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Abstract

Here, we generalize the boundary layer functions method (or composite asymptotic
expansion) for bisingular perturbed differential equations (BPDE that is perturbed dif-
ferential equations with singular point). We will construct a uniform valid asymptotic
solution of the singularly perturbed first-order equation with a turning point, for BPDE
of the Airy type and for BPDE of the second-order with a regularly singular point, and
for the boundary value problem of Cole equation with a weak singularity.A uniform
valid expansion of solution of Lighthill model equation by the method of uniformization
and the explicit solution—this one by the generalization method of the boundary layer
function—is constructed. Furthermore, we construct a uniformly convergent solution of
the Lagerstrom model equation by the method of fictitious parameter.

Keywords: turning point, singularly perturbed, bisingularly perturbed, Cauchy prob-
lem, Dirichlet problem, Lagerstrom model equation, Lighthill model equation, Cole
equation, generalization boundary layer functions

1. Preliminary

1.1. Symbols O, o, ~. Asymptotic expansions of functions

Let a function f(x) and ¢(x) be defined in a neighborhood of x = 0.

Definition 1. If hm qfo< = M, then write f(x) = O(¢(x)), x — 0, and M is constant.

If hm f (<x

) _
)
If hrr&é((’;)) 1, then write f(x) ~p(x), x — 0.
X—

0, then write f(x) = o(¢(x)), x — 0.

Definition 2. The sequence {0,(¢)}, where 0,(¢) defined in some neighborhood of zero, is called
the asymptotic sequence in ¢ — 0, if
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lim Oni1 ()

=0, vn=12..
e—0 Op(€) 0 !

For example.
&M, {(1/1n(1/e))"}, {(glna/e))"}.

Note 1. Everywhere below ¢ denotes a small parameter.

Definition 3. We say that f(x) function can be expanded in an asymptotic series by the asymp-
totic sequence {¢,(x)}, x — 0, if there exists a sequence of numbers {f,} and has the relation

@)= fip(0) + O(@,,1(x), x—0,
k=0

and write

FOrS faplw), 1 —0.
k=0

1.2. The asymptotic expansion of infinitely differentiable functions

Theorem (Taylor (1715) and Maclaurin (1742)). If the function f(x) € C” in some neighborhood
of x = 0, then it can be expanded in an asymptotic series for the asymptotic sequence {x"}, i.e.,

Fx)~ S £, where £, — £)(0) /nl.
n=1

Thus, the concept of an asymptotic expansion was given for the first time by Taylor and
Maclaurin,although an explicit definition was given by Poincaré in 1886.
1.3. The asymptotic expansion of the solution of the ordinary differential equation

Consider the Cauchy problem for a normal ordinary differential equation
y(@©) =flxye), y0)=0. (1)

The function f(x, y, ¢) is infinitely differentiable on the variables x, y, ¢ in some neighborhood
O(0,0,0). It is correct next.

Theorem 1. The solution y = y(x, €) of problem (1) exists and unique in some neighborhood
point O(0, 0, 0) and y(x, ¢) € C”, for small x, €.

Corollary. The solution of problem (1) can be expanded in an asymptotic series by the small
parameter ¢, i.e.,

Yo e) = 3 ). @
k=1

Here and below, the equality is understood in an asymptotic sense.
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Note 2. Theorem 1 for the case when f(x, y, €) is analytical was given in [1] by Duboshin.

Note 3. This theorem 1 is not true if f(x, y, €) is not smooth at ¢. For example, the solution of a
singularly perturbed equation

function y(x) = ae~*/¢ and is not expanded in an asymptotic series in powers of & because here
f(x,y,€) = —y(x)/e and f have a pole of the first order with respect to ¢.

Note 4. The series 2 is a uniform asymptotic expansion of the function y(x) in a neighborhood
of x =0.

For example. Series

yr,e) =1+ex™t +(ex )P4+ (ex D) + ...

It is not uniform valid asymptotic series on the interval [0, 1], but it is a uniform valid
asymptotic expansion of the segment [¢“, 1], where 0 < a < 1.

1.4. Singularly perturbed ordinary differential equations

We divide such equations into three types:

(I Singular perturbations of ordinary differential equations such as the Prandtl-Tikhonov
[2-56], i.e., perturbed equations that contain a small parameter at the highest deriva-
tive, i.e., equations of the form

Y(x)=fxye), y0) =0 &(x)=gxye), z0) =0

where f, g are infinitely differentiable in the variables x, y, ¢ in the neighborhood of
O(0,0,0). It is obvious that unperturbed equation (¢ = 0)

Yo' (x) =f(x,y,0), 0=g(xy0)

is a first order.

Definition 4. Singularly perturbed equation will be called bisingulary perturbed if the
corresponding unperturbed differential equation has a singular point, or this one is
an unbounded solution in the considering domain.

For example
1. Equation ¢y (x) = —y(x) is a singularly perturbed ordinary differential equation.

2. Equation Vander Pol
ey"(x) + (1= y*(x)y (x) + y(x) = 0.

It is a bisingularly perturbed ordinary differential equation with singular points,
if y(x) = £1.
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(I)

(ITI)

3. ey (x)—xy(x) =1, x€][0,1] is a bisingularly perturbed equation, because the
unperturbed equation has an unbounded solution y,(x) = —x~!
4. ey'(x) —xy(x) =1, x€]0,1]is abisingularly perturbed equation also.

Singularly perturbed differential equations such as the Lighthill’s type [57-69], in
which the order of the corresponding unperturbed equation is not reduced, but has
a singular point in the considering domain.

For example, a Lighthill model equation

(x + ey () + p)y(x) =r(x), y(1) =a

where x €0, 1], p(x), r(x) € C7[0, 1]. For unperturbed equation

xyp (x) + p(X)yo (x) = r(x),

point x = 0 is a regular singular point.

A singularly perturbed equation with a small parameter is considered on an infinite
interval. For example, the Lagerstrom equation [70-81]

Y (@) + !y (x) +y(@)y () = By (1),
y(e) =0, y() = 1.

where 0 < f is a given number and 7 is the dimension space.

Remark. The division into such classes is conditional, because singularly perturbed
equation of Van der Pol in the neighborhood of points y = £1 leads to an equation of
Lighthill type [2, 3].

1.5. Methods of construction of asymptotic expansions of solutions of singularly perturbed
differential equations

1.

The method of matching of outer and inner expansions [13, 19, 28, 29, 37, 49] is the most
common method for constructing asymptotic expansions of solutions of singularly
perturbed differential equations. Justification for this method is given by Il'in [22]. How-
ever, this method is relatively complex for applied scientists.

The boundary layer function method (or composite asymptotic expansion)dates back to the
work of many mathematicians. For the first time, this method for a singularly perturbed
differential equations in partial derivatives is developed by Vishik and Lyusternik [52] and
for nonlinear integral-differential equations (thus for the ordinary differential equations)
Imanaliev [24], O’'Malley (1971) [38], and Hoppenstedt (1971) [42].

It should be noted that, for the first time, the uniform valid asymptotic expansion of the
solution of Eq. (5) is constructed by Vasil’eva (1960) [50] after Wasow [69] and Sibuya in
1963 [68] by the method of matching.
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This method is constructive and understandable for the applied scientists.

3. The method of Lomov or regularization method [33] is applied for the construction of
uniformly valid solutions of a singularly perturbed equation and will apply Fredholm
ideas.

4. The method WKB or Liouville-Green method is used for the second-order differential
equations.

5. The method of multiple scales.

6. The averaging method is applicable to the construction of solutions of a singularly
perturbed equation on a large but finite interval.

Here, we consider a bisingularly perturbed differential equations and types of equations of
Lighthill and Lagerstrom.

Here, we generalize the boundary layer function method for bisingular perturbed equations.
We will construct a uniform asymptotic solution of the Lighthill model equation by the
method of uniformization and construct the explicit solution of this one by the generalized
method of the boundary layer functions.

Furthermore, we construct a uniformly convergent solution of the Lagerstrom model equation
by the method of fictitious parameter.

2. Bisingularly perturbed ordinary differential equations

2.1. Singularly perturbed of the first-order equation with a turning point

Consider the Cauchy problem [5]

ey'(x) +xy(x) =f(x), 0<x<1, y(0)=a, 3)
where f(x) € C™[0, 1],f(x)=ikak, fx :f(k) (0)/K!, f, #0; ais the constant
k=0

X
Explicit solution of the problem (3) has the form: y(x) = ae~ /2% 4 %J el =)/ 2f (s)ds.
0
The corresponding unperturbed equation (¢ = 0)
—xy(x) +f(x) =0,

has a solution y(x) = f(x)/x, which is unbounded at x = 0.

If you seek a solution to problem (1) in the form
y(x) =y, (x) + ey, (x) + 62]/2 (x)+..., (4)

then

5
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Yo(x) :@ ~f0x_1, x—0,

y (%) = x () ~ fox®, x—0,
y,(x) =x (%)~ 3fgx 2, x—0,
y3(x) = x 'yh(x)~ 3-5fx°, x—0,

y,(x) =xy, j(x)~3-5-...-2n—1)fpx @D, x -0,

and a series of Eq. (4) is asymptotic in the segment (1/¢, 1], and the point xj=y/¢ = y is singular
point of the asymptotic series of Eq. (4). Therefore, the solution of problem (3) we will seek in
the form

y(x) = y’ln_l(t) + Yo(x) + mo(t) + y(Yl (x) + nl(t)> + yz (Yz(x) + nz(t)) +..., u—0
(5)

where Yi(x)eC™[0,1], m(t)eC™[0,u""], x=ut and boundary layer functions 7 (t)
decreasing by power law as t — oo, that is, 7t (f) = O(t™™), t— e, meN.

