.0% (v/v) phosphate-free detergent solu-

tion Hellmanex (HellmaTM; sonification apparatus Super RK510, Sonorex), (b) deionized water 

type I and (c) ethanol at room temperature. In between the sonification steps, the samples 
were rinsed in deionized water type I. Finally, the substrates were dried in a stream of nitro-

gen gas (Praxair, 99.999%) until further processing. The electrode potential was controlled 

with a potentiostat-galvanostat EW-4960 (EpsilonTM BASi) using a conventional three-elec-

trode cell system supported onto a module C3 (BASi). The latter is coupled to a PC/Processor 
Intel® Celeron, 3.06 GHz. A glass/ITO substrate (A

g
 = 1.15 cm2) was used as working electrode. 

A straight platinum wire (A
g
 = 0.79 mm2) and an electrode of Ag|AgCl in 3 M NaCl solution 

(E0′ = 0.209 V vs. SHE at 25°C) were used as counter and reference electrodes, respectively. 

The cell system was thermostated at 25 ± 0.1°C. Prior to voltammetry, the Hb solution was 

purged with nitrogen gas (Praxair, 99.999%) for at least 30 minutes; then, a nitrogen atmo-

sphere was maintained over the solution during experiments.

2.4. SEM and surface roughness analysis

Scanning electron microscopy (SEM) micrographs were taken with a scanning electron micro-

scope JSM-6510LV (JEOL) operated at an accelerating voltage of 15 KV. The superficial charac-

terization of the electrode’s roughness was carried out by means of a surface roughness tester 

HANDYSURF E-35A (TSK/Carl Zeiss®) and performing the norm ASME B46.1-2009 Standard.

2.5. XRD analysis

The structural characterization was determined by X-ray powder diffraction (XRD) using a dif-
fractometer D8 Advanced (Bruker AXS), using the following parameters: U = 40 kV, I = 35 mA, 

Ni-filter, and Cu-Kα radiation, λ = 1.54 Å. A background diffractogram was subtracted using a 
glass/tin-doped indium oxide slide as blank. For qualitative analysis, XRD diffractograms were 
recorded in the interval 10° ≤ 2θ ≥ 80° at a scan speed of 2°/min.

2.6. Theoretical prediction of the point of zero charge of a glass/ITO electrode

The point of zero charge (PZC) of simple metal oxides can be predicted using an electrostatic model, 

which takes into account the surface charges originating from the dissociation of amphoteric sur-

face M–OH groups and adsorption of the hydrolysis products of Mz+(OH)z− [16]. In this model, 

a theoretical value of the PZC can be obtained for a given metal oxide by the following equation

  p H  
pzc

   = A − 11.5  [    z _ 
R

   + 0.0029  (  CFSE )    + B ]     (1)

with

  R = 2 r  
O
   +  r  

M
    (2)
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where z is the ionic charge of species indicated by the subscript, i.e., O = O
2

− and M = cation, 

r is the ionic radius (r
O
 = 0.141 nm, r

M
 = 0.071 nm and 0.081 nm for Sn4+ and In3+, respectively), 

CFSE is a correction factor called crystal field stabilization energy and the constants A and B 

are parameters that depend on the coordination number of the cation. By virtue of that Sn4+ 

and In3+ occupy octahedral interstitial sites in SnO
2
 and In

2
O

3
, the coordination number for 

these ionic species is 6. Assuming that CFSE is zero in these calculations, A = 18.6 and B = 0 

[16]. The predicted PZC values obtained for SnO
2
 and In

2
O

3
 are then pH

pzc
(SnO

2
) = 5.93 and 

pH
pzc

(In
2
O

3
) = 9.37 [16].

For solid solutions such as ITO, the pH
pzc

 can be considered as a mixture of the constitutive 

simple oxides and can be calculated by the following equation [17]

  p H  
pzc

   =   Σ  
k
   s  

k
   p H  

pzc,k
    (3)

where s
k 

represents the molar fraction of each constituting oxide at the surface. It can be 

defined by

   s  
k
   =    

 x  
k
  2/3 
 _____ 

 ∑  
k
    x  

k
  2/3 

    (4)

where x
k
 is the usual volumetric molar fraction of each constituting oxide.

