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Abstract

The interaction of light with matter has triggered the interest of scientists for a long time.
The area of plasmonics emerges in this context through the interaction of light with
valence electrons in metals. The random phase approximation in the long wavelength
limit is used for analytical investigation of plasmons in three-dimensional metals, in a
two-dimensional electron gas, and finally in the most famous two-dimensional semi-
metal, namely graphene. We show that plasmons in bulk metals as well as in a two-
dimensional electron gas originate from classical laws, whereas quantum effects appear
as non-local corrections. On the other hand, graphene plasmons are purely quantum
modes, and thus, they would not exist in a “classical world.” Furthermore, under certain
circumstances, light is able to couple with plasmons on metallic surfaces, forming a
surface plasmon polariton, which is very important in nanoplasmonics due to its
subwavelength nature. In addition, we outline two applications that complete our
theoretical investigation. First, we examine how the presence of gain (active) dielectrics
affects surface plasmon polariton properties and we find that there is a gain value for
which the metallic losses are completely eliminated resulting in lossless plasmon prop-
agation. Second, we combine monolayers of graphene in a periodic order and construct
a plasmonic metamaterial that provides tunable wave propagation properties, such as
epsilon-near-zero behavior, normal, and negative refraction.

Keywords: random phase approximation, graphene, gain dielectrics, plasmonic
metamaterial

1. Introduction

The interaction of light with matter has triggered the interest of scientists for a long time. The

area of plasmonics emerges in this context through the interaction of light with electrons in

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



metals, while a plasmon is the quantum of the induced electronic collective oscillation. In

three-dimensional (3D) metals as well as in a two-dimensional electron gas (2DEG), the

plasmon arises classically through a depolarized electromagnetic field generated through

Coulomb long-range interaction of valence electrons and crystal ions [1]. Under certain cir-

cumstances, light is able to couple with plasmons on metallic surfaces, forming a surface

plasmon polariton (SPP) [2–4]. The SPPs are very important in nanoplasmonics and

nanodevices, due to their subwavelength nature, that is, because their spatial scale is smaller

than that of corresponding free electromagnetic modes. In addition to classical plasmons,

purely quantum plasmon modes exist in graphene, the famous two-dimensional (2D) semi-

metal. Since we need the Dirac equation to describe the electronic structure of graphene, the

resulting plasmons are purely quantum objects [5–8]. As a consequence, graphene is quite

special from this point of view, possessing exceptional optical properties, such as ultra-

subwavelength plasmons stemming from the specifics of the light-matter interaction [7–10].

In this chapter, we present basic properties of plasmons, both from a classical standpoint but

also quantum mechanically using the random phase approximation approach. Plasmons in 3D

metals as well as in 2DEG originate from classical laws, whereas quantum effects appear as

non-local corrections [11–13]. In addition, we point out the fundamental differences between

volume (bulk), surface, and two-dimensional plasmons. We show that graphene plasmons are

a purely quantum phenomenon and that they would not exist in a “classical world.” We then

outline two applications that complete our theoretical investigation. First, we examine how the

presence of gain (active) dielectrics affects SPP properties and we find that there is a gain value

for which the metallic losses are completely eliminated resulting in lossless SPP propagation

[3]. Second, we combine monolayers of graphene in a periodic order and construct a plasmonic

metamaterial that provides tunable wave propagation properties, such as epsilon-near-zero

behavior, normal, and negative refraction [9].

2. Volume and surface plasmons in three-dimensional metals

2.1. Free collective oscillations: plasmons

Plasma is a medium with equal concentration of positive and negative charges, of which at

least one charge type is mobile [1]. In a classical approach, metals are considered to form

plasma made of ions and electrons. The latter are only the valence electrons that do not interact

with each other forming an ideal negatively charged free electron gas [1, 14]. The positive ions,

that is, atomic nuclei, are uniformly distributed forming a constant background of positive

charge. The background positive charge is considered to be fixed in space, and as a result, it

does not respond to any electronic fluctuation or any external field while the electron gas is

free to move. In equilibrium, the electron density (plasma sea) is also distributed uniformly at

any point preserving the overall electrical neutrality of the system. Metals support free and

collective longitudinal charge oscillation with well-defined natural frequency, called the

plasma frequency ωp. The quanta of these charge oscillations are plasmons, that is, quasi-

particles with energy Ep ¼ ℏωp, where ℏ is the reduced Plank constant.

Nanoplasmonics - Fundamentals and Applications4



We assume a plasma model with electron (and ion) density n. A uniform charge imbalance δn

is established in the plasma by displacing uniformly a zone of electrons (e.g., a small slab in

Cartesian coordinates) by a small distance x (Figure 1). The uniform displacement implies that

all electrons oscillate in phase [2]; this is compatible with a long wavelength approximation

(λp=α ! ∞, where λp is the plasmon wavelength and α is the crystal lattice constant); in this

case, the associated wavenumber jqj (Figure 1(b)) is very small compared with Fermi wave-

number kF, viz. q=kF ! 0 [7]. Longitudinal oscillations including finite wave vector q will be

taken into account later in the context of quantum mechanics. The immobilized ions form a

constant charge density indicated by en, where e is the elementary charge. Let xðtÞ denote the

position of the displaced electronic slab at time t with charge density given by �eδnðtÞ. Due to

the electron displacement, an excess positive charge density is created that is equal to eδnðtÞ,

which in equilibrium, δn ¼ 0, reduces to zero. Accordingly, an electric field is generated and

interacts with the positive background via Coulomb interaction, forcing the electron cloud to

move as a whole with respect to the immobilized ions, forming an electron density oscillation,

that is, the plasma oscillation. The polarized electric field is determined by the first Maxwell

equation as

∇ � E ¼ 4πeδn; ð1Þ

in CGS units.1 The displacement xðtÞ in the electronic gas produces an electric current density

J ¼ �eðnþ δnÞ _x ≈ � en _x (since δn=n ! 0), related to the electron charge density via the conti-

nuity equation ∇ � J ¼ �e∂tδn. After integration in time, we obtain

δn ¼ n∇ � x ð2Þ

Combining Eqs. (1) and (2), we find the electric field that is induced by the electron charge

displacement, that is,

Figure 1. (a) A charge displacement is established by displacing uniformly a slab of electrons at a small distance x,

creating a polarized electric field in the solid. (b) A plasma longitudinal oscillation electric field in the bulk of a solid.

The arrow indicates the direction of displacement of electrons and of the wavevector q, while the double-faced arrow

shows the plasmon wavelength λp.

1For SI units, we make the substitution 1=ε0 ¼ 4π.
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E ¼ 4πenx: ð3Þ

Newtonian mechanics states that an electron with mass m in an electric field E obeys the

equation m€x ¼ �eE, yielding finally the equation of motion

m€x þ 4πe2nx ¼ 0; ð4Þ

indicating that electrons form a collective oscillation with plasma frequency

ωpð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

4πe2n

m

r

: ð5Þ

where ωpð0Þ � ωpðq ¼ 0Þ. The energy Ep ¼ ℏωp is the minimum energy necessary for exciting a

plasmon. Typical values of plasmon energy Ep at metallic densities are in the range of 2� 20 eV.

Having shown that an electron gas supports free and collective oscillation modes, we proceed

to investigate the dynamical dielectric function εðq;ωÞ of the free electron gas. The dielectric

function is the response of the electronic gas to an external electric field and determines the

electronic properties of the solid [1, 11, 15]. We consider an electrically neutral homogeneous

electronic gas and introduce a weak space-time-varying external charge density ρextðx;tÞ [14].