Substituting Eq. (5) into Eq. (3), we obtain
g (1) + 1Yo (x) + pmg () + p2 Y3 () + pPmy (1) + pt Yy (x) + @2y (1) + p Y5 (x) + phrs(f) +

+ xYo(x) + uxY1(x) + p2xYa(x) + @BPxYs(x) + ... +tn1(t) + ptro(t) + pPtm (f) + pitra(t)
+ prra () + .. = f(x).

(6)
The initial conditions for the functions 7t;_1(¢), k=0, 1, ... we take in the next form
1_1(0) =0, (0) =a— Yp(0), m(0) = =Y%(0), k=1,2,...
From Eq. (6), we have
o (B + g () + xYol(x) = f(x), (7.-1)
ul s mh(t) + tmo(t) +xYi(x) =0, (7.0)
u () () F x Y (x) F Y (x) =0, k=12 ... (7.k)

To Yo (x) function has been smooth, and we define it from the equation
XYo(x) = f(x) = fo = Yo(x) = (f(x) = fo)/%,

and then from Eq. (7.—1), we have obtained the equation



Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

() +tni(t) = fo,

Therefore

t
7t_1(t) :foetz/zjesz/zds eC[o,u™",
0

Obviously, this function bounded and is infinitely differentiable on the segment [0, '], and

1 3
—&(1+—+—+...), t— oo,

ma(t) = -5 2

This asymptotic expression can be obtained by integration by parts the integral expression for
T 1 (t)

Eq. (7.0) define Y7 (x) and 7 (#). Let Y1 (x) = 0, then
mo(t) + tro(t) =0, 1p(0) =a—f,
Hence, we find
mo(t) = (a—fe?
From Eq. (7c) for k =1, we have
7y () + tra () + xYa(x) + Yg(x) = 0.
Let xY>(x) = Y{(0) — Y{(x), then 7} () + trri (t) = —Y5(0).

From these, we get

Vo) = (Y5(0) = Y()/x, ma(t) = ~foe 2 [ e o Y
0

and

fay, 1.3

From Eq. (7¢c) for k = 2, we have

75 () + tra(t) + xY3(x) + Y7 (x) = 0 or m5(#) + ta(f) + xY3(x) = 0.

Let Y3(x) =0, then
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v z(t) + tﬂz(t) =0, 7'(2(0) = —Yz(O) = 2f3.
From this, we get
o (t) = 2f36_t2/2~

Analogously continuing this process, we determine the others of the functions Yy (x), mi(f).

In order to show that the constructed series of [Eq. (5)] is asymptotic series, we consider
remainder term R,,(x) = y(x) —y,,(x),

where y,, (x) = Lrt_1(£) + Yo(x) + 7o (t) + y(Yl (x) + nl(t)> b (Ym(x) n nm(t)>.

For the remainder term R,,(x), we obtain a problem:

Ry (x) + xRy (x) = —p"™2Y! (x), 0 <x<1, R,(0)=0. (8)

We note that if m is odd, then Y/, (x) = 0.

The problem (8) has a unique solution

and from this, we have R,,(x) = O(p™), 1 — 0, x€[0, 1].

2.2. Bisingularly perturbed in a homogenous differential equation of the Airy type

Consider the boundary value problem for the second-order ordinary in a homogenous
differential equation with a turning point

ey'(x) —xy(x) =f(x), x€(0,1), ©)

y(0) =0, y(1)=0. (10)

where f(x) = S £, x =0, f,—fOO)/K, f,#0.
k=0

Note 5. It is the general case of this one was considered in Ref. [8, 45-47].

Without loss of generality, we consider the homogeneous boundary conditions, since
y(0) =a, y(1) = b, a®> +b* #0, using transformation

y(x) =a+ (b —a)x+z(x),

can lead to conditions (10).
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If the asymptotic solution of the problems (9)—(10) we seek in the form

y(x) = yo(x) + ey (%) + 2y, (x) + .., (11)
then we have
Yolx) = _f% ~foxil/ x—0,

y,(x) =xyf(x)~1- 2fxt, x—0,

y(0) =x 1y (x)~ 1-2-4-5fx7, x—0,
y;(x) =x yh(x)~1-2-4.5.7.8fx 1% x—0,

y, () =x ((x)~1-2:4-5-7-8-...-3n—2)-Bn—1)fox ", 0<n, x—0,

and the series (11) is asymptotic in the segment (y/¢, 1]. The point xo= /e= p is singular point
of asymptotic series (11).

The solution of problems (9) and (10) will be sought in the form

() = () + 3w (Yel) + () + Y Nl (12)
k=0 k=0

where t=x/u, p= e, n=(1-x)/A, A =/e. Here, Yi(x)€C”[0,1], m(t)€CT[0,1/y] is
boundary layer function in a neighborhood of t = 0 and decreases by the power law as t — oo,
and the function wy(t) € C”[0,1/A] is boundary function in a neighborhood of n =0 and
decreases exponentially as ) — .

Substituting Eq. (12) in Eq. (9), we get

SO () — () + SR ) — xS i) = £ (13)
k=0 k=0 k=0
S (whn) — (1 - Ayt 0. (14)
k=0

From Eq. (13), we have

o g (f) =ty (t) — xYo(x) = f(x), (15.-1)
uls wo(t) — tmo(t) — xYi(x) =0, (15.0)

o m(t) — tm(t) — xYa(x) =0, (15.1)

12 () — () + Y o(x) — xY3(x) =0, (15.2)

() =t () + Y s (x) —xYi(x) =0, k>3, (15.K)
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Boundary conditions for functions 7tx_1(t), k =0, 1, ... we take next form

1_1(0) =0, x(0) = —Y(0), lin(l)nk,l(l/y) =0, k=0,1,2,...
p—

To Yo(x) function has been smooth; therefore, we define it from the equation
—xYo(x) =f(x) — fo = Yo(x) = —=(f(x) = fo)/x,
then from Eq. (15.1), we have the equation

'’ (t) —tna(t) = £,

Let us prove an auxiliary lemma.
Lemma 1. Next boundary value problem

Z'(t) —tz(t) =b, 0<t<1/u hereb is the constant,

z(0)=2% z(1/u) —0, u—0

will have the unique solution and this one have next form

1/u

; t 1/
[‘;‘i(((’;)) . (Ai(t)L Bi(s)ds + Bi(t)J " Ai(s)ds — Ai(t)\@J

t 0

2(t) = 2° Az’(s)ds),

and z(t) € C7[0, u~1].
Proof. We verify the boundary conditions:

1/u 1/u

2(0) = 2° — 7tb (Bi(O)J Ai(s)ds — Az’(O)\/§J Az’(s)ds),

0 0

as Bi(0) = Ai(0)v/3, so z(0) = 2°.

2(1/) =200 b1~ VB

0

1/u
Bi(s)ds,

as Ai(f)~t V43", Bi(t)~t /43", t— e, s02(1/u) = O(u), u— 0.
Now we show that z(t) satisfies Eq. (16). For this, we compute derivatives:

1u

—~ _ 7b (Ai’(t)Jt Bi(s)ds + Bi’(t)Jw Ai(s)ds — Ai’(t)\/§J Ai(s)ds)

0 t 0

Z'(t) = 2° Ai.”(t) —7th <Ai”(t)Jt Bi(s)ds + Bi”(t)Jl/y Ai(s)ds — 1 Ai”(t)ﬂjl/y

0 t Tt 0

Ai (s)ds>
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Substituting the expressions for z”(t) and z(t) in Eq. (17), and given that Ai"(t) — tAi(t) = 0 and
Bi"(t) — tBi(t) = 0, we get: b = b.

The uniqueness of z(t) the solution is proved by contradiction. Let u(t)also be a solution of
problems (16) and (17), z(t) # u(t). Considering the function r(t) = z(t) — u(t), for the function
r(t), we obtain the problem

'(t)—tr(H) =0, 0<t<1l/p, r(0)=0, r(1/u)—0 u—0.

The general solution of the homogeneous equation is
r(t) = 1 Ai(t) + c»Bi(t); ¢y,2 is the constant.

Considering the boundary condition #(1/u) — 0, © — 0, we have ¢, = 0; 7(t) = c1Ai(f). And
the second condition r(0) = 0, ¢; = 0 follows. This implies that r(t) = 0.

Therefore, z(t) = u(t). It is obvious that z(t) € C”[0, p!]. Lemma 1 is proved.

This Lemma 1 implies the existence and uniqueness of 1t_1(t)€C”[0, u~!] solution of the
problem:

() —tna(t)=f, 0<t<1l/uy, m4(0)=0 m_(1/u)—0 u—D0.

This function bounded and is infinitely differentiable on the segment [0, #71]’ and as t — oo:

1-2 1-2-4-5
U R |

This asymptotic expression can be obtained by integration by parts the integral expression for
T (t)

From Eq. (15.0), we define Y7 (x) and 7o(t). Let Y1 (x) = 0, then
() —tno(t) =0, mo(0) =f;, mo(l/u) —0, u—0,
And by Lemma 1, we have
o (t) = f1Ai() /Ai(0).
Analogously, from Eq. (15.1), we define Y, (x) and 7 (). Let Y>(x) = 0, then

7 (t) =ty (t) =0, m(0)=0 7moe(1/u) —0, u—0.

In view of Lemma 1, we have 11 () = 0.

To Y3(x) function has been smooth; as above, we define it from the equation

11
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xY3(x) = Y'o(x) = Y 0(0) = Y3(x) = (Y o(x) = Y'o(0))/x,  (Y'0(0) = —2f3),
then Eq. (15.2) to m2(t)hase the problem
7 o(t) — tra(t) = 2f,, 1(0)=0, ma(1/pu) —0, u— 0.