3. Results and discussion

3.1. Morphological, structural, and electrochemical characterization of a glass/ITO 

electrode

3.1.1. Morphological and surface roughness analysis

The surface morphology of a pretreated glass/ITO electrode was investigated using SEM (cf. 

Figure 4). The micrograph, taken at a 500 μm scale, shows a layer of ITO well defined whose 
thickness was ca. 90 μm. Besides, it is possible to observe a regular, uniform, and flat elect-
rodic surface.

Additionally, the average roughness value obtained in this case was 0.017 μm, which is compar-

atively lower than the average roughness value obtained for a common glass slide (0.024 μm).

3.1.2. Structural analysis

The structural characterization of a pretreated glass/ITO electrode was investigated using 

XRD. Figure 5 shows the XRD pattern of a glass/ITO substrate used like a working electrode. 
All of the distinct diffraction peaks corresponded to the (211), (222), (400), (440), and (622) 
reflections of the BCC structure of ITO (In

1.94
Sn

0.06
O

3
) (JCPDS Card File No. 89-4596). Almost 

all the peaks were very prominent and referred to the cubic rock salt structure of a very 

 crystalline material. Moreover, strong (222) and (400) diffraction peaks are indicative of pre-

ferred orientations along the 〈111〉 and 〈100〉 directions, respectively [18].
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Figure 4. Cross-sectional SEM micrograph of a glass/ITO electrode.
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Figure 5. X-ray diffraction pattern of a glass/ITO electrode.
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An estimate of the mean crystallite or grain size for a given orientation was determined by 
using Scherrer’s formula [19]:

   D  
hkl

   =     Kλ _______  β  
hkl

   cosθ    (5)

where D
hkl

 is the crystallite size (nm), K is a constant (shape factor, about 0.90), λ is the X-ray 
wavelength (1.54 Å as mentioned before), β

hkl
 = Δ(2θ) denotes the full width at half maximum 

(FWHM) or broadening of the diffraction peak (degree), and θ is the diffraction angle (degree). 
The average D

hkl
 was estimated to be approximately D

222
 = 17.9 nm for 2θ = 30.566°. It is worth 

mentioning that the calculated lattice constant a for the glass/ITO substrate using Bragg’s 
equation was a = 1.01234 nm, which coincides with the reported value in the standard card.

3.1.3. Electroactive surface area determination

By measuring the peak current in cyclic voltammograms (CVs), the electroactive surface area 
of a pretreated glass/ITO electrode was determined according to the Randles-Ševčik equation 
for a reversible electrochemical process under diffusive control:

   I  
pa

   = 0.4463nF  A  
e
   C  

OX
    √ 

_____

   nFνD _____ 
RT

      (6)

where I
pa

 is the anodic peak current (A), n is the number of electrons transferred in the redox 
reaction, F is Faraday’s constant (96,485 C mol−1 of electrons), A

e
 is the electroactive surface 

area of the electrode (cm2), C
OX

 is the bulk concentration of an oxidant molecule in the solution 
(mol cm−3), ν is the scan rate (V s−1), D is the diffusion coefficient of the oxidant molecule in 
solution, (6.50 ± 0.02) × 10−6 cm2 s−1, for hexacyanoferrate (II) in 0.1 mol L−1 KCl as supporting 
electrolyte at 25°C [20], R is the gas universal constant (8.314 J K−1 mol−1), and T is the absolute 
temperature (K).

CVs for 4.0 × 10−3 mol L−1 hexacyanoferrate (II) in 0.1 mol L−1 KCl were registered to different 
scan rates (ν = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s−1) with the glass/ITO electrode. The 
peak-to-peak potential separation was constant and linear relationships between the anodic 
and cathodic peak currents and the square root of the scan rate: I

pa
 = 0.00101ν1/2 – 5.8550 × 10−7, 

R2 = 0.9999; – I
pc

 = 0.00101ν1/2 + 3.2078 × 10−7, R2 = 0.9999, were achieved. From the slope of these 
equations, A

e
 was calculated to be 1.36 cm2. The roughness factor (ρ) of the GME, which is 

defined as the ratio (A
e
/A

g
) [21], was estimated to be 1.18.