Our goal is to investigate the longitudinal response of the system as a result of the external

perturbation. In free space, the external charge density produces an electric displacement field

Dðx;tÞ determined by the divergence relation ∇ �D ¼ 4πρext. Moreover, the system responds

and generates additional charges (induced charges) with density ρindðx;tÞ creating a polariza-

tion field Pðx;tÞ defined by the expression ∇ � P ¼ �ρind [1]. Because of the polarization, the

total charge density inside the electron gas will be ρtot ¼ ρext þ ρind, leading to the screened

electric field E, determined by ∇ � E ¼ 4πρtot. The fundamental relationD ¼ Eþ 4πP is derived

after combining the aforementioned field equations.

The dielectric function is introduced as the linear optical response of the system. According to

the linear response theory and taking into account the non-locality in time and space [2, 14],

the total field depends linearly on the external field, if the latter is weak. In the most general

case, we have

Dðx; tÞ ¼

Z

dx0
Z

∞

�∞

dt0εðx� x0; t� t0ÞEðx0; t0Þ; ð6Þ

where we have implicitly assumed that all length scales are significantly larger than the crystal

lattice, ensuring homogeneity. Thence, the response function depends only on the differences

between spatial and temporal coordinates [2, 8]. In Fourier space, the convolutions turn into

multiplications and the fields are decomposed into individual plane-wave components of the

wavevector q and angular frequency ω. Thus, in the Fourier domain, Eq. (6) reads

Dðq;ωÞ ¼ εðq;ωÞEðq;ωÞ: ð7Þ

For notational convenience, we designate the Fourier-transformed quantities with the same

symbol as the original while they differ in the dependent variables. The Fourier transform of

Nanoplasmonics - Fundamentals and Applications6



an arbitrary field Fðr;tÞ is given by Fðr;tÞ ¼
R
Fðq;ωÞeiðq�r�ωtÞdqdt where ω, q represent the

Fourier transform quantities. Hence, the Fourier transform of the divergence equations of D

and E yields

�iq �Dðq;ωÞ ¼ 4πρextðq;ωÞ ð8Þ

�iq � Eðq;ωÞ ¼ 4πρtotðq;ωÞ: ð9Þ

In longitudinal oscillations, the electron displacement field is in the direction of q (Figure 1(b)),

thus, q �D ¼ qD and q � E ¼ qE, where Dðq;ωÞ and Eðq;ωÞ refer to longitudinal fields. Com-

bining Eqs. (7)–(9) yields

ρtotðq;ωÞ ¼
ρextðq;ωÞ

εðq;ωÞ
: ð10Þ

Interestingly enough, in the absence of external charges, ρextðq;ωÞ ¼ 0, Eq. (10) states that non-

zero amplitudes of charge oscillation exist, that is, ρtotðq;ωÞ 6¼ 0, under the condition

εðq;ωÞ ¼ 0: ð11Þ

In other words, in the absence of any external perturbation, free collective charge oscillations exist

with dispersion relation ωðqÞ that satisfies condition (11). These are plasmon modes, and conse-

quently, Eq. (11) is referred as plasmon condition. Furthermore, condition (11) leads to E ¼ �4πP,

revealing that at plasmon frequencies the electric field is a pure depolarization field [1, 2].

We note that due to their longitudinal nature, plasmon waves cannot couple to any transverse

wave such as electromagnetic waves; as a result, volume plasmons cannot be excited by light.

On the other hand, moving charged particles can be used for exciting plasmons. For instance,

an electron beam passing through a thin metal excites plasmons by transferring part of its

energy to the plasmon excitation. As a result, plasmons do not decay directly via electromag-

netic radiation but only through energy transfer to electron-hole excitation (Landau damping)

[2, 8, 14].

2.2. Dynamical dielectric function

Based on the plasmon condition (11), the problem has been reduced in the calculation of the

dynamical dielectric function εðq; ωÞ. Further investigation of εðq; ωÞ reveals the plasmon

dispersion relation as well as the Landau-damping regime, that is, where plasmons decay very

fast exciting electron-hole pairs [8]. Classically, in the long wavelength limit, the dielectric

response εð0; ωÞ can be calculated in the context of the plasma model [1, 11]. Let us consider

the plasma model of Eq. (4) subjected to a weak and harmonic time-varying external field

DðtÞ ¼ DðωÞe�iωt; Eq. (4) is modified to read

m€xðtÞ þ 4πe2nxðtÞ ¼ �eDðtÞ: ð12Þ

Assuming also a harmonic in time electron displacement, that is, xðtÞ ¼ xðωÞe�iωt, the Fourier

transform of Eq. (12) yields

Graphene and Active Metamaterials: Theoretical Methods and Physical Properties
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ð�mω
2 þ 4πe2nÞxðq;ωÞ ¼ �eDðq;ωÞ: ð13Þ

Introducing Eq. (3) in Eq. (13) and using the relation (7), we derive the spatially local dielectric

response

εð0;ωÞ ¼ 1�
ωpð0Þ

2

ω2
; ð14Þ

where the plasma frequency ωpð0Þ is defined in Eq. (5). Eq. (14) verifies that the plasmon

condition (11) is satisfied at the plasma frequency. The dielectric function (14) coincides with

the Drude model permittivity.

Further investigation of the dynamical dielectric function can be performed using quantum

mechanics. An explicit form of εðq;ωÞ including screening effect has been evaluated in the

context of the random phase approximation (RPA) [8, 12–14] and is given by

εðq;ωÞ ¼ 1� υcðqÞχ0ðq;ωÞ ð15Þ

where vcðqÞ is the Fourier transform of the Coulomb potential and χ0ðq;ωÞ is the polarizability

function, known as Lindhard formula [8, 12–14]. The Coulomb potential in two and three

dimensions, respectively, reads

υcðqÞ ¼

2πe2

jqjεb
ð2DÞ

4πe2

jqj2εb
ð3DÞ

8

>

>

>

>

<

>

>

>

>

:

ð16Þ

where εb represents the background lattice dielectric constant of the system.

In RPA approach, the dynamical conductivity σðq;ωÞ reads [8]

σ ¼
iωe2

q2
χ0ðq;ωÞ; ð17Þ

revealing the fundamental relation between εðq;ωÞ and σðq;ωÞ that also depends on system

dimensions; we have finally

εðq;ωÞ ¼ 1þ i
q2vc
ωe2

σðq;ωÞ: ð18Þ

In the random phase approximation, the most important effect of interactions is that they

produce electronic screening, while the electron-electron interaction is neglected. The polariz-

ability of a non-interacting electron gas is represented by Lindhard formula as follows:

χ0ðq;ωÞ ¼ �
2

V

X

k

f ðEkþqÞ � f ðEkÞ

ℏω� ðEkþq � EkÞ þ iℏη
ð19Þ

Nanoplasmonics - Fundamentals and Applications8



where factor 2 is derived by spin degeneracy (summation over the two possible values of spin

s ¼ ↑;↓) [8, 13, 14]. The summation is over all the wavevectors k, V is the volume, iℏη repre-

sents a small imaginary number to be brought to zero after the summation, and Ek is the kinetic

energy for the wave vector k. The carrier distribution f is given by Fermi-Dirac distribution

f ðEkÞ ¼
�

exp ½βðEk � μÞ� þ 1
��1

, where μ is the chemical potential and β ¼ 1=kBT with

Boltzmann’s constant denoted by kB and T is the absolute temperature. Equation (19) describes

processes in which a particle in state k, which is occupied with probability f ðEkÞ, is scattered

into state kþ q, which is empty with probability 1� f ðEkþqÞ. Eqs. (15)–(19) consist of the basic

equations for a detailed investigation of charge density fluctuations and the screening effect,

electron-hole pair excitation, and plasmons. With respect to condition (11), the roots of Eq. (15)

determine the plasmon modes. Moreover, the poles of χ0 account for electron-hole pair excita-

tion defining the Plasmon-damping regime [12–14].