By Lemma 1, we can write an explicit solution to this problem, and this solution bounded and
is infinitely differentiable on the segment [0, /,1‘1], and as t — oo:

2 1-2 1-2-4-5
712(t):—%(1jL 3 + 5 +>

Analogously continuing this process, we determine the rest of the functions Y (x), 7t (t).
Now we will define functions wy (1) from the equality (14) by using the boundary conditions
y(1) = 0 We state problems

Lwy = w'o(n) — wo(n) =0, wy(0) = Yo(1), %E?owo(n) =0 (18.0)

Lwy = —nwi—1(n), w2i(0) = Y3i(1), wyi—1(0) =0, limwi(n) =0, kieN. (18.k)

r)ﬂoo

One can easily make sure that all these problems (18.0) and (18.k) have unique solutions such
that wy(n) € CT[0, ), wi(n) = O(e™ ) with n — ee.

Thus, all functions Yy (x), wi(n), and mi(t) in equality (12) are defined, i.e., a formally asymp-
totic expansion is constructed. Let us justify the constructed expansion. Let

3m 2m
Y) = 1 a0+ Do (Yelw) + D) + YA, 1) = y(x) — y,,(x).
k=0 k=0

Then for the remainder term, we state the following problem:
er m(x) = xru(x) = O(e"/?), € =0, x€(0,1). (19)

rm(0) = O(e V%), 1,(1) = O(e™1), & — 0. (20)

Let 7, (x) = (2 — x*)R,,(x)/2, and then problems (19) and (20) take the form

p 4xe 2¢e
eRm(x) =5~ 5 Rul®) - <2 e x) Ru(x) = O(e"1/2), & =0,
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According to the maximum principle [23, p. 117, 82], we have R,,(x) = O(¢"~1/2), ¢ — 0,x €10, 1].
Hence, we get 7,,(x) = O(e"V?), & —0, x€l0,1].
Thus, we have proved.

Theorem 2. Let f(0) # 0, then the solution to problem (9) and (10) will have next form

o= () el () Eon ()

Example. Consider the problem

ey’(x) —xy(x) =1+x, x€(0,1), y0)=0 y(1)=0.

The asymptotic solution this problem we can represent in the form y(x) = u 'm_1(t)+
3

S (V) r8)) + woln) + Aws (1) + V2wa(n) + R().

k=0

We have got Yo(x) = —(1+x—1)/x=—-1, Yy23(x) =0,

t 1/u 1/u

g (t) = —n(Ai(t)J

Bi(s)ds + Bi(t)J
0

Ai(s)ds — Ai(t)\@J

; Ai(s)ds),

1o (t) = Ai(t)/Ai(0), m1,2,3(H) =0,wo(n) =21, we(n) =0("), k=1,2.
eR"(x) — xR(x) = O(6¥/?),0 < x < 1, R(0) = O(e~/V¥),R(1) = O(¢?), ¢ — 0.
We have

y(x) = e Py (1) — 14 26~ IVE Lo (1) + Vew () + ews(n) + O(Ve), € — 0.

2.3. Bisingularly perturbed equation of the second order with a regularly singular point

Consider the boundary value problem [6, 7]
Ly =¢y +xy' —q(x)y =f(x), x€[0,1], (21)
y(0) =0, y(1) =0, (22)

where g(x), f(x) € C7[0, 1].
Here, for simplicity, we consider the case g(0) =1, g(x) > 1.

The solution of the unperturbed problem

13
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My =xy' —q(x)y = f(x),
represented as

Yo(x) = XP(X)J r(s)s~2ds, (23)
where

r(x) =p ' (x)f(x), p(x) = exp {L (q(x) — 1)5‘1515}.

Extracting in Eq. (23), the main part of the integral in the sense of Hadamard [34], it can be
represented as

yolx) = a(x) + rixp(x)ln, (24)

where

X

a(x) = xp(x)J1 (r(s) — 79 — rls)s_st + rop(x)[x — 1],
ro =1(0), n =7(0) =p(0)""[f'(0) — 4'(0)f (0)]

Function a(x) e C™[0, 1].

Theorem 3. Suppose that the conditions referred to the above with respect to g(x) and f(x).
Then the asymptotic behavior of the solution of the problems (21) and (22) can be written as:

iyk (zk(x) + nk(t)>, €= % x=ut, (26)
k=0

where z(x) € C7[0,1], 7(t) €CT[0, u~ 1.

Function zy(x)is a solution of equation

Mzo = f(x) - coxp(x),

wherecy = p(0) ' [f'(0) — ' (0)f(0)].

The coefficients z(x)of the series (26) will be determined as the solution of equations

Mz = —z';_1(x) — crap(x),

where ¢; = p(0) ' [=z"_1(0) + 2';_1(0)4'(0)], with boundary conditions z(1) = 0, k>1.

Functions () is the solution of the equations
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Lyt = 70 () + t0'k(t) — q(ut) () — cpstp(ut)

with boundary conditions 7tx(0) = —z(0), m(u~t) = 0.
Next, we use the following lemma.

Lemma 2. The problem
My = f(x) — nap(x)

It has a unique solution y(x) € C™[0, 1].
The proof of Lemma 2 follows from Egs. (24) and (25).

Lemma 3. A boundary value problem
Lew=v +t —ov(t)=0, v(0)=a ov(1/u) =0,

has solution v(t) = aX(t), where

-1

n

X(t):J s~ 2exp (‘752>ds, 0<X(t)<1, X(0)=1.

t

The proof of Lemma 3 is obvious.

Lemma 4. In order to solve the boundary value problem
LoW = —ut, W(0) = W(u™') =0,
we have the estimate
0<W(w t)<e nu .

Proof. This follows from the fact that the solution of this problem existsuniquely by the
maximum principle [23, 82] and will be represented in the form

pt A 2
W(u, t) = ytJ yZexp (— ]/_)J s? exp <S—> dsdy.
" 2 /o 2
Lemma 5. The estimate

|7t (1, t)| < By,

where 0 < Byis constant.

Proof. Consider the function

15
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Vi(u t) =y W t) + y,X(1) £ e, £),
where y, and y, are positive constants such that

v1 > maxjp(x)} 7, > [z(0)]

It is obvious that
Vi(p,0)>0, Va(uu ™) >0, LiVa =V o(t) +tV'o(t) = Vi(t) <0

From the maximum principle, it follows that |7t (u, t)| < y;W(u, t) + v, X(1).
Now the proof of the lemma 5 follows from estimates of W(u, t) and X(¢).
If we introduce the notation

Yu(x, €)= Zek (zk(x) + (1, t)),
k=0
where zi(x), m(y, t)are constructed above functions, then

LY,(x, €) = f(x) + "2,

Let y(x, €)be the solution of the problems (21) and (22). Then

L, (Yn(x, e) —yl(x, e))] < B,e", Y,(0,&) —y(0,&) = Y, (1,¢) —y(1,¢) = 0.
Therefore, |Y,(x, €) — y(x, €)| < B,e" L.

2.4. The bisingular problem of Cole equation with a weak singularity

The following problem is considered [9, 13, 28, 29],

ey’ (x) + Vxy'(x) —y(x) =0, 0 < x < 1,
y(0) =a, y(1) =0
where x€[0,1]; a,b are the given constants.

The unperturbed equation /xy'(x) —y(x) =0, 0 <x < 1,

has the general solution

Yo(x) = ce®*, ¢ — const.

This is a nonsmooth function in [0, 1].
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We seek asymptotic representation of the solution of the problems (27) and (28) in the form:

3(n+1)

= angkyk(x) + Z 1 () + R(x, €), (29)
k=0 k=0

where t = x/u?, € = i3, y,(x) €C[0,1], me(t) € C[0,1/u?], R(x, €) is the reminder term.

Substituting Eq. (29) into Eq. (27), we have

D ey’ + VAYL(E) ~ )+ (o) + Vi)

3(n+1) ” (30)
+ ) ! (7’( k() + Ve (t) — nk_l(t)) — 13 D500 (1) + eR(x, €) + VAR (x, €)

- —R(x, &) —h(x, &) +h(x,e) =0

By the method of generalized boundary layer function, we put the term h(x, ¢) nghk

into the equation. We choose functions /i (x) so that y,(x) € C[0, 1].

Taking into account the boundary condition (28), from Eq. (30), we obtain

Vay'o(x) —yp(x) =0, 0<x <1, y,(1)=b. (31)
VY (%) = v (x) = hia (x) — y"k—l(x)/ 0<x<1 keN, y(1)=0. (32)

The solution of the problems (31) and (32) exists. It is unique and has the form

yo(x) _ beZ(ﬁfl),yk(x) _ eZﬂJ hk—l (S) \_/gy k-1 (S) 672\/§dsl keN.
1

We choose indefinite functions h(x) as follows: v} _;(x) — hx_1(x) € C[0, 1]. We can represent

yo(x):b‘2<1+2f+< V3’ +(2\?{;—C)3+( \4{) +<2nﬂ+>

Let hy(x) = be ™2 (2\/37 + (234,")3) . —be? (NlF — %)

Then
1 > -
¥ (x) — ho(x) € C[0, 1, 1Phy (tu?) = —c1 <2\/t_3_%>, cp =be?,
* 1 1 1 1
— 2V e T R AV R 25 ) p—2v/5
R e =t

We can rewrite y;(x) in the form:

17
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¥, (x) =y 0 +y1,1(2\/3?) + y1/2(2\/3-c)2 +y1,3(2\/§)3 +

_ (3, 1 (1,1 (=1, 1 (-1, 1
where Yi,0 = <§+F>C1/ Y11= (6"’?)% Yi,0 = (?"’@)Clr Yi,3 = (ﬁ‘i‘@)q'

Analogously, we have obtained

: 6
hi(x) = (yl,l(z\/;c) +y1,3(2\/§)3> B _2%+ y\/?‘

Then

H3y1 1 HSJ/ 1,3

yllz(x) - I’lz(X) EC[O/ 1]/ ;u6h2(t‘uZ) - - 2\/?3 + \/Z

Continuing this process, we have

6
T (x) = Y- L1 Yk-1,3

Jk=4,...,n,
2¢_ Vx

where Vi1 Yr 13 are corresponding coefficients of the expansion of yk—1,1<x) in powers of
2 V).
From Eq. (30), we have the following equations for the boundary functions 7(t):

Leg=mo(t) + Viro(t) =0, 0<t<f, mo(0)=a— ¥,(0), mo(ft) =0, p =1/ (33)

Yi1
VB’

Lrsgio(t) = ok (), 0<t <, m32(0) =0, 7ma42(ft) =0

L7Z3k+1(t) = 7'(3k(t) + O<t< ﬂ, TU3k+1 (0) 0, TU3k+1 ([.Nl) =0, k=0,1,...,n (34)

k=01,..,n (35

~

L7'(3k+3 = ﬂ3k+2(t) — yk—\/';, O0<t< [.~l, 7'(3k(0) = —yk(O), 7'(3](([1) =0, k= 0,1,...,n-1 (36)

L7’(3(n+1)(t) = 7T3n+2<t) — %, 0<t< [:l, 7T3n(0> =0, 7'(3,1(}1) =0 (37)
The solution of problem (33) is represented in the form

2.3/2

e ¥ ds

S

[
mo(t) = (a — be™? AJ " 4ds,
t

We note that 779 (¢) will exponentially decrease as t — [i.