3.2. Electrochemical behavior of human hemoglobin molecules

The most popular methods for studying redox enzyme or protein electrochemistry are those 
based on controlled potential techniques: linear sweep voltammetry (LSV), square wave voltam-
metry (SWV), and cyclic voltammetry (CV). In the latter, the scan rate, defined as ν = ΔE⁄=Δt, 
can be varied from less than 1 × 10−3 V s−1 to 1 × 106 V s−1 or more, offering a practical timescale 
window from minutes to microseconds, which makes to this technique very suitable to study 
interfacial electron transfer kinetics.

Consider the following hypothetical reversible electrochemical reaction: Ox + ne− ⇌ Red, the 
interconversion given between oxidized (Ox) and reduced (Red) forms of the protein are fast 
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on the timescale of the voltammogram, as controlled by scan rate. Ideal, reversible voltam-

mograms from a monolayer of electroactive protein on an electrode for a simple electron 

transfer reaction as it was written above are similar to those of any ultrathin electroactive film. 
A protein-film voltammetry approach is described in more detail in the following section of 
this chapter.

3.2.1. Cyclic voltammetry of thin protein films

Figure 6 shows the CVs of glass/ITO electrodes in absence and presence of Hb molecules. In 

Figure 6a, a CV recorded in PBS solution alone shows a non-Faradaic current behavior. The 

electrode had the largest background current in the nonelectrolyte solution which reflected 
the properties of the electric double layer. The double layer capacitance (C

dl
) can be estimated 

by dividing the sum of the anodic and cathodic current with twice the scan rate, i.e., C
dl
 = (I

pa
 

+ I
pc

)/2ν [21]. So, the capacitances of the glass/ITO and glass/ITO/Hb electrodes were calculated 

from Figure 6a and b as 4.8 and 0.4 μF cm−2, respectively. In Figure 6b, a pair of redox peaks, at 

around −0.117 V in the cathodic scan and at around −0.097 V in the anodic scan, were found in 
that Hb-containing solution. This fact indicated that a Faradic current was generated over the 

glass/ITO electrode, which can be adscribed to the haem (FeIII/FeII) redox center in Hb molecules.

Once capacitive effects are counted out, the amount of electrochemically active Hb molecules 
could be estimated from integration of the charge Q (in C) under each peak in those CVs 

acquired at slow scan rates (i.e., 0.1, 0.3, or 0.5 V s−1), given by Faraday’s law:

  Q = nF A  
e
    Γ  

T
    (7)

where Γ
T
 is total surface concentration of the protein molecule (mol cm−2), A

e
 is the electroac-

tive surface area of electrode (cm2), F is Faraday’s constant (96,485 C mol−1 of electrons) and n 

is the number of electrons transferred in the redox reaction:

  Hb:  haem( Fe   III  ) +  H  
3
   O   +  +  e   −  → haem( Fe   III )  (8)
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Figure 6. (a) Cyclic voltammograms of: (a) a PBS solution (0.01 mol L−1 Na
3
PO

4
, 0.015 mol L−1 NaCl, pH 7.2) and (b) a PBS 

solution (0.01 mol L−1 Na
3
PO

4
, 0.015 mol L−1 NaCl, pH 7.2) containing 1.0 × 10−4 mol human Hb L−1 after subtraction of (a), 

as a blank. The experiment was carried out at T = 25°C. Scan rate: 0.5 V s−1.
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The total surface concentration of electroactive Hb molecules was estimated to be Γ
T
 = (4.69 

± 0.52) × 10−12 mol cm−2. On the other hand, the theoretical maximum coverage of a protein 
monolayer on the electrode surface was estimated as 4.89 × 10−12 mol cm−2, considering that 
one human Hb molecule in PBS solution has a Stokes radius of 31.3 Å [22]. These data indicate 
that θ = (Γ

T
/Γ
T,theo) = 0.96 of a protein monolayer was achieved.

Figure 7a shows CVs recorded with different scan rates, from 0.1 to 3.5 V s−1. Nearly symmet-
ric anodic and cathodic peaks were observed; in addition, they have roughly equal heights. 
The anodic to the cathodic peak potential difference (ΔE

p
) was much greater than the ideal 

value of zero. At the lower scan rates, i.e., 0.1, 0.3, or 0.5 V s−1, the smaller redox peak cur-
rents were observed, while CVs with the largest redox peak currents corresponded to those 
acquired at the fastest scan rate, i.e., 3.5 V s−1.