For an analytical investigation, we split the summation of Eq. (19) in two parts. We make an

elementary change of variables kþ q ! �k, in the term that includes f ðEkþqÞ, and assume that

the kinetic energy is symmetric with respect to the wavevector, that is, Ek ¼ E�k. Therefore,

formula (19) yields

χ0ðq;ωÞ ¼
2

V

X

k

f ðEkÞ

ℏz� ðEkþq � EkÞ
�
X

k

f ðEkÞ

ℏzþ ðEkþq � EkÞ

 !

ð20Þ

where z ¼ ωþ iη. At zero temperature, the chemical potential is equal to Fermi energy, that is,

μ ¼ EF [8, 11, 14], and the Fermi-Dirac distribution is reduced to Heaviside step function, thus,

f ðEkÞjT¼0 ¼ ΘðEF � EkÞ. The kinetic energy of each electron of mass m in state k is given by

Ek ¼
ℏ2jkj2

2m
; ð21Þ

hence

Ekþq � Ek ¼
ℏ2

2m
ðjqj2 þ 2k � qÞ: ð22Þ

At zero temperature, because of the Heaviside step function, the only terms that survive in

summation (20) are those with jkj < kF, where kF is the Fermi wavenumber and related to

Fermi energy by equation (21) as kF ¼ ð2mEF=ℏ
2Þ1=2. Subsequently, we obtain for the Lindhard

formula

χ0ðq;ωÞ ¼
4

V

X

jkj<kF

Ekþq � Ek

ðℏzÞ2 � ðEkþq � EkÞ
2

ð23Þ

Summation turns into integration by using V�1
X

jkj
ð…Þ ! ð2πÞ�3 R d3kð…Þ, hence

Graphene and Active Metamaterials: Theoretical Methods and Physical Properties
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χ0ðq;ωÞ ¼
4

ð2πÞ3

Z

d3k
Ekþq � Ek

ðℏzÞ2 � ðEkþq � EkÞ
2

ð24Þ

where the imaginary part in z guarantees the convergence of the integrals around the poles

ℏω ¼ �ðEkþq � EkÞ. The poles of χ0 determine the Landau-damping regime where plasmons

decay into electron-hole pairs excitation. In particular, the damping regime is a continuum

bounded by the limit values of ðEkþq � EkÞ; k takes its maximum absolute value jkj ¼ kF and

the inner product takes the extreme values kF k̂ � q ¼ �kFjqj.

ℏq

2m
ðq� 2kFÞ < ω <

ℏq

2m
ðqþ 2kFÞ; ð25Þ

where q ¼ jqj. The Landau-damping continuum (electron-hole excitation regime) is demon-

strated in Figure 2 by the shaded area.

Introducing relation (22) into Eq. (24) and changing to spherical coordinates ðr;θ;φÞ, where

r ¼ jkj and θ are the angle between k and q, we obtain

χ0ðq;ωÞ ¼
2k4Fq

ð2πÞ3mz2

Z 2π

0

dφ

Z 1

0

dx x2
Z π

0

dθ

q
kF
þ 2x cosθ

� �

sinθ

1� vFq
z

� �2 q
2kF

þ x cosθ
� �2

: ð26Þ

where x ¼ r=kF is a dimensionless variable and vF ¼ ℏkF=m is the Fermi velocity. In the non-

static (ω≫vFq) and long wavelength ðq≪ kFÞ limits, we can expand the integral in a power

series of q. Keeping up to q3 orders, we evaluate integral (26) and set the imaginary part of z

zero, that is, z ¼ ω. That leads to a third-order approximation polarizability function

Figure 2. Dispersion relation of plasmons in the bulk of three-dimensional solid (blue solid line) and in two-dimensional

electron gas (dashed red curve) plasmons. The shaded region demonstrates the Landau-damping regime where plasmons

decay to electron-hole pairs excitation.

Nanoplasmonics - Fundamentals and Applications10



χ0ðq;ωÞ ¼
k3Fq

2

3π2mω2
1þ

3v2Fq
2

5ω2

� �

; ð27Þ

which, in turn, yields the dielectric function by using formula (14) and the three-dimensional

Coulomb interaction (16), hence

εðq ! 0;ωÞ ¼ 1�
ωpð0Þ

2

ω2
1þ

3

5

vFq

ω

� �2
� �

; ð28Þ

where vacuum is assumed as background (εd ¼ 1) and we use the relation 0 [1, 15] where n is

the electron density. The result (28) is reduced to simple Drude dielectric function (14) for

q ¼ 0.

The plasmon condition (11) determines the q-dependent plasmon dispersion relation ωpðqÞ.

Demanding εðq;ωÞ ¼ 0, Eq. (28) yields approximately

ωpðqÞ ≈ωpð0Þ 1þ
3

10

vFq

ωpð0Þ

� �2
 !

: ð29Þ

Interestingly enough, the leading term of plasma frequency (29) does not include any quantum

quantity, such as vF, which appears as non-local correction in sub-leading terms. That reveals

that plasmons in 3D metals are purely classical modes. Moreover, a gap, that is, ωpð0Þ, appears

in the plasmon spectrum of three-dimensional metals. The plasmon dispersion relation (29) is

shown in Figure 2.

In the random phase approximation, the electrons do not scatter, that is, collision between

electrons and crystal impurities is not taken into account. As a consequence, the dielectric

function is calculated to be purely real; this is nevertheless an unphysical result as can be seen

clearly at zero frequency where the dielectric function is not well defined, that is, εðq; 0Þ ¼ ∞.

The problem is cured by introducing a relaxation time τ in the denominator of the dielectric

function as follows:

εðq ! 0;ωÞ ¼ 1�
ω2

pðqÞ

ωðωþ i=τÞ
ð30Þ

We can phenomenologically prove expression (30) by using the simple plasma model. In

particular, we modify the equation of motion (12) to a damped-driven harmonic oscillator by

assuming that the motion of electron is damped via collisions occurring with a characteristic

frequency γ ¼ 1=τ [2]; this approach immediately leads to the dielectric response (30). Typi-

cally values of relaxation time τ are of the order 10�14 s, at room temperature. The relaxation

time is determined experimentally. In the presence of τ, the dielectric function (15) is well

defined at ω ¼ 0, where the real part of permittivity has a peak with width τ�1 known as

Drude peak. Furthermore, it can be shown that equation (30) satisfies the Kramers-Kronig

relations (sum rules) [1, 14, 15].
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2.3. Surface plasmon polariton

A new guided collective oscillation mode called surface plasmon arises in the presence of a

boundary. Surface plasmon is a surface electromagnetic wave that propagates along an inter-

face between a conductor (metal) and an insulator (dielectric). This guided mode couples to

electromagnetic waves resulting in a polariton. Surface plasmon polaritons (SPPs) occur at

frequencies close to but smaller than plasma frequency. These surface modes show exceptional

properties for applications of nanophotonics, specifically they constitute a class of nano-

photonics themselves, namely nanoplasmonics. The basic property is the subwavelength

nature, that is, the wavelength of SPPs is smaller than electromagnetic radiation at the same

frequency and in the same medium [2, 3, 9].