Lemma 6. The general solution of this equation Lz(t) = 0 will have z(t) = ¢1 Y (t) + 2 X(t); here
c1, ¢» are constants, and
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Y(t) =1-X(t), X(t)= aJ # ot g ( aJ # g - 1).

t 0

Two linearly independent solutions and Y (t) = O(t), t — 0, 0 < X(t)<1,

1 —1)" ,
X(#) :t—%e—%f"’/z(1—§t—%+...+(zn) kﬁ11-4-...-(3k—2)t—37+...>, t— i (38)

) = 0 will have only trivial solution.

=

Lemma 7. The boundary problem Lz(t) = 0, z(0) = z(
The proofs of Lemmas 6 and 7 are evident.

Theorem 4. The problem

253/2

z(t) = Jo G(ts) f(s)ds,
-Y(H)X(s), 0<t<
and G(t;s) = { CYOX(), s<ter,
is the function of Green andf (t) € C(0, j1]

Theorem 4 implies the existence and uniqueness of the solution of problem (34)—(37):
|Tte(t)| < I = const, te |0, i1].

Lemma 8. Asymptotical expansions of functions mi(t), t — i (k =1,2,...) will have the next
forms

m(f) = — 701 1+—4 +7 42 39+
W= s e T

Yo,1 23 173 ) 23y, 4 (1)
H=—"%> |1+ +——=+.. |, m)=- +0
() \/z< 40VE 2P ) 60VP

3 _ = _ 3 = _3
a1 () = ZISk—H] T2 () = £V Dgp it () =Y ot 7.
=0 =

Proof for Lemma 8.
Firs proof. We can prove this lemma by applying formulas (38) and Theorem 4.
Second proof. We can receive these representations from Egs. (34)—(37) directly.

Now we will prove the boundedness of the reminder function R(x, ¢). This function will satisfy
the next equation:

19
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eR"(x,€) + VAR (x,€) = R(x,€) = 0 Dty (8) 4+ €41 () — 7, ()

R(0,¢) =0, R(1,¢)=0.

Applying to this problem theorem [23, p.117, 82], we obtained

IR(x, )| <™ C max |1y () + ha(x) =y, (x))].
0<x<1

0<t<fi
Therefore, we have R(x, ¢) = O(e""1), ¢ — 0, x€]0,1].
We prove next.

Theorem 5. The asymptotical expansion of the solution of the problems (27) and (28) and will
have the next form

3(n+1)

Y@ = e+ 3 it + 0 ), € — 0.
k=0 k=0

3. Singularly perturbed differential equations Lighthill type

3.1. The idea of the method of Poincare

Consider the equation
My(x) :=y"(x) + y(x) — ey’ (x) = 0. (39)

Unperturbed equation has solutions y,(x) = a; cosx + by sinx (where a;, by are arbitrary con-
stants) with period 27t. We are looking for the periodic solution of the equation y(x, €) with a
period of w(¢) = w(0) = 2m.

Note that the operator M transforms Fourier series Zak coskx and Zak sinkx in itself.
k=1 k=1

Poincare’s method reduces the existence of periodic solutions of differential equations to the

existence of the solution of an algebraic equation.

We will seek a periodic solution of Eq. (39) with the initial condition

If we seek the solution in the form
y(x) = yo(x) + ey, (x) + 2y, (x) + ...

with the initial conditions
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¥,(0) =1, y5(1) =0, y,(0) =y (1) =0, k=1,2,...
then for y (x), s = 0,1, ... we have next equations

Ly, :==y'5(x) + yo(x) =0 = y,(x) = cosx

3

3 1 3 . 1 1
Ly, = cos”x = cosx+7 cos3x = y,(x) = cxsinx — — cos3x + —- cosx,

4 8 32 32

Thus, y(x) = cosx + & (3xsinx — ; cos 3x + ; cosx) + ...it is not a uniform expansion of the y
(x) on the segment [—oo, o], since the term ex sinx is present here.

If these secular terms do not appear in Eq. (39), it is necessary to make the substitution
x =t(1+ear + 2ar +...)

where the constant a; should be selected so as not to have secular terms in t.

Thus, the solution of Eq. (39) must be sought in the form

y(t) = yo(t) + ey, (1) + 2y, () + ...
x=t1+ear + 2y +...)

(40)
Then Eq. (39) has the form
Z'(t) + (14 are + axe? +..)z(t) = e(1 + are + are® +...)22(t)
where y(w(e)t) = z(t).
We will seek the 27t periodic solution of this equation in the form

z(t) = zo(t) + ez1(t) + 2z (t) + ...

Then

Lzo :=Z'y(t) + zo(t) = 0 = zo(t) = cost.

3 1
Lzi(t) = a1 cost + 1 cost+ 1 cos 3t.

The function Z;(t) will have the periodical solution we take &y = —3/4. Then z; (t) = — 55 cos 3t.

Similarly, from equations

2n+1
az,(t) = —a, cost+ g(ay, ay, ..., ay_1) cost + Z[Bn cos mt

m=1

a, and etc. are uniquely determined.

21
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Theorem 6. Equation (39) has a unique 27t/ periodic solution, and it can be represented in the
form (40).

3.2. The idea of the Lighthill method
Lighthill in 1949 [67] reported an important generalization of the method of Poincare.

He considered the model equation [67, 82]:

(x +ey(0)y' (x) + q(x)y(x) = r(x), y(1) =a (41)
where x €0, 1]q(x), r(x) € C”[0, 1].
Lighthill proposed to seek the solution of Eq. (41) in the form

Y(&) = yo(&) + ey, (&) + ey, (&) + ..

x =&+ ex1(&) + e2x2(E) + ... (42)

It is obvious that Eq. (42) has generalized the Poincare ideas (see, the transformation Eq. (40)).

At first, we consider the example
(¥ +ey(N))y' () +y(x) =0, y(1) =b. (43)

It has exact solution

y(x) = (Vx2 + 2be + e2b? — x) /. (44)

It is obvious that for b > 0, the solution (43) exists on the interval [0, 1] and
y(0) = V/2b + eb*/\/e.

The solution of Eq. (43) is obtained by the method of small parameter that can be obtained
from Eq. (44). For this purpose, we write Eq. (44) in the form

Y :g<_1+¢1+2b§+bz(§)2)

and considering x> > 2¢b, this expression can be expanded in powers of ¢, and then we have

y(x):?4_;%(3(2—1)—1—...4—0(%()%)”)—|—... (45)

The series (45) is wuniformly convergent asymptotic series only on the segment
e, 1], 0<a<1/2.

First, we write Eq. (43) in the form
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(x +ey(&)y' (&) +y(&)x'(£) =0 (46)
Substituting Eq. (42) into Eq. (46):

(& +ey(&) +x1(&)) + ... +€" (Y, 1(E) +xu(E)) + .. ) (Yo (&) + ey (&) + ...+
+e"y (&) + ) + (Yo (&) + ey (&) + ey (&) + )M+ exi (&) + .+ e"x (&) +...) =0

and equating coefficients of the same powers ¢,we have

EYo(&) +yy(8) =0 (47)

—_

n—

(&) +y,(8) + ((yi(é) + Xi11(E))Yp-1-:(E) +yi(€)x;_i(€)) =0, y,(1)=0n=12..

py
(48)
From Eq. (47), we have
Yo(&) =b&1,
Using Eq. (47), Eq. (48) for n = 1 can be written as
(&) + 11 (&) = (Ex1(8) — x1(&) +o(E))yo(&) =0, (1) =0. (49)

If we put x1 (&) = 0 in Eq. (49), we obtain
EH(E) + (&) =07y (1) =0.
Hence, solving this equation, we have
n(&) =08~ b2

Since differentiation increased singularity of nonsmooth function, we select x; (&) so that the
expression in the right side of Eq. (49) is equal to zero, i.e.,

EX(E) —x1(&) +y,(&) =0, x(1) =0.
Hence, we have
x1(&) =27'0E — (2&)7'b.

Then Eq. (49) takes the form

(&) +y,(8) =0, y,(1)=0.

Hence, we obtain y, (&) = 0.
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Now Egq. (48) for n = 2 takes the form
EYa(&) + (&) = (Ex3(&) —x2(&))yp (&) =0, y,(1) =0.

Let x2(&) = 0, and then y, (&) = 0. Further also choose x;(&) =y,(&) =0 (i =3,4,...), as they
also satisfy the initial conditions. Thus, we have found that

y(&) =be (50)

() :5+g (5—95. (51)

Putting in Eq. (51) x = 0, we have

n=/be/(2 + be). (52)

For b > 0, the point x = 0 is achieved. Moreover, the except in variable £ from Eq. (50) and to
Eq. (51) setting &, we obtain the exact solution (44).