In such cases, the formal potential E0′ was taken as the midpoint potential between the oxida-
tion and reduction peaks if there is a small separation between them. Considering this crite-
rium, an E0′ = −0.107 V (vs. Ag|AgCl in 3 M NaCl solution) was determined at 0.5 V s−1. On the 
other hand, the anodic and cathodic peak currents, I

pa
 and I

pc
, increased with increasing scan 

rates as observed in Figure 7b.

These results are characteristic of quasireversible, surface confined electrochemical behav-
ior, in which all electroactive proteins in their haem (FeIII) forms are reduced on the forward 
cathodic scan, and the reduced proteins in their haem (FeII) forms are then fully oxidized to the 
haem (FeIII) forms on the reversed anodic scan.

When the peak currents were plotted against the scan rate, direct linear relationships were 
obtained, indicating a surface-controlled electrode process. The origin of this process is indic-
ative that the diffusion of H3O

+ ions toward the electrode surface was very fast. Therefore, the 
electron process can be expressed as proposed in the redox reaction before [23].
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Figure 7. (a) Corrected cyclic voltammograms of a PBS solution (0.01 mol L−1 Na3PO4, 0.015 mol L−1 NaCl, pH 7.2) 
containing 1.0 × 10−4 mol human Hb L−1 (T = 25°C) as function of scan rate. Scan rates: 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 
3.5 V s−1. (b) Dependence of anodic (■) and cathodic (□) peak currents with scan rate: I

pa
 = 2.0305 × 10−6ν – 1.3809 × 10−7, 

R2 = 0.9987; – I
pc

 = 1.7896ν – 3.0310 × 10−7, R2 = 0.9985.
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The linear regression equations for anodic and cathodic peak currents are as follows: I
pa

 = 2.0305 

× 10−6ν – 1.3809 × 10−7, R2 = 0.9987; – I
pc

 = 1.7896ν – 3.0310 × 10−7, R2 = 0.9985.

Linear plots of I
p
 vs. ν were in good agreement with the following equation [24]:

   I  
p
   =   

 n   2  F   2  A  
e
   Γ  
T
   ν
 ________ 

4RT
    (9)

However, their width at half height is nearly 200 mV, much larger than the ideal 90.6/n mV 

at 25°C.

Broadening or narrowing of CV peaks compared to the ideal 90.6/n mV at 25°C suggests a 

breakdown of the ideal model assumptions of no interactions between redox sites that all have 

the same E0′. Representative examples arose from studying cytochrome c and myoglobin on 

Au/alkanethiolate SAMs and OPG/LC surfactants, respectively. Some authors have modeled 

protein films by LSV, SWV, and CV techniques considering the concepts of spatial distribution 
of the redox centers, dispersion models of formal potentials (E0′), and electron transfer rate 

constants to account for the peak broadening [25–27]. Other factors, e.g., lack of refinement of 
mathematical algorithms for the extraction of rate constants or improvements to the goodness 

of fit of SWV data to pulse heights >50 mV, including counterion transport efficiency, could 
also influence peak widths, but have not been investigated in detail for protein films.

At scan rates <0.5 V s−1, ΔE
p
 was nearly constant in the films. As the scan rate increased, the 

peak potentials shifted negatively (cf. Figure 8). This is consistent with the onset of limiting 

kinetic effects as scan rates increase.
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Figure 8. Influence of scan rate on the anodic to the cathodic peak potential difference (ΔE
p
) for a PBS solution (0.01 mol L−1 

Na
3
PO

4
, 0.015 mol L−1 NaCl, pH 7.2) containing 1.0 × 10−4 mol human Hb L−1. The experiment was carried out at T = 25°C.
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pH Sample│electrode E0′/mV (SHE) k0′/cm s−1 References

5.5 bHb-DDAB-Nafion│edge-plane PG 80 5.7 d* [4]

5.5 hHb-DDAB│edge-plane PG 84 2.7 d* [5]

5.5 hHb in solution│edge-plane PG Not detected Not detected op. cit. [5]