Let us consider a waveguide formed by a planar interface at z ¼ 0 consisting of two semi-infinite

nonmagnetic media (permeability μ ¼ 1) with dielectric functions ε1 and ε2 as Figure 3a

denotes. The dielectric functions are assumed to be local in space (non-q�dependent) and non-

local in time (ω dependence), hence ε1;2 ¼ ε1;2ðωÞ. Assuming harmonic in time dependence in

the form uðr;tÞ ¼ uðrÞe�iωt, the Maxwell equations (in CGS units) in the absence of external

charges and currents read

∇ � ðεjEjÞ ¼ 0 ∇ ·Ej ¼ ik0Hj ð31Þ

∇ � ðHjÞ ¼ 0 ∇ ·Hj ¼ �iεjk0Ej ð32Þ

where k0 ¼ ω=c is the free space wavenumber and the index j denotes the media as j ¼ 1 for

z < 0 and j ¼ 2 for z > 0. Combining Eqs. (31) and (32), the fields are decoupled into two

separate Helmholtz equations [2, 4] as

∇
2 þ k20εj

	 
 EjðrÞ
HjðrÞ

� �

¼ 0 ð33Þ

where r ¼ ðx;y;zÞ. For simplicity, let us assume surface electromagnetic waves propagating

along one direction, chosen to be the x direction (Figure 3b), and show no spatial variations

in the perpendicular in-plane direction, hence ∂yu ¼ 0. Under this assumption, we are seeking

Figure 3. A planar interface is formed between a metal and a dielectric where surface plasmon polaritons (SPPs)

propagate in (a) three- and (b) two-dimensional representation. (b) A schematic illustration of the SPP field.

Nanoplasmonics - Fundamentals and Applications12



electromagnetic waves of the form ψjðrÞ ¼ ψjðzÞe
iqjx, where ψj ¼ ðEj;HjÞ

T and q will be the

plasmon propagation constant. Substituting the aforementioned ansatz into Helmholtz equa-

tion (33), we obtain the guided electromagnetic modes equation [2]

∂2

∂z2
þ ðk20εj � q2j Þ

� �

EjðzÞ
HjðzÞ

� �

¼ 0: ð34Þ

Surface waves are waves that have been trapped at the interface (z ¼ 0) and decay exponen-

tially away from it
�

ψjðzÞ � e�κjjzjfor kj > 0
�

. Consequently, propagating wave solutions along

z is not desired. In turn, we derive the surface wave condition

κj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2j � k20εj

q

∈ℝ: ð35Þ

In order to determine the spatial field profiles and the SPP dispersion relation, we need to find

explicit expressions for each field component of E and H. This can be achieved by solving the

curl equations (31) and (32), which naturally lead to two self-consistent set of coupled

governing equations. Each set corresponds to one of the fundamental polarizations, namely

transverse magnetic (TM) (p-polarized waves) and transverse electric (TE) (s-polarized waves),

hence

We focus on transverse magnetic (TM) polarization, in which the magnetic fieldH is parallel to

the interface. Since the planar interface extends along ðx;yÞ plane, the TM fields read

Ej ¼ ðEjx; 0;EjzÞ and Hj ¼ ð0;Hjy; 0Þ. Solving the TM equations for surface waves, we obtain for

each half plane

z < 0 ðj ¼ 1Þ

Hy ¼ A1e
iq1xek1z

ð36Þ

Ex ¼ �
ik1A1

k0ε1
eiq1xek1z ð37Þ

Ez ¼ �
q1A1

k0ε1
eiq1xek1z ð38Þ

z > 0 ðj ¼ 2Þ

Hy ¼ A2e
iq2xe�k2z

ð39Þ

Transverse magnetic (TM) Transverse electric (TE)

Ejz ¼ �
qj

k0εj
Hjy

Ejx ¼ �
i

k0εj

∂

∂z
Hjy

∂
2

∂z2
Hjy �ðq2j � k20εjÞHjy ¼ 0

Hjz ¼
q

k0
Ejy

Hjx ¼
i

k0

∂

∂z
Ejy

∂
2

∂z2
Ejy �ðq2j � k20εjÞEjy ¼ 0
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Ex ¼
ik2A2

k0ε2
eiq2xe�k2z ð40Þ

Ez ¼ � q2A2

k0ε2
eiq2xe�k2z ð41Þ

where kj is related to qj by Eq. (35). The boundary conditions imply that the parallel to interface

components of electric (Ex) and magnetic (Hy) fields must be continuous. Accordingly, we

demand Eqs. (36) ¼ (39) and Eqs. (37) ¼ (40) at z ¼ 0, hence we find the system of equations

eiq1x �eiq2x
k1
ε1

eiq1x
k2
ε2

eiq2x

 !

A1

A2

� �

¼ 0; ð42Þ

which has a solution only if the determinant is zero. As an outcome, we obtain the so-called

surface plasmon polariton condition

k1
ε1

þ k2
ε2

¼ 0: ð43Þ

Condition (43) states that the interface must consist of materials with opposite signed permit-

tivities, since surface wave condition requires the real part of both k1 and k2 to be non-negative

numbers. For that reason, interface between metals and dielectrics may support surface

plasmons, since metals show negative permittivity at frequencies smaller than plasma fre-

quency [2]. Furthermore, boundary conditions demand the continuity of the normal to the

interface electric displacement ðDjz ¼ εjEjzÞ yielding the continuity of the plasmon propagation

constant q1 ¼ q2 ¼ q [4]. In turn, by combining Eq. (35) with Eq. (43) we obtain the dispersion

relation for the surface plasmon polariton

qðωÞ ¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε1ε2

ε1 þ ε2

r

ð44Þ

where ε1;2 are, in general, complex functions of ω. For a metal-dielectric interface, it is more

convenient to use the notation ε1 ¼ εd and ε2 ¼ εm for dielectric and metal permittivity, respec-

tively. In long wavelengths, the SPP wavenumber is close to the light line in dielectric, viz.

q≃k0
ffiffiffiffiffi

εd
p

, and the waves are extended over many wavelengths into the dielectrics [2, 4]; these

waves are known as Sommerfeld-Zenneck waves and share similarities with free surface

electromagnetic modes [2]. On the other hand, at the limit q ! ∞, Eq. (44) asymptotically leads

to the condition

εd þ εm ¼ 0 ð45Þ

indicating the nonretarded surface plasmon limit [4]. In the vicinity of the nonretarded limit,

Eq. (35) yields kj≃q ≫ k0. Furthermore, in the nonretarded limit the phase velocity vph ¼ ω=q is

tending to zero unveiling the electrostatic nature characterized by the surface plasmon [2, 3].

As a result, at the same frequency vph is much smaller than the speed of light and, thus, the SPP
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wavelength ðλspÞ is always smaller than the light wavelength ðλphÞ, that is, λsp < λph, reveal-

ing the subwavelength nature of surface plasmon polaritons [2, 4]. In addition, due to the fact

that SPP phase velocity is always smaller than the phase velocity of propagating electromag-

netic waves, SPPs cannot radiate and, hence, they are well-defined surface propagating elec-

tromagnetic waves. Demanding q ! ∞ in the dielectric function (30), we find the so-called

surface plasmon frequency ωsp, which is the upper frequency limit that SPPs occur

ωsp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
p

1þ εd
� γ2

s

≃

ωp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εd
p ; ð46Þ

indicating that SPPs always occur at frequencies smaller than bulk plasmons.

If we follow the same procedure for transverse electric polarized fields, in which the electric

field is parallel to interface and the only non-zero electromagnetic field components are Ey;Hx;

and Hz, we will find the condition k1 þ k2 ¼ 0 [2]. This condition is satisfied only for

k1 ¼ k2 ¼ 0 unveiling that s-polarized surface modes do not exist. Consequently, surface

plasmon polaritons are always TM electromagnetic waves.

Due to metallic losses, SPPs decay exponentially along the interface restricting the propagation

length. Mathematically speaking, losses are described by the small imaginary part in the

complex dielectric function of metal εm ¼ �εm0 � iε00m, where ε0m;ε
00
m > 0. Consequently, the SPPs

propagation constant (44) becomes complex, that is, q ¼ q0 þ iq00, where the imaginary part

accounts for losses of SPPs energy. In turn, the effective propagation length L, which shows the

rate of change of the energy attenuation of SPPs [2, 3], is determined by the imaginary part

Im½q� as L�1 ¼ 2Im½q�.