Now we will present the main idea of the Lighthill method to Eq. (41) under
conditions:q(x), r(x) € C7[0,1] and g, = q(0) > 0. We will write it in the form of

(x(&) +ey())y (&) = [r(x(&)) — ()OI (&), y(1) =y (53)

It is obvious that we have one equation for two unknown functions, y(&), x(£). Now we substitute
the series (42) to Eq. (53):

(64 e ule) + mle)) S etohe) =
k=0 k=0

oo . oo

- (Sre(Sn0e) - Sae (o)) 1+ Sree)
j= =0 =

k=0 k=0

where q; = q;(&) = jl!q(f)(é), 1 =ri(&) = 1ri(&).

Hence, equating the coefficients of equal powers has ¢

Luo = &yo(&) +9(E)yo (&) =7(&),  yo(1) =¥, (54)
Ly, = [Eyox) — Yox1 — Yo¥ol + (11 — q1yo)x1,  y1(1) =0, (55)
Ly, = [&yoxs — (o +x1)y1 — (y1 +22)y + (11— qyy0)x1 — qy,) ]+ (56)

+rixo + 7’2x% — qx1y; — (g2 + ‘72x%)yo}f y,(1) =0,

/

Ly, = W5, = U+ W g X1 St Y Vi ¥ X D
He, Wor o Yy X1, X021)), y,(1) =0;

where g = q,, v =19,
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fo==Wo+x)y, 0 — (1 +x2)Y 2 = = Wyp + Xu-1)Vh — Yyalot

+(rx1 — qyy — 1 x1Yg)x,_q + (X2 + rax} — QYo — G1x1y; — (q1%2 + ‘hx%)yo)x;—z +..
+(r1Xp—1 4 2r2X1X0—2 + 212X0Xy -3 + ... + T — Y X2 — (GyXn—1 + 290%1 %02 + ...
+q,127)Yo)xy,

8y = 11X + 202X1 X1 + oo+ 1 — @11y, 1 — (@1%2 + 32X, — -
— (X0 + 20101 + ... + ,X1)Yp-

In these equations, the coefficient (&) — q(&)y,(&) of the derivative x; (&) (n=1,2,...)was
replaced by Eq. (54) on &y; ().

From Eq. (57) for n =1,2,..., it follows that if we want to define functions x,(&) (n=1,2,...)
from this differential equations, then we must assume that

Eyo(&) = (&) —q(E)y (&) #0, £€(0,1]. (58)

And this condition cannot be avoided by applying the Lighthill method to Eq. (41). Condition
(58) first appeared in [69], justifying Lighthill method, then in the works Habets [66] and
Sibuya, Takahashi [68]. Comstock [65] on the example shows that the condition (58) is not
necessary for the existence of solutions on the interval [0, 1]. Further assume that the condition
(58) holds. Note that the right-handside of Eq. (57) is linear with respect to x,(&), and f,
function depends from y, ..., v;,_4, X}, ..., x),_; only.

The solution of Eq. (54) can be written as

Yo(&) = Eg(E)(y" + Jé shlr(s)g™" (s)ds) = & (&), (59)

1

&

where g(&) = exp (J (% — q(s))s‘lds).

1

Let

1

wy =1° — L st 1r(s)g 7 (s)ds # 0wy = w(0) # 0.

Hence, we have

Yo(&) ~& Mwy, & —0. (60)

Since the differentiation of y,() increased of its singularity at the point £ = 0, it is better to
choose such that the first brace in Eq. (55) is equal to zero, i.e.,

&y =x1+y, x(1)=0.

Hence, using Eq. (60), we obtain
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&
0@ =g (s -
1

—o
Tra £, (61)

Then Eq. (55) takes the form
Ly, = (11 — q,y)x1 ~a1& >,
where a1=const. Hence, we have

yi(€)~m &7 (ar = const), & — 0. (62)

Now equating to zero the expression in the first brace in the right-hand side of Eq. (56), we
have

&xy —x2 =y + (Yo +x1)¥5 — (1 = quy)x1 — qyy)¥)) (W)~ ~ 02672, by = const.

From this, we get

x2(E)ThpE M, by = const, & — 0. (63)
Now Eq. (56) takes the form

Ly, = & (Yo, Y1, X1, X2) ~2E 0, a5 = const, & — 0

Solving this equation, we have

Y,(&) ~1&E 3, g, = const, £ — 0 (64)
Next, the method of induction, it is easy to show that

xj(&) ~ by &, yj(€)~ajé*<f+1>%, i=12... (65)

Thus, the series (42) has the asymptotic

Y(E) ~E M0 (wy + me&™0 + .. +a,(eE70) +..0), £—0, (66)
. Wo —fo )2 —qo\"
x~& 1+%5 €+ by(eE70) + ...+ b, (e&E0) 4 ... (67)

From Eq. (67), it follows that the point x = 0 corresponds to the root of the equation

n+exi(n) + e2x(n) +... =0 (68)

Moreover, this equation should have a positive root and if the solution of Eq. (41) exists on the
interval (0, 1]. Solving Eq. (68), we obtain
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N~ (woe/1+qy)" ), e — 0. (69)

And, under the conditionwy > 0, 1, will be positive. It is obvious that on the interval [, 1]
series (42) or (66) and (67) remains asymptotic. Substituting Eq. (69) into Eq. (66), we have

Woe —qo/(1+4q)
) , ¢—0.

y(0) ~wo (1 o

If wy < 0 the point x = 0 does not have the positive root of Eq. (68), so that the solution of
Eq. (41) goes to infinity, before reaching the point x = 0.

We have the

Theorem 7. Suppose that the conditions (1) g(x), r(x) € C”[0,1]; (2) g, > 0; (3) wo > 0; (4)
&y, # 0, £€10,1]. Then the solution of problem (41) exists on the interval [0, 1], and it can be
represented in the asymptotic series (42), (66) and (67).

Theorem 7 proved by Wasow [69], Sibuya and Takahashi [68] in the case where g(x), r(x) are

analytic functions on [0, 1]; proved by Habets [66] in the case g(x), 7(x) € C?[0, 1]. Moreover,
instead of the condition (3) Wasow impose a stronger condition: 2 >> 1.

In the proof of Theorem 7, we will not stop because it is held by Majorant method.

From the foregoing, it follows that Wasow condition y;(&) # 0, £€(0, 1] is essential in the
Lighthill method.

Comment 2. Prytula and later Martin [65] proposed the following variant of the Lighthill
method. At first direct expansion determined using by the method of small parameter

y(x) = Yo (%) + ey (¥) + 2y, (1) + ... (70)
and further at second they will make transformation

x =&+ exy (&) + e2x2(E) + ... (71)

Here unknowns x;(&) are determined from the condition that function y]-(é) was less singular
function Yi (&£). We show that using the method Prytula or Martin, also cannot avoid Wasow

conditions. Really, substituting Eq. (71) into Eq. (70) and expanding in a Taylor series in powers
of ¢, we have

Y(&) = yo(&) + ely, (&) + v (E)x1(&)} + O(?).

Hence, to obtain a uniform representation of the solution to the second order by ¢, we must to
put to zero the expression in the curly brackets, ie., x1(&) = —y,(&)/y,(E). Therefore,
¥(&) = yo(&) + O(e?). Hence, it is clear that we must make the condition of Wasow: (&) # 0
in the method of Prytula or Martin also.
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3.3. Uniformization method for a Lighthill model equation

We will consider the problem (41) again [3, 58-60], i.e.,
(x + ey())y' (x) = r(x) = q(x)y(x), (1) =a, (72)

Theorem 8. Suppose that the problem (72) has a parametric representation of the solution
y=y(&), x =x(&), where £€(n, 1], n=rn(e) >0, then the problem (72) is equivalent to the
problem

{ &y'(&) = r(x(&)) — q(x(E))y(&), y(1) =y°, 73)
EX'(&) =x(&) +ey(&), x(1)=1, &en 1],

where 1 = 1)(¢) is the root equation x(n) = 0 and if the root n = n(¢) > 0 and x(&) + ey(&) # 0
on the interval [, 1].

Proof. Sufficiency. Let the solution of the problem (72) exists and x(&), y(&) are a parametric
representation of the solution of the problem (72). Then introducing the variable-parameter ¢,
we obtain the problem (73).

Necessity. Let it fulfill the conditions of Theorem 8. Then dividing the first equation by second
one, we get Eq. (72). Theorem 8 is proved.

Equation (73) on the proposal of the Temple [43], we will call uniformizing equation for the
problem (72).

We have the following

Theorem 9. Suppose that the first three conditions of Theorem 8. i.e.,(1) g(x), r(x) € C7[0, 1]; (2)
9o > 0; (3) wy > 0. Then the solution of problem (72) is represented in the form of an asymp-
totic series (42) and its solution can be obtained from uniformizing equation (73).

The proof of this theorem is completely analogous to the proof of Theorem 8, even more easily.
Only it remains to show that under the conditions of Theorem 9 we can get an explicit solution
y = y(x, ). Really, since

wo

“he, £ — 0.
1+qo5 &

x&—

Let

-y — wo —o —p)2 N — q0+1 —wo —
F(x, & ¢e)=x c§—|—1+q£ €+O<(eé )),E 0,1 ”‘/1+q08,€ 0.

0

then

OF(x, ¢, ¢€)

3 e =—1-do+ 0(61/(1”0)) £0, £e€n 1.

Therefore, by the implicit function theorem, we can express & : & = @(x, €).
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Then when we put it in first equality (42), we obtain an explicit solution y = y(x, €).
Comment 3. Explicit asymptotic solution that this problem obtained in Section 3.4.

Example 43. Uniformized equation is

{ &y'(&) = —y(&), y()=b
EX' (&) =x(&) +ey(&), x(1)=1, Een 1],

It is easy to integrate this system, and we obtain

y(&) = b, x(&) = (1 +27"be)& — (28) 'be,
Hence, excluding variable &, we have an exact solution (44).
Example 2 [37, 43])

(x + ey(x)y' (¥) + 2+ x)y(x) =0, y(1) =e .