7.0 bHb in solution│Pt + MB 145 2.0 × 10−4 op. cit. [5]

7.0 bHb in solution│Pt + Azure A 180 3.5 × 10−6 op. cit. [5]

7.0 bHb in solution│Pt + BCG 184 2.0 × 10−7 op. cit. [5]

7.0 bHb in solution│SnO2 −215 0.53 d* [6]

7.4 bHb in solution│In
2-x

Sn
x
O

3
−112 Not determined [7, 8]

7.2 hHb in solution│In
1.94

Sn
0.06

O
3

102 8.01 d* [9]

DDAB = Didodecyldimethylammonium bromide, PG = pyrolytic graphite, MB = methylene blue, BCG = brilliant cresyl 

green.
*For comparison with CV data where diffusion control pertains, k

s
 was estimated from the standard heterogeneous rate 

constant (k0′) by using k0′= k
s
 ⋅ d, where d is the film thickness [29].

Table 1. Electrochemical parameters for different mammalian (superscripts: b-bovine, h-human) hemoglobin species at 

25°C.

An increasing ΔE
p
 as the scan rate is increased for an electroactive thin film suggests kinetic 

limitations of the electrochemistry [28] and is consistent with predictions of the Butler-Volmer 

model for electron transfer between an electrode and redox sites in a thin film on an electrode. 
Possible causes could be attributed to: (a) slow electron transfer between electrode and redox 
centers, (b) slow transport of charge within the film limited by electron or counterion trans-

port, (c) uncompensated voltage drop within the film, and (d) structural reorganization of the 
protein accompanying the redox reactions.

When nΔE
p
 < 200 mV, the surface electron transfer rate constant (k

s
) of the adsorbed Hb on 

the glass/ITO electrode can be estimated according to Laviron’s equation for quasi-reversible 

thin-layer electrochemistry [29]:

  Log  k  
s
   = α Log (1 − α) + (1 − α) Log α − Log   RT ____ 

nFν   − α(1 − α)   
nFΔ  E  

p
  
 ______ 

2.3RT
    (10)

Our experimental results showed that the scan rate in the range 0.1–3.5 V s−1 did not affect the 
k

s
 value, because nΔE

p
 < 200 mV. Assuming a charge-transfer coefficient α of 0.5, the k

s
 of the 

adsorbed Hb thin film on the glass/ITO electrode was 8.01 s−1 at the onset of limiting kinetic 

effects (500 mV s−1). This value is significantly higher than other previously reported values 
in the literature for different hemoglobin species and electrode materials (cf. Table 1). For 

comparison with data on bare or mediator-coated electrodes, k
s
 was converted to the standard 

heterogeneous rate constant (k0′) by using k0′= k
s
  d, where d is the film thickness [29]. This fact 

could be attributed to the morphological and structural properties shown by the  electrode, 
i.e., surface roughness, crystallinity, and hydrophilicity [30], as well as the influence of the 
physiological milieu that was conditioned into the three-electrode cell system, charging posi-

tively/negatively to the working electrode (cf. Section 2.6 and Ref. [31]) and negatively to the 

protein [32]. All these factors played an important role in providing a more favorable micro-

environment for the protein.
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As indicated in Section 1, Introduction, to facilitate the electron communication between the 

prosthetic group of haem proteins and an electrode due to misalignment of the haem (FeIII/FeII) 

redox center is a difficult task but could help to advance understanding on biological electron 
transfer. Techniques such as FT-IR spectroscopy, NMR, ESR anisotropy, polarized reflectance 
FT-IR, circular dichroism, and calorimetry could yield detailed information on the secondary 

structure of the protein in regards to its redox state as well as to give some notion of order and 

specific orientation.

4. Conclusions

In this study, we clearly demonstrated that human Hb molecules directly physisorbed 

on glass/tin-doped indium oxide substrates exhibited direct electron transfer (DET) in PBS 

(0.01 mol L−1 Na
3
PO

4
, 0.015 mol L−1 NaCl, pH = 7.2) solution and T = 25°C.

The experimental results suggest that acid-base equilibria and the water molecule coor-

dinated to the haem group as the sixth ligand might play an important role in the electron 

transfer process between human hemoglobin and very crystalline and hydrophilic tin-doped 

indium oxide electrodes.
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