Gain materials rather than passive regular dielectrics have been used to reduce the losses in

SPP propagation. Gain materials are characterized by a complex permittivity function, that is,

εd ¼ ε0d ¼ þiε00d , with ε0d;ε
00
d > 0, where ε00d is a small number compared to ε0d and accounts for

gain. As a result, gain dielectric gives energy to the system counterbalancing the metal losses.

We investigate the SPP dispersion relation (44) in the presence of gain and loss materials, and

find an explicit formula for gain ε00d where the SPP wavenumber is reduced to real function,

resulting in lossless SPPs propagation. In addition, we find an upper limit that values of gain

are allowed. In this critical gain, the purely real SPP propagation constant becomes purely

imaginary, destroying the SPP modes.

The dispersion relation (44) can also be written as q ¼ k0nsp [3], where nsp is the plasmon

effective refractive index given by

nsp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εdεm

εd þ εm

r

: ð47Þ

We are seeking for a gain ε00d such that the effective index nsp becomes real. Substituting the

complex function describing the dielectric and metal into Eq. (47), the function nsp is written in

the ordinary complex form as [3]
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nsp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

þ x

2

s

þ i sgnðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� x

2

s

; ð48Þ

where sgnðyÞ is the discontinuous signum function [3] and

x ¼
ε
0
djεmj

2 � ε
0
mjεdj

2

jεd þ εmj
2

ð49Þ

y ¼
ε
00
djεmj

2 � ε
00
mjεdj

2

jεd þ εmj
2

ð50Þ

with jz�j denoting the norm of the complex number z�. The poles in Eqs. (49) and (50) corre-

spond to the nonretarded surface plasmon limit (45).

Considering the plasmon effective index nsp in Eq. (48) in the ðx; yÞ plane, we observe that

lossless SPP propagation ðIm½nsp� ¼ Im½q� ¼ 0Þ is warranted when the conditions y ¼ 0 and

x > 0 are simultaneously satisfied. Let us point out that for y ¼ 0 and x < 0, although the

imaginary part in Eq. (48) vanishes due to the signum function, its real part becomes imagi-

nary, that is, nsp ¼ i
ffiffiffiffiffi

jxj
p

, which does not correspond to propagation waves. Solving Eq. (50) for

y ¼ 0 with respect to gain ε
00
d and avoiding the nonretarded limit (45), that is, εd 6¼ �εm, we

obtain two exact solutions [3] as follows:

ε
00
d� ¼

jεmj
2

2ε00m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
2ε0dε

00
m

jεmj
2

 !2
v

u

u

t

0

B

@

1

C

A
: ð51Þ

Due to the fact that εd is real, we read from Eq. (51) that [3].

jεmj
2
⩾ 2ε0dε

00
m: ð52Þ

Using inequality (52), we read for the solution εdþ of Eq. (51) that ε00dþ ⩾ ε
0
d. This is a contradic-

tion since the ε00d is defined to be smaller than ε
0
d. Thus, εdþ does not correspond to a physically

relevant gain.

Solving, on the other hand, Eq. (49) for x > 0, with respect to the dielectric gain ε
00
d , we

determine a critical value εc distinguishing the regimes of lossless and prohibited SPP propa-

gation [3], namely

εc ¼ ε
0
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jεmj
2

ε
0
mε

0
d;
� 1

s

; ð53Þ

hence, Eq. (53) sets an upper limit in values of gain. The appearance of critical gain can be

understood as follows: In Eq. (51) the gain εd� becomes equal to critical gain εc when

εd þ εm ¼ 0 [3], where the last item is the nonretarded limit where q ! ∞. Specifically, the
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surface plasmon exists when the metal is characterized by the Drude dielectric function of

Eq. (30), ε00d� ¼ εc at ω ¼ ωsp, corresponding to a maximum frequency [3].

In order to represent the above theoretical findings, we use the dielectric function of Eq. (30) to

calculate the SPP dispersion relation for an interface consisting of silver with ωpð0Þ ¼ 13:67

PHz and γ ¼ 0:1018 PHz, and silica glass with ε0d ¼ 1:69 and for gain ε00d ¼ εd� determined by

Eq. (51). We represent in Figure 3a the SPP dispersion relation of Eq. (44) for lossless case

(ε00d ¼ ε00d�), where the lossless gain is denoted by the inset image in Figure 3a. We indicate the

real and imaginary of normalized SSP dispersion q=kp (kp � ωp=c), with respect to the normal-

ized frequency ω=ωp. We observe, indeed, that for ω < ωsp the imaginary part of q vanishes,

whereas for ω > ωsp the SPPs wavenumber is purely imaginary. Subsequently, in the vicinity

of ω ¼ ωsp a phase transition from lossless to prohibited SPPs propagation is expected [3].

We also solve numerically the full system of Maxwell equations (31) and (32) in a two-dimen-

sional space for transverse magnetic polarization. The numerical experiments have been

performed by virtue of the multi-physics commercial software COMSOL and the frequency ω

is confined in the range ½0:3ωp; 0:75ωp� with the integration step Δω ¼ 0:01ωp. In the same

range, the lossless gain is calculated by Eq. (51), to be ½8 � 10�3; 8 � 10�2�. For the excitation of

SPPs on the metallic surface, we use the near-field technique [2, 3, 9, 10]. For this purpose, a

circular electromagnetic source of radius R ¼ 20 nm has been located 100 nm above the metal-

lic surface acting as a point source, since the wavelength λ of EM waves is much larger, that is,

λ >> R [2, 3]. In Figure 4b, we demonstrate, in a log-linear scale, the propagation length L,

with respect to ω, subject in lossless gain εd� (blue line and open circles). For the sake of

comparison, we plot LðωÞ in the absence of gain (green line and filled circles). The solid lines

represent the theoretical predictions obtained by the definition of L, whereas the circles

Figure 4. (a) The surface plasmon polariton (SPP) dispersion relation qðωÞ in the presence of a gain material with gain

corresponds to lossless SPP propagation. Re½q� and Im½q� are indicated by blue and red lines, respectively. The horizontal

dashed black line denotes the SPP frequency ðωsp ¼ 0:61ωpÞ where an interchanging between Re½q� and Im½q� appears.

The dotted magenta line indicates the light line in the dielectric. (Inset) Demonstration of the gain leads to lossless SPP

propagation. (b) Theoretical (solid lines) and numerical (circles) prediction of SPP propagation length L in the presence

(blue) and in the absence (green) of gain dielectric showing a phase transition that happens at ωsp (vertical dashed black

line). Deviations between theoretical and numerical predications for ω > ωsp correspond to quasi-bound EM modes. The

kp ¼ ωp=c is used as normalized unit of wavenumbers and ωp as normalized unit for frequencies.
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indicate numerical results. For the numerical calculations, the characteristic propagation

length has been estimated by the inverse of the slope of the LogðIÞ, where I is the magnetic

intensity along the interface [2–4]. The black vertical dashed line denotes the SPP resonance

frequency ωsp, in which the phase transition appears. The graphs in Figure 4b indicate that in

the presence of the lossless gain, SPPs may travel for very long, practically infinite, distances.

Approaching the resonance frequency ωsp, L decreases rapidly leading to a steep phase transi-

tion on the SPPs propagation. The deviations between theoretical and numerical results in

Figure 4 for frequencies near and greater than ωsp are attributed to the fact that in the regime

ωsp < ω < ωp, there are quasi-bound EM modes [2, 3], where EM waves are evanescent along

the metal-dielectric interface and radiate perpendicular to it. Consequently, the observed EM

field for ω > ωsp corresponds to radiating modes [3].