Uniformized equation is

{ 53(’(5) =X+ Ey(é), x<1) =1, (74)
&y'(&) = -2 +x(O(&), y(1)=e', €]

Let

{ x(&) = x0(&) + ex1(&) 4+ O(e?), (75)
Y(&) = yo(&) + ey, (&) + O(e?),

Substituting Eq. (75) into Eq. (74), we have

£ } £
x0(&) =& x1(&) = EJ e s s, y (&) =e &% y (&) = —e‘5£2j e5s s,
1

1

Hence if £ — 0, we obtain

x0(&) = ¢, x1(5)=—%€_2+..., Yo(&) =& +..., ]/1(5):—%(5_4%—...

From the equation x(n) =0, we find n: n y/¢/3.
We prove that x(&) + ey(&) # 0 on the interval [n, 1].

Really,
X(E) +ey(E)E+eE2 £0, E€(n ).

3.4. It is construction explicit form of the solution of the model Lighthill equation

We will consider the problem [57], i.e., (41) again
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(x + ey(x))y'(x) + 9(x)y(x) = r(x), y(1) =b (76)
where b is given constant, x €[0,1], y/(x) = dy/dx . Given functions are subjected to the condi-
tions U: q(x), r(x) € ™[0, 1].

Here, we consider the case g, = —1; this is done to provide a detailed illustration of the idea of
the application of the method. We search for the solution of problem (76) in the form

v = 1 () + 3 () + () 77)
k=0

where t = x/p, & = p? ux(x) € C™)[0,1] and 7 (t) € C™(0, ), o = 1/p-
Note that 71, (t) = mi(t, 1) , i.e., me(t) depends also on i, but this dependence is not indicated.

The initial conditions for the functions 7t;(¢) are taken as

ma(1/p) =by, b=u" = pru(1), m(gy) =0, k=01,... (78)
k=0

Substituting Eq. (77) into Eq. (76), we obtain to determine the functions m(t), k= -1,0,1, ...,
uy(x), n=0,1,...,

we have the following equations:
(t+ma®)7 1) =gl hma B waly) = by, (79.-1)
Lug(x) == xu/o(x) — q(x)uo(x) = r(x), uo(x)€C0,1] (80.0)

Dro(t) := (t + 7L1(t)>7z’o(t) v <n',l(t) —q(u t))no(t) = —uo(t) 1 (H),  mo(ug) =0 (79.0)

Luy(x) =0, wu(x)eC™|0,1], (80.1)
Dri(t) = —uo(tp)m'o(t) + o (8) o () — wr (fp) 7' 1 (8),  m1(py) =0 (79.1)
Luy(x) := —uo(x)u'o(x), uz(x)eC™|0,1] (80.2)
Dry(t) == —uo(tu)m' —1(t) — mo(t)r'1 (t) — ur (tu)m'o(t) — i (#)7'o(t) — ua(tu)m' —1(t), m2(py) =0
(79.2)
Lus(x) = —to(x)uts (x) — wo(x)unn(x), () €C[0, 1], (80.3)
Drs(t)= Y. wludm®)+ > mtm), mu) =0,
i+j=2 i+j=2 (79.3)
i>0,j> —2 i,i>0

We solve these problems successively. We write problem (79.—1) as
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£ (1) — q(ubz(t) = ~2(DZ (D), =(u,) = by,
where
z=1(t), py=u"
The fundamental solution of the homogeneous equation corresponding to this equation is of

the form
2(t) = exp {Jt q(ys)%} = exp {Jt (Q(HS) + 1) % = Jt %} - P(‘Zt}l)/

H Ho Ho

where

p(t, u) = exp {r (61(#5) + 1) %}

Ho

Using the expression for z°(t), the solution of the inhomogeneous equation for z(t) can be
written as

t

ao:iﬁﬂhww+uLf*@yﬂ@z@%u

t

Or t2(t) = plt b — plt, )| 9715 w29 ()

Ho

After integrating by parts, we reduce the last expression to the following equation:

2 2.2 t
(6) = plt, )~ 5 4 ) o L [ LR 1 2

o

or

t

22 (b) + 2t2() — p(t, w)bo = p(t, #)J O(s, p)p~" (s, 1)z (s)ds == p(t, w)T(t, 2°) (81)
Ho

where ¢(s, 1) = (1+q(us))/s, bo = 2b + b*>.

Let by > 0. Let us introduce the notation zo(t) = —t + /> + bop(t, ). This function satisfies the

inequality 0 < zo(t) <Mt~ (t > 0) and is a strictly decreasing bounded function on the closed
interval [0, ). Here and elsewhere, all constants independent of the small parameter u are
denoted by M. Let S, be the set of functions z(t) satisfying the condition

llz — zo|| <Mp, where ||z|| = max |z(t)],
0<t<p,
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Theorem 10. If by > O, then there exists a unique constraint of the solution of problem (79.-1) from the
set S,,.

Proof. Equation (81) is equivalent to the equation z = FJt, z], where

Flt, 2] = —t+ /2 + bp(t, ) + plt, p)T(L, 22).

Suppose that ||t u)||<My, 0<m<p(t u)<M, |p(t)||<M. First, let us estimate T(t z°)
on the set 5;,. We have
5 to 1 5 to 2 o 2
()< ot Wl s )0 Pds<Mu | f6) Pds <M " [z(s) Pl

1 iz
SMyJ |z(s)|ds —i—MyJ 0 1z(s)|*ds < M.
0 1

Here, we have used the triangle inequality

[2(8)| <[z(t) = zo(B)] + |z0(H)],
as well as the inequality
lzo(t)| <Mt (£>0).
The Fréchet derivative of the operator F(t,z) with respect to z at the point zy(t) is a linear
operator:

o ds

Q(s, tp~" (s, w)zo(s)h(s) \/ ,

F.(t zo)h = —p(t, y)Jt

2+ p(t, p) (b FT( ZZ))

where h(t) is a continuous function on the closed interval [0, y)]. Note that, in view of
T(t,z3) = O(u), the denominator of this expression is strictly positive on the closed interval
[0, o). For F'(t zp), we can obtain the estimate ||F,(t zp)|| SMulnu~! in the same way as the

estimate for T(t, z%). Hence, in turn, it follows from the Lagrange inequality that the operator is
a contraction operator in the set S,. Therefore, by the fixed-point principle, Eq. (81) has a
unique solution from the class S,. The theorem is proved.

Corollary. The following inequalities hold:
1. z(t) =mn_1()=M > 0 for all t€ [0, p,);
2. m(t) Mt (t>0).

The other function 7;(t), uj(x), j=0,1,2,... is determined from the inhomogeneous linear
equations; therefore, the following lemmas are needed.

Lemma 9. For any function f(x) € C™)[0,1], the equation L& = f(x) has a unique bounded solution
&(x) € C™[0, 1] expressible as
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5@%:QQJXQ”@V@éiQ@F:“P{ﬁ<“)+1y§}

0 X

Proof. The proof follows from the fact that the general solution of the equation under consid-
eration is expressed as

If we choose

then we obtain the required result.

This lemma implies that all the functions ui(x), k=0,1,... are uniquely determined and
belong to the class C”[0, 1].

Lemma 10. The problem
(1 ()7 (0 + (71() = aut) )n(®) = k() npg) =0, (82)

where the function k(t) belongs to C[0, 1] is continuous and bounded, and if |k(t)| <Mt 2, t — oo, has
a unique uniformly bounded solutionn(t) = n(t, u) on the closed interval t € [0, u,|for a small .

Proof. The fundamental solution of the homogeneous equation (82) is of the form

o(f) = (1<+tfi)lt'3‘ g(t, 1) —exp{ Jtyo (1+q<u5))s+i—:(5)}.

Obviously, ||g(t, )| <M and g~ (t, 1) <M for t € [0, yyland paresmall. The solution of problem

(82) can be expressed as

n(t) = % Jug g (s, w)k(s)ds. (83)

The estimate of the integral term in Eq. (83) shows that it is bounded by the constant M. Hence,
it also follows that |n(t)| <Mt ! (+ > 0). The solution of problem (79.0) is defined by the integral
Eq. (83), where

1 (t)
k(t) = —up(tu)m_1(t) = —up(t f) —————,
() = —uo(tp)ma (t) = —wo(ta(t) 55
satisfies the assumptions of the lemma. Therefore, the function 71y (f) is bounded on [0, u,]. The
boundedness of the other functions 7 (t), k =1,2, ... is proved in a similar way, because the
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right-hand sides of the equations defining these functions satisfy the assumptions of Lemma
10. The estimate of the asymptotic behavior of the series (77) is also carried out using Lemma
10.

Let us introduce the notation

n

y(x) = p () + Y (nk(t) + uk(x)) + 1" Ry (x, ). (84)
k=0

The following statement holds.

Theorem 11. Let by > 0 (for this, it suffices that the condition by := b — y,(1) > Oholds). Then the
solution of problem (76) exists on the closed interval |0, 1]and its asymptotics can be expressed as Eq.
(84) and|R,,+1(x, u)| <M for all x €0, 1].

Example. Consider the equation
(x+ey@)y®) +y@ =1, y1)=b,

This equation is integrated exactly

2
y(x) =e | —x+ \/x2 + 2bge + €2 (y(0)> + 2ex

4

where by = b — 1. If by > 0, then the solution of problem (1) exists on the closed interval [0, 1],
which is confirmed by Theorem 11. The equation for 7t_;(f) is of the form

(t + n_1(t)>n’_1(t) () =0, mo(uy) = b

The solution of this problem can be expressed as

i (t) = —t+ /2 +2b + b2

The equation for u0(x) has the solution y,(x) = 1€ C”[0, 1]. Further,

_ () +bu _ _
o (t) = T OB w(x)=0, k=12,..,

where b = by. The asymptotics of the solutions of problem (76) can be expressed as

y(x) = p o (x/u) + 1+ mo(x/u) +o(u) forallxe€[0,1], u— 0.

4. Lagerstrom model problem

The problem [32]
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(1) + Igv’(r) +o(r)d(r) = ﬂ[v’(r)]z, v(e) =0, v(e) =1, (85)

where 0 < f is constant, ke N.

It has been proposed as a model for Lagerstrom Navier-Stokes equations at low Reynolds
numbers. It can be interpreted as a problem of distribution of a stationary temperature v(r).

The first two terms in Eq. (1) is (k + 1) dimensional Laplacian depending only on the radius,
and the other two members—some nonlinear heat loss.

It turns out that not only the asymptotic solution but also convergent solutions of Eq. (1) can be
easily constructed by a fictitious parameter [70]. The basic idea of this method is as follows.
The initial problem is entered fictitious parameter A € [0, 1] with the following properties:

1. A =0, the solution of the equation satisfies all initial and boundary conditions;

2. The solution of the problem can be expanded in integral powers of the parameter A for all
A€o, 1].

It is convenient in Eq. (85) to make setting r = ex, v =1 — u, then
u"(x) + (k™ + )’ (x) — Aeu(x)u (x) = [’ ()%, u(1) =1, u(e) = 0. (86)

We have the following

Theorem 12. For small ¢ > 0, the solution of problem (86) can be represented in the form of
absolutely and uniformly convergent series

u(x) =up(x, &) + vr(e)ur(x, €) + ... + v (e)un(x, €) + ...,

for the sufficiently small parameter ¢, where

k—2

N 1
v1(€) ~ (lng> , Uy~ slng, Vg ~ e(j>2) ;ur(x, e) =0(1),Vxe(l, o)

Note that the function u,(x, ¢) also depends on k, but for simplicity, this dependence is not
specified.
Proof. We introduce Eq. (86) parameter A, i.e., consider the problem

u" (x) 4+ (ke + &)’ (x) — Bl (1)) = Aeu(x)u' (x), u(l)=1, u() =0 (87)
Here, we will prove this Theorem 12 in the case = 0 only for simplicity.
Setting A = 0 in Eq. (87), we have

o+ (xk+e)uy=0, up(l)=1, wup(s)=0. (88)

It has a unique solution
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Ug = X(x, 8) =1 X1 (X, 8), X1 = C()J S

ke=esds, Cal = J s ke e ds.
1 1

Therefore, Eq. (88) with zero boundary conditions is the Green’s function

K(x S S) = Calxl(x’ é3>){(S/ €>/ 1<x<s,
7 C61X1(S, E)X(x, g)/ S < x < oo

Hence, the problem (87) is reduced to the system of integral equations

ulx) = X(x, €) + /\er G(x, s, €)u(s)u'(s)ds,
e (89)
u'(x) = X'(x, €) + )\EJ Gy(x, s, €)u(s)u'(s)ds,

1

where

_ [ Xi(x, e)X(s, €)/X'(s, ), 1=x<s,
Glos €)= {Xi 5 X (r )/ X (5 ) 5<xcem

In Eq. (89), we make the substitution u = X(x, ¢)p(x), u' = X'(x, €)i(x), and then we have

o

o) =1+ Asjl Qu(x,5, &) ()P (s)ds == 1+ 1eQ, (1), )

Y(x) =1+ /\eJ Qs (x5, €)p(s)P(s)ds :== 1+ AeQ,(AY),

1

where

Q; = X' (x,6)G(x, 5, €)X (s, €)X'(s, €),
Q= X' (x, €)Gx(x,5,€)X(s, €)X/ (s, €).
To prove the theorem, we need next

Lemma 11. The following estimate holds

oo

r 1Qi(x, s, e)]dssj X(s, €)ds (G7=12) (91)
1 1

Given that, we have 0< Xq(x, €)<1, |X'(x, €)| = X'(x, ¢), X'(x,€)<0, x€][l, ), we have

~ *Xi(s, €) o,
L |Q1(x, s, 8)|dsSJ1 X1 (s, ) X' (s, €)|X(s, €)ds+

oo

Z o1, X5, 8)X (s €)
—|—Jx X 1(x, €) X (5, 2)

dsSJx X(s, €)ds + j

1 x

X(s, €)ds = r X(s, €)ds.
1

Inequality Eq. (91) for j = 2 is proved similarly.
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Further, by integrating by parts, we have

o 0o oo

vi(e
sk“egsds/J s Fe ¢ds .= K )
1 &

J X(s, &)ds = -1+ COJ skHe“dsSJ
1

1 1

Consequently,

er X(x, €)ds<vi(e). (92)

It is from integral expressing of vi(¢) we can obtain the asymptotic behavior such as indicated
in the theorem.

With the solution of Eq. (90), we can expand in series

P(x) =1+ @ (x, €)A + @,(x, €)A* + ...,
V(x) =1+ Wi(x, e)A +Wa(x, e)A* + ...

The coefficients of this series are uniquely determined from the equations

po=%o=1 ¢, =¢eQ(1), ¥Y1=0Q(1),
¢, =eQ(p, 1) +eQ (V1) +eQi(pWVn2) + ... +€Qi(p, V1),
Y, =eQo(p, 1) +€Q(Vi-1) +eQy(p;Wn2) + ... + eQuo(p, ,W1), =23, ...).

Let z= sup {|p(x)|, |¥(x)|}, then by using Eq. (92) we have a Majorant equation:

1<x<eo
z = 1+ Awvk(¢)z%. The solution of this equation can be expanded in powers A the under condi-
tion 8vi(e)<1 forall A €10, 1].

X(x, €)p, (x, €)

If we call u,(x, €) = T we get the proof of the theorem.
k

Author details
Keldibay Alymkulov* and Dilmurat Adbillajanovich Tursunov
*Address all correspondence to: keldibay@mail.ru

Institute of the Fundamental and Applied Researches, Osh State University, Osh, Kyrgyzstan

References

[1] Duboshin, G.N. Celestial Mechanics: Analytical and Qualitative Methods. Moscow,
Nauka. 1964. [In Russian].

[2] Alymkulov, K. To the theory relaxation oscillation solution of Van der Pole equation.
Izvestia AN KyrgSSR. 1985. No. 2, pp. 14-17. [In Russian]

37



38 Recent Studies in Perturbation Theory

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

Alymkulov, K. Perturbed differential equations with singularly points and same bifurca-
tions problems. Ilim, Bishkek, 1992. 138 p. [In Russian]

Alymkulov, K., Zulpukarov, A.Z. Uniformly asymptotic of the solution of the boundary
value problem for singularly perturbed equation of the second order with weakly singu-
larity. DAN Russian. 2004, Vol. 398, No. 5. pp. 1-4. [In Russian]

Alymkulov, K., Asylbekov, T. Generalization of the boundary Leary function for con-
struction of asymptotic solution singularly perturbed equation with turning point.
Vestnik KNU. Bishkek. 2011. pp. 43-45. [In Russian]

Alymkulov, K., Asylbekov, T.D., Dolbeeva, S.F. Generalization of the boundary function
method for solving boundary-value problems for bisingularly perturbed second-order
differential equations. Math. Notes. 2013, Vol. 94. No. 3-4, pp. 451-454.

Alymkulov, K. Method of boundary layer function to solve the boundary value problem
for a singularly perturbed differential equation of the order two with a turning point.
Universal J. Appl. Math. 2014, Vol. 2, No. 3, pp. 119-124.

Alymkulov, K., Tursunov, D.A. A method for constructing asymptotic expansions of
bisingularly perturbed problems. Russian Math. 2016, Vol. 60, No. 12, pp. 1-8.

Alymkulov, K., Tursunov, D.A., Azimov, B.A. Generalized method of boundary layer
function for bisingularly perturbed differential Cole equation. FJMS. Pushpa Publishing
House, Allahabad, India, 2017, Vol. 101, No. 3, pp. 507-516.

Steinriick, H. Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances.
Springer-Verlag, Wien, 2010.

Carrier, G.P. Boundary layer problems in applied mathematics. Comm. Appl. Math. 1954,
Vol. 7, pp. 11-17.

Chang, K., Howes, F.A. Nonlinear Singular Perturbation Phenomena: Theory and Appli-
cations. Springer-verlag, Berlin, 1984.

Cole, ].D. Perturbation Methods in Applied Mathematics. Blaisdell Publishing Company,
New York, 1968.

Cousteix, ]J., Mauss, J. Asymptotic Analysis and Boundary Layers. Springer-Verlag, Berlin
Heidelberg, 2007.

Eckhaus, W. Asymptotic Analysis of Singular Perturbations. North Holland, Amsterdam,
287 p, 1979.

Fruchard, A., Schafke, R. Composite Asymptotic Expansions. Lecture Notes in Mathe-
matics. Vol. 2066. Springer, Berlin, Heidelberg, 2013.

Georgescu, A. Asymptotic Treatment of Differential Equations. Chapman & Hall, New
York, 1995.

Hastings, S.P., Mcleod, ]J.B. Classical Methods in Ordinary Differential Equations, with
Applications to Boundary Value Problems, AMS, Providence, Rhode Island, 2012.



[20]
[21]

[22]

[26]

[27]
[28]

[29]

[30]

[33]

[34]

Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

Hinch, E.J. Perturbation Methods. Cambridge University Press, Cambridge, England,
1981.

Holmes, M.H. Introduction to Perturbation Methods. Springer-Verlag, New York, 1995.

Hsieh, P-F., Sibuya, Y. Basic Theory of Ordinary Differential Equations. Springer, New
York, 1999.

II'in, A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Prob-
lems. AMS, Providence, Rhode Island, 1992.

II'in, A.M.,, Danilin, A.R. Asymptotic Methods in Analysis. Fizmatlit, Moscow, 2009. [In
Russian].

Imanaliev, M., Asymptotic Methods in the Theory of Singularly Perturbed Integrodif-
ferential Systems. Ilim, Bishkek, 1972. [In Russian].

de Jager, E.M.,, Jiang, F. The Theory of Singular Perturbations, North-Holland Series in
Applied Mathematics and Mechanics. Vol. 42, North-Holland Publication, Amsterdam,
1996.