3. Two-dimensional plasmons

In this section, we investigate plasmons in a two-dimensional electron gas (2DEG), where the

electron sea is free to move only in two dimensions, tightly confined in the third. The reduced

dimensions of electron confinement and Coulomb interaction cause crucial differences in

plasmons excitation spectrum. For instance, plasmon spectrum in a 2DEG is gapless in contrast

with three-dimensional case [13]. For the sake of completeness, we first discuss briefly

plasmons in a regular 2DEG characterized by the usual parabolic dispersion relation (21) for a

two-dimensional wavevector k lies in the plane of 2DEG. Thence, we focus on plasmons in a

quite special two-dimensional material, viz. graphene. Graphene is a gapless two-dimensional

semi-metal with linear dispersion relation. The linear energy spectrum offers great opportu-

nity to describe graphene with chiral Dirac Hamiltonian for massless spin-1=2 fermions

[7, 8, 10]. Furthermore, graphene can be doped with several methods, such as chemical doping

[7], by applying an external voltage [10], or with lithium intercalation [16]. The doping shifts

the Fermi level toward the conduction bands making graphene a great metal. The advantage to

describe graphene electronic properties with massless carriers Dirac equation leads to excep-

tional optical and electronic properties, like very high electric conductivity and ultra-

subwavelength plasmons [6–8, 10].

3.1. Dynamical dielectric function of 2D metals

In order to determine the plasmon spectrum of a two-dimensional electron gas, first of all we

calculate the dielectric function in the context of random phase approximation (15) with vq

being the two-dimensional Coulomb interaction of Eq. (16). In the Lindhard formula (23), V

and k denote a two-dimensional volume and wave-vector, respectively. First, we investigate a

2DEG described by the parabolic dispersion relation (21). The electrons are assumed to occupy

a single band ignoring interband transitions, that is, transitions to higher bands. Thus, there is

no orbital degeneracy ðgv ¼ 1Þ resulting in the two-dimensional Fermi wavenumber

kF ¼
ffiffiffiffiffiffiffiffiffi

2πn
p

, where n is the carrier (electrons) density [13, 17]. Turning summation (23) into

integral by the substitution V�1
X

jkjð…Þ ¼ ð2πÞ�2 R d2kð…Þ, we obtain the Lindhard formula

in integral form
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χ0ðq;ωÞ ¼
4

ð2πÞ2
Z

d2jkj εkþq � εk

ðℏzÞ2 � ðεkþq � εkÞ2
ð54Þ

The singe particle excitation continuum is still defined by expression (25), since the kinetic

energy is considered to have the same form as in 3D case, even though the 2D Fermi wave-

number has been modified. Transforming to polar coordinate system ðr;θÞ and using relation

(22), integral (54) reads

χ0ðq;ωÞ ¼
2k3Fq

ð2πÞ2mz2

Z 1

0

dx x

Z 2π

0

dθ

q
kF
þ 2x cosθ

1� vFq
z

� �2 q
2kF

þ x cosθ
� �2

ð55Þ

where x is a dimensionless variable defined as x ¼ r=kF. Previously, since we are interested in

long wavelength limit (q≪ kF), we expand the integrand of Eq. (55) around q ¼ 0. Keeping up

to first orders of q, integral (55) yields

χ0ðq;ωÞ ¼
k2Fq

2

2πmω2
ð56Þ

where z ! ω by sending the imaginary part of z to zero. The dielectric function is determined

by the formula of Eq. (15) for 2D Coulomb interaction of Eq. (16), hence

εðq;ωÞ ¼ 1� 2πne2q

mω2
ð57Þ

The 2DEG plasmon dispersion relation is determined by Eq. (11) to be

ω2D
p ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πne2q

m

r

ð58Þ

related with volume plasmons dispersion relation by ω2D
p ðqÞ ¼ ωp

ffiffiffiffiffiffiffi

q=2
p

. In contrast to three-

dimensional electron gas where plasmon spectrum is gapped, in two-dimensional case the

plasmon frequency depends on
ffiffiffi

q
p

making the plasmon spectrum gapless. In Figure 2, the 2D

plasmon dispersion relation (58) is demonstrated together with three-dimensional case. Fur-

thermore, it is worth pointing out the similarity between the plasmon dispersion relation of

2DEG of Eq. (58) and SPP of Eq. (44), that is, both show
ffiffiffi

q
p

dependence.

Let us now investigate the most special two-dimensional electron gas, namely graphene. At

the limit where the excitation energy is small compared to EF, the dispersion relation of

graphene, viz. the relation between kinetic energy E
s
k and momentum p ¼ ℏk, is described by

two linear bands as

E
s
k ¼ sℏvFjkj ð59Þ

where s ¼ �1 indicates the conduction (þ1) and valence (-1) band, respectively, vF is the two-

dimensional Fermi velocity which is constant for graphene and equal to vF¼ 106 m/s

[7, 8, 10, 16, 18]. Because of valley degeneracy gv ¼ 2, the Fermi momentum is modified to read
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kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πn=gv
p

¼ ffiffiffiffiffiffi

πn
p

[8, 18]. The Fermi energy, given by EF ¼ ℏvFkF, becomes zero in the

absence of doping (n ¼ 0). As a consequence, the EF crosses the point where the linear valence

and conduction bands touch each other, namely at the Dirac point, giving rise to the semi-

metal character of the undoped graphene [7, 15, 16, 18]. The Lindhard formula of Eq. (19)

needs to be generalized to include both intra- and interband transitions (valley degeneracy) as

well as the overlap of states, hence

χ0ðq;ωÞ ¼ � gsgv
V

X

s;s0

X

k

f ðEs0kþqÞ � f ðEskÞ
ℏω� ðEs0kþq � E

s
kÞ þ iℏη

Fss0ðk;kþ qÞ ð60Þ

where the factors gs ¼ gv ¼ 2 account to spin and valley degeneracy, respectively. The

Lindhard formula has been modified to contain two extra summations
X1

s¼�1

X1

s0¼�1

� �

corresponding to valley degeneracy for the two bands of Eq. (59). In addition, the overlap of

states function Fss0ðk;kþ qÞ has been introduced and defined by Fss0ðk;kþ qÞ ¼
ð1þ ss0 cosψÞ=2, where ψ is the angle between k and kþ q vectors [5, 18]. The term cosψ can

be expressed in jkj, jkþ qj and θ terms, and subsequently the overlap function is written as [8]

Fss0ðk;kþ qÞ ¼ 1

2
1þ ss0

jkj þ jqj cosθ
jkþ qj

� �

: ð61Þ

In long wavelength limit, we approximately obtain

jkþ qj ¼ jkj 1þ jqj cosθ
jkj þ jqj2 sin 2θ

2jkj2

 !

: ð62Þ

In this limit, we obtain for the graphene dispersion relation (59) the general form

E
s
kþq � E

s0

k ¼ sℏvF
s� s0

s
jkj þ jqj cosθþ jqj

2jkj sin
2θ

� �� �

: ð63Þ

In turn, the plasmon-damping regimes are determined by the poles of polarizability (60) by

substituting expression (63). Due to the valley degeneracy, there are two damping regimes

corresponding, respectively, to intraband ðs ¼ s0Þ

ω < vFq ð64Þ

and interband (s ¼ �s0)

vFð2kF � qÞ < ω < vFð2kF þ qÞ: ð65Þ

electron-hole pair excitations [8] demonstrated in Figure 5 by shaded areas.

Substituting the long wavelength limit expression (62) in the overlap function (61), the latter

reads

Nanoplasmonics - Fundamentals and Applications20



Fss0ðk;kþ qÞ ¼

1�
q2

4k2
sin 2θ ≃ 1 s ¼ s0 ðintrabandÞ

q2

4k2
sin 2θ ≃ 0 s 6¼ s0 ðinterbandÞ

8

>

>

>

<

>

>

>

:

ð66Þ

Equation (66) states that in long wavelength limit, the interband contribution can be neglected

[5], hence, the Lindhard formula (60) is simplified to

χ0ðq ! 0;ωÞ ¼ �
4

V

X

k

f ðEþkþqÞ � f ðEþk Þ

ℏz� ðEþkþq � E
þ
k Þ

þ
f ðE�kþqÞ � f ðE�k Þ

ℏz� ðE�kþq � E
�
k Þ

( )

: ð67Þ

As it has already been mentioned, in zero temperature limit, the Fermi-Dirac distribution f ðE�k Þ

is simplified to Heaviside step function ΘðkF ∓ jkjÞ. In this limit, the second term in the right

hand of Eq. (67) is always zero, since ΘðkF þ jkjÞ ¼ ΘðkF þ jkþ qjÞ ¼ 1, which reflects that all

states in the valence band are occupied. Making again the elementary transformation

kþ q ! �k in the term of Eq. (67) that includes f ðEþkþqÞ, we obtain

χ0ðq ! 0;ωÞ ¼
8

V

X

jkj<kF

E
þ
kþq � E

þ
k

ðℏzÞ2 � ðEþkþq � E
þ
k Þ

2
: ð68Þ

Turning summation (68) into integral, we read

χ0ðq ! 0;ωÞ ¼
8

ð2πÞ2

Z

d2jkj
E
þ
kþq � E

þ
k

ðℏzÞ2 � ðEþkþq � E
þ
k Þ

2
: ð69Þ

Transforming to polar coordinates for r ¼ jkj and using relation (63), we obtain the integral

Figure 5. Blue solid line indicates the dispersion relation of graphene plasmons ðωGr
p Þ. The shaded regimes represent the

intra- and interband Landau damping where plasmon decays to electron-hole pairs excitation.
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χ0ðq;ωÞ ¼
2EFkFq

π2ℏ
2ω2

Z 1

0

dx

Z 2π

0

x cosθþ q
2kF

sin 2θ

1� vFq
ω

� �2
cosθþ q

2kFx
sin 2θ

� �2
dθ; ð70Þ

where x ¼ r=kF, q ¼ jqj and η ¼ 0 ) z ¼ ω. In non-static ðω≫ vFqÞ and long wavelength

(q≪ kF) limits, we expand the integrator of Eq. (69) in series of q. Keeping up to first power of

q=kF, we obtain

χ0ðq ! 0;ωÞ ¼
2EFkFq

π2ℏ
2ω2

Z 1

0

dx

Z 2π

0

x cosθþ
q

2kF
sin 2θ

� �

dθ: ð71Þ

The evaluation of integral (71) is trivial and leads to the polarizability function of graphene

χ0ðq ! 0;ωÞ ¼
EF

πℏ2

q2

ω2
: ð72Þ

Using the RPA formula (15), we obtain the long wavelength dielectric function of graphene

εðq;ωÞ ¼ 1�
2e2EF

ℏ
2ω2

q ð73Þ

indicating that at low energies doped graphene is described by a Drude-type dielectric func-

tion with plasma frequency depending straightforward on the doping amount, namely the

Fermi energy level EF. The plasma frequency of graphene monolayer is determined by condi-

tion (11) and reads

ωGr
p ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e2EF

ℏ
2

q

s

ð74Þ

indicating the q1=2 dependence likewise plasmons at a regular 2DEG. The most important

result is the presence of ℏ in the denominator of Eq. (74), which reveals that plasmons in

graphene are purely quantum modes, that is, there are no classical plasmons in doped

graphene. In addition, graphene plasmon frequency is proportional to n1=4, which is different

from classical 2D plasmon behavior where ω2D
p � n1=2 [7, 18]. This is a direct consequence of

the quantum relativistic nature of graphene, since Fermi energy is defined differently in any

case, namely EF � kF � n1=2 in graphene, whereas, EF � k2F � n in 2DEG case. In Figure 3(a),

we represent the plasmon dispersion relation in doped graphene.

3.2. Graphene plasmonic metamaterial

Multilayers of plasmonic materials have been used for designing metamaterials providing elec-

tromagnetic propagation behavior not found under normal circumstances like negative refrac-

tion and epsilon-near-zero (ENZ) [9, 19, 20]. The bottleneck in creating plasmonic devices with
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any desirable characteristic has been the limitations of typical 3D solids in producing perfect

interfaces for the confinement of electrons and the features of dielectric host. This may no longer

be a critical issue. The advent of truly two-dimensional materials like graphene (a metal),

transition-metal dichalcogenides (TMDC’s, semiconductors), and hexagonal boron nitride (hBN,

an insulator) makes it possible to produce structures with atomic-level control of features in the

direction perpendicular to the stacked layers [9, 21]. This is ushering a new era in manipulating

the properties of plasmons and designing devices with extraordinary behavior.

Here, we propose a systematic method for constructing epsilon-near-zero (ENZ) metamaterials

by appropriate combination on 2D materials. The aforementioned metamaterials exhibit inter-

esting properties like diffractionless EM wave propagation with no phase delay [9]. We show

analytically that EM wave propagation through layered heterostructures can be tuned dynam-

ically by controlling the operating frequency and the doping level of the 2D metallic layers.

Specifically, we find that multilayers of a plasmonic 2D material embedded in a dielectric host

exhibit a plasmonic Dirac point (PDP), namely a point in wavenumber space where two linear

coexisting dispersion curves cross each other, which, in turn, leads to an effective ENZ behav-

ior [9]. To prove the feasibility of this design, we investigate numerically EMwave propagation

in periodic plasmonic structures consisting of 2D metallic layers lying on yz plane in the form

of graphene, arranged periodically along the x axis and possessing surface conductivity σs. The

layers are embedded in a uniaxial dielectric host in the form of TMDC or hBN multilayers of

thickness d and with uniaxial relative permittivity tensor εd with diagonal components

εx 6¼ εy ¼ εz. We explore the resulting linear, elliptical, and hyperbolic EM dispersion relations

which produce ENZ effect, ordinary and negative diffraction, respectively.

We solve the analytical problem under TM polarization, with the magnetic field parallel to the

y direction which implies that there is no interaction of the electric field with εy. We consider a

magnetically inert (relative permeability μ ¼ 1) lossless host (εx;εz ∈ℝ). For monochromatic

harmonic waves in time, the Maxwell equations lead to three equations connecting the com-

ponents of the E and H fields. For the longitudinal component [9, 19], Ez ¼ ðiη0=k0εzÞð∂Hy=∂xÞ

where η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

μ0=ε0
p

is the free space impedance. Defining the vector of the transversal field

components as ψ ¼ ðEx; HyÞ
T gives [9]

i
∂

∂z
ψ ¼ k0η0

0 1þ
1

k20

∂

∂x

1

εz

∂

∂x
εx

η20

0

0

B

B

@

1

C

C

A

ψ ð75Þ

Assuming EM waves propagating along the z axis, viz. ψðx;zÞ ¼ ψðxÞeikzz, Eq. (75) leads to an

eigenvalue problem for the wavenumber kz of the plasmons along z [9, 19]. The metallic 2D

planes are assumed to carry a surface current Js ¼ σsEz, which acts as a boundary condition in

the eigenvalue problem. Furthermore, infinite number of 2D metals are considered to be

arranged periodically, along x axis, with structural period d. The magnetic field reads

H�
y ðxÞe

ikzz for �d < x < 0 and Hþ
y ðxÞe

ikzz for 0 < x < d on either side of the metallic plane at

x ¼ 0, with boundary conditions Hþ
y ð0Þ �H�

y ð0Þ ¼ σsEzð0Þ and ∂xH
þ
y ð0Þ ¼ ∂xH

�
y ð0Þ. Due to the
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periodicity, we use Bloch theorem along x as Hþ
y ðxÞ ¼ H�

y ðx� dÞeikxd, with Bloch wavenumber

kx. As a result, we arrive at the dispersion relation [9, 19, 20]:

Fðkx;kzÞ ¼ cos ðkxdÞ � coshðκdÞ þ ξκ

2
sinhðκdÞ ¼ 0 ð76Þ

where κ2 ¼ ðεz=εxÞðk2z � k20εxÞ expresses the anisotropy of the host medium and ξ ¼ �ðiσsη0=
k0εzÞ coincides with the so-called “plasmonic thickness” which determines the SPP decay

length [9, 19, 20]. In particular, ξ is twice the SPP penetration length and defines the maximum

distance between two metallic layers where the plasmons are strongly interacting [9, 19, 20].