John, N.C. Singular Perturbation in the Physical Sciences. AMS, University of California,
Berkeley, CA, 2015.

Johnson, R.S. Singular Perturbation Theory. Springer, New York, 2004.

Kevorkian, J., Cole, ].D. Perturbation Methods in Applied Mathematics. Springer-Verlag,
New York, 1981.

Kevorkian, J., Cole, ].D. Multiple Scale and Singular Perturbations Method. Springer,
New York, 1996.

Kreiss, H.-O., Parter, S.V. Remarks on singular perturbation with turning points. SIAM ]J.
Math. Anal. 1974, Vol. 5, pp. 230-51.

Kuzmina, R.P. Asymptotic Methods for Ordinary Differential Equations. Springer, New
York, 2000.

Lagerstrom, P.A. Matched Asymptotic Expansions. Ideas and Techniques. Springer-
Verlag, New York, 1988.

Lomov, S.A. Introduction to the General Theory of Singular Perturbations. AMS, Provi-
dence, Rhode Island, 1992.

Mischenko, E.F., Rozov, N.Ch. Differential Equations with Small Parameters and Relaxa-
tion Oscillations. Plenum Press, New York, London, 1980.

Murdock, J.A. Perturbations: Theory and Methods (Classics in Applied Mathematics).
John Willey & Sons, New York, 1991.

Nagumo, M. Collected Paper. Springer-Verlag, Tokyo, 1993
Nayfeh, A.H. Perturbation Methods. John Wiley & Sons , Chichester, New York, 2008.

39



40 Recent Studies in Perturbation Theory

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[47]

[48]

[52]

[53]
[54]

[55]

O'Malley, R.E., Jr. Introduction to Singular Perturbation. Academic Press, New York,
1974.

O'Malley, R.E. Singular Perturbation Methods for Ordinary Differential Equations.
Springer, New York, 1991.

Sirovich, L. Techniques of Asymptotic Analysis. Springer-Verlag, New York, 1971.
Skinner, L.A. Singular Perturbation Theory. Springer, New York, 2011.

Smit, D.R. Singularl-Perturbation Theory: An Introduction with Applications. Cambridge
University Press, Cambridge, 1985.

Temple, G. Linearization and delinearization. Proc. Inter. Congr. Math., Edinburgh, pp.
233-247, 1958.

Trenogin, V.A. The development and applications of the asymptotic method of
Lyusternik and Vishik. Uspekhi Mat. Nauk. 1970, Vol. 25, No. 4, pp. 123-156 [Russian
Math. Surveys 25 (4), 119-156 (1970)].

Tursunov, D.A. Asymptotic expansion for a solution of an ordinary second-order differ-
ential equation with three turning points, Tr. IMM UrO RAN, 2016, Vol. 22, No. 1, pp.
271-281. [In Russian]

Tursunov, D.A. Asymptotic expansion of the solution of a singularly perturbed ordinary
second-order differential equation with two turning points. Tomsk State University Jour-
nal of Mathematics and Mechanics. 2012, Vol. 21, No. 1, pp. 34-40. [In Russian]

Tursunov, D.A. The asymptotic solution of the bisingular Robin problem, Sib. Elektron.
Mat. 1zv., 2017, Vol. 14, pp. 10-21. [In Russian]

Verhulst, F. Methods and Applications of Singular Perturbations. Boundary Layers and
Multiple Timescale Dynamics. Springer, New York, 2005.

Van Dyke, M. Perturbation Methods in Fluid Dynamics. Academic Press, New York,
1964.

Vasil'eva, A.B., Butuzov, V.F. Asymptotic Expansions of the Solutions of Singular
Perturbed Equations. Nauka, Moscow, 1973. [In Russian].

Vasil'eva, A.B., Butuzov, V.F,, Kalachev, L.V. The Boundary Function Method for Singular
Perturbed Problems. SIAM, Cambridge University Press, Cambridge, 1987.

Visik, ML, Lyusternik, L.A. Regular degeneration and boundary layer for linear differ-
ential equations with small parameter. Uspehi Mat. Nauk. 1957, Vol. 5, No. 77, pp. 3-122.

Wasow, W.A. Linear Turning Point Theory. Springer, Berlin, 1985.

Wasow, W. Asymptotic Expansions for Ordinary Differential Equations. Dover Publica-
tion Inc., New York, 1987.

Watts, A.M. A singular perturbation problem with a turning point. Bull. Australian Math.
Soc. 1971, Vol. 5, pp. 61-73.



[56]

[57]

[58]

[59]

[60]

[62]

[63]

[65]

[66]

[67]

[68]

[70]

[71]

Perturbed Differential Equations with Singular Points
http://dx.doi.org/10.5772/67856

Zauderer, E. Partial Differential Equations of Applied Mathematics. John Willey & Sons,
Inc., New York, 1989.

Alymkulov, K., Khalmatov, A.A. A boundary function method for solving the model
Lighthill equation with a regular singular point. Math. Notes. 2012. Vol. 92, No. 6, pp.
117-121.

Alymkulov, K. The method of small parameter and justification of Lighthill method.
Izvestia AN KyrgSSR. 1979, No. 6, pp. 8-11. [In Russian]

Alymkulov, K. The method of uniformization and justification of Lighthill method.
Izvestia AN KyrgSSR. 1981, No. 1. pp. 35-38. [In Russian]

Alymkulov, K. Development the method and justification of Lighthill method. Izvestia
AN KyrgSSR. 1985, No. 1. pp. 13-17. [In Russian]

Alymkulov, K. Generation of a periodic solution from a loop of a saddle-point separatrix
in singularly perturbed systems, DAN SSSR, 1987, Vol. 295, No. 5, pp. 1033-1036. [In
Russian]

Alymkulov, K., Zheentaeva, Zh.K. Method of structural Matching the Solution to the
Lighthill model equation with a regular singular point. Doklady Math. Sci. 2004, Vol.
398, No. 6, pp. 1-4. [In Russian]

Alymkulov, K. Analog of the method of boundary layer function for the solution of the
Lighthill's model equation with the regular singular point. Am. J. Math. Stat. 2013, Vol. 3,
No. 1, pp. 53-61.

Alymkulov, K., Matanova, K.B., Khalmatov, A.A. About new statement and about new
method of Cauchy problem for singular perturbed differential equation of the type of
Lighthill. Int. J. Sci. Innovative Math. Res. (IJSIMR). 2015, Vol. 3, pp. 54 -64.

Comstok, C. The Poincare-Lighthill perturbation technique and its generalizations. SIAM
Review. 1972, Vol. 14, No. 3, pp. 433-443.

Habets, P. On the method of strained coordinates. Lect. Notes Math. 1976, Vol. 564, No. 1,
pp. 152-162.

Lighthill, M.]. A technique for rendering approximate solution to physical problems
uniformly valid. Phil. Mag. 1949, Vol. 40, No. 7, pp. 1179-1201.

Sibuya, Y., Takahasi, K.J. On the differential equation. Func. Egs. 1955. Vol. 9, No. 1-3, pp.
71-81.

Wasow, W.A. On the convergence of an approximation method of M.J. Lighthill. J. Rat.
Mech. Anal. 1955, Vol. 40, pp. 751-767.

Alymkulov, K., Tolubaev, J. Solution of the Lagerstrom model problem. Math. Note 1994.
Vol. 56, No. 4, pp. 3-8.

Alynkulov, K., Omuraliev, M.K. Method of structural matching and its application to
Lagerstrom’s model equation. Int. J. Inn. Sci. Math. 2015, Vol. 3, pp. 81-88.

41



42

Recent Studies in Perturbation Theory

[72]

[73]

[74]

[75]

[76]

[78]

[79]

[80]

[81]

[82]

Bush, W.B. On the Lagerstrom mathematical model for viscous flow at low Reynolds
number. SIAM J. Appl. Math. 1971, Vol. 20, pp. 279-187.

Cohen, D.S,, Fokas, A., Lagerstrom, P.A. Proof of some asymptotic results for a model
equation for low Reynolds number flow. SIAM J. Apll. Math. 1978, Vol. 35, No. 1, pp. 187-
207.

Hunter, C., Tajdari, M., Boyer, S.D. On the Lagerstrom model of slow incompressible
viscous flow numbers. SIAM. J.Appl. Math. 1990, Vol. 50, No. 1, pp.48-63.

Popovi¢, N., Szmolyan, P.A. Geometric analysis of the Lagerstrom model problem. ].
Differ. Equ. May 20, 2004, Vol. 199, No. 2, pp. 290-325.

Popovi¢, N., Szmolyan, P.A. Rigorous asymptotic expansions for Lagerstrom’s model
equation a geometric approach. Nonlinear Anal. Theory Methods Appl. 2004, Vol. 59,
No. 4, pp. 531-565.

Rosenblat, S., Shepherd, J. On the asymptotic solution Lagerstom model equation, SIAM
J. Appl. Math. 1975, Vol. 29, No. 1, pp. 110-120.

Sachdev, P.L. Nonlinear Ordinary Differential Equations and their Applications, Marcel
Dekker, New York, 1991.

Tam, K.K. On the Lagerstrom model for flow at low Reynolds numbers. J. Math. Anal.
Appl. 1975, Vol. 49, No. 2, pp. 286-294.

Teruhiko, K. An asymptotic approach on Lagerstrom mathematical model for viscous flow
at Reynolds numbers. Bull. Univ. Osaka Prefect. Ser. A. 1988, Vol. 36, No. 2, pp. 83-97.

Tsien, H.S. The Poincare-Lighthill-Kuo Method. Advances in Applied Mechanics. Aca-
demic Press Inc., New York. 1956, Vol. 4, pp. 281-350.

Protter, M.H., Weinberger, H.F. Maximum Principles in Differential Equations. Prentice
Hall, Englewood Cliffs, New Jersey, 1967.