We point out that for lossless 2D metallic planes σs is purely imaginary and ξ is purely real (for

εz ∈ℝ). At the center of the first Brillouin zone kx ¼ 0, the equation has a trivial solution [19] for

κ ¼ 0 ) kz ¼ k0
ffiffiffiffiffi

εx
p

which corresponds to the propagation of x-polarized fields travelling into

the host medium with refractive index
ffiffiffiffiffi

εx
p

without interacting with the 2D planes which are

positioned along z axis [22]. Near the Brillouin zone center ðkx=k0 ≪ 1 and κ≃0Þ and under the

assumption of a very dense grid ðd ! 0Þ, we obtain kxd≪ 1 and κd≪ 1, we Taylor expand the

dispersion equation (76) to second order in d, hence

k2z
εx

þ d

ðd� ξÞεz
k2x ¼ k20: ð77Þ

The approximate relation (77) is identical to that of an equivalent homogenized medium

described by dispersion: k2z=ε
eff
x þ k2x=ε

eff
z ¼ k20 [9, 21]. Subsequently, from a metamaterial point

of view, the entire system is treated as a homogeneous anisotropic medium with effective

relative permittivities given by

εeffx ¼ εx ; εeffz ¼ εz þ i
η0σs

k0d
¼ εz

d� ξ

d
: ð78Þ

We read from Eq. (78) the capability to control the behavior of the overall structure along the z

direction. For instance, the choice d ¼ εz=ðεz � εxÞξ leads to an isotropic effective medium with

εeffz ¼ εeffx [9].

For the lossless case (Im½ξ� ¼ 0), we identify two interesting regimes, viz. the strong plasmon

coupling for d < ξ and the weak plasmon coupling for d > ξ. In both cases, plasmons develop

along z direction at the interfaces between the conducting planes and the dielectric host. In the

strong coupling case (d < ξÞ, plasmons of adjacent interfaces interact strongly with each other.

As a consequence, the shape of the supported band of Eq. (77), in the ðkx;kzÞ plane, is hyper-
bolic (dashed red line in Figure 6(a)) and the system behaves as a hyperbolic metamaterial

[9, 19, 22] with εeffx > 0, εeffz < 0. On the other hand, in the weak plasmon coupling ðd > ξÞ, the
interaction between plasmons of adjacent planes is very weak. In this case, the shape of the

dispersion relation (77) on the ðkx;kzÞ plane is an ellipse (dotted black line in Figure 6(a)) and

the systems act as an ordinary anisotropic media with εeffz ;εeffx > 0 [9]. We note that in the case

ξ < 0 the system does not support plasmons and the supported bands are always ellipses [9].

When either the 2D medium (Re½σs� 6¼ 0) or the host material is lossy, a similar separation

holds by replacing ξ by Re½ξ�.
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The most interesting case is the linear dispersion, where kz is linearly dependent on kx and

dkx=dkz is constant for a wide range of kz [9, 19]. When this condition holds, the spatial

harmonics travel with the same group velocity into the effective medium [9, 19]. To engineer

our structure to exhibit a close-to-linear dispersion relation, we inspect the approximate ver-

sion of Eq. (77): a huge coefficient for kx will make k
2
0 on the right-hand-side insignificant; if

ξ ¼ d, the term proportional to k
2
x
increases without bound yielding a linear relation between kz

and kx. With this choice, σs ¼ �iðk0dεz=η0Þ, and substituting in the exact dispersion relation

Eq. (76), we find that ðkx;kzÞ ¼ ð0;k0
ffiffiffiffiffi

εx
p Þ becomes a saddle point for the transcendental func-

tion Fðkx;kzÞ giving rise to the conditions for the appearance of two permitted bands, namely

two lines on the ðkx;kzÞ plane across which Fðkx;kzÞ ¼ 0. This argument connects a mathemat-

ical feature, the saddle point of the dispersion relation, with a physical feature, the crossing

point of the two coexisting linear dispersion curves, the plasmonic Dirac point [9] (solid blue

line in Figure 6(a)). From a macroscopic point of view, the choice ξ ¼ d makes the effective

Figure 6. (a) The three supported dispersion plasmonic bands in ðkx;kzÞ plane: hyberbolic (dashed red), elliptical (dotted

black), and linear (solid blue) where plasmonic Dirac point (PDP) appears. (b) Combinations of graphene doping μ
c
and

free-space operational wavelengths λ leading to epsilon-near-zero (ENZ) behavior (PDP in dispersion relation) for several

lattice periods d (in nm). (c) Real and (d) imaginary parts of the effective permittivity εeff
z

for the choice d ¼ 20 nm (dashed

line in (b)); dashed curves indicate the ENZ regime.
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permittivity along the z direction vanish, as is evident from Eq. (78). As a result, the existence

of a PDP makes the effective medium behave like an ENZ material in one direction (εeffz ¼ 0).

The plasmonic length ξ is, typically, restricted in few nanometers (ξ < 100 nm). Regular

dielectrics always present imperfections in nanoscales, hence, the use of regular materials as

dielectric hosts is impractical. Furthermore, graphene usually exfoliates or grows up on other

2D materials. Because of the aforementioned reasons, it is strongly recommended that the

dielectric host to be also a 2D material with atomic scale control of the thickness d and no

roughness. For instance, one could build a dielectric host by stacking 2D layers of materials

molybdenum disulfide (MoS2) [23] with essentially perfect planarity, complementing the pla-

narity of graphene.

Substituting the graphene dielectric function (73) into formula (18), we calculate the two-

dimensional Drude-type conductivity of graphene [6, 19, 21]

σsðωÞ ¼
ie2μc

πℏ2ðωþ i=τÞ
; ð79Þ

where μc is the tunable chemical potential equal to Fermi energy EF and τ is the transport-

scattering time of the electrons [6, 19] introduced in the same manner as in Eq. (30). In what

follows, we use bulk MoS2, which at THz frequencies is assumed lossless with a diagonal

permittivity tensor of elements, εx ffi 3:5 (out of plane) and εy ¼ εz ffi 13 (in plane) [23].

The optical losses of graphene are taken into account using τ ¼ 0:5 ps [19]. Since the optical

properties of the under-investigated system can be controlled by tuning the doping amount,

the operating frequency or the structural period, in Figure 6(b), we show proper combinations

of μc and operational wavelength in free space λ which lead to a PDP for several values of

lattice density distances (d ¼ Re½ξ� in nm) [9]. To illustrate, for a reasonable distance between

successive graphene planes of d ¼ 20 nm, the real (Figure 6(c)) and imaginary (Figure 6(d))

effective permittivity values that can be emulated by this specific graphene-MoS2 architecture

determine the device characteristics at different frequencies and graphene-doping levels. Pos-

itive values of Re½εeffz � are relatively moderate and occur for larger frequencies and lower

doping levels of graphene; on the other hand, Im½εeffz � is relatively small in the ENZ region as

indicated by a dashed line in both graphs [9]. On the other hand, losses become larger as

Re½εeffz � gets more negative.

To examine the actual electromagnetic field distribution in our graphene-MoS2 configuration,

we simulate the EM wave propagation through two finite structures consisting of 40 and 100

graphene planes with Re½ξ� ¼ 20:8 nm and for operational wavelength in vacuum λ ¼ 12m

(f ¼ 25 THz ¼ 0:1 eV). In order to have a complete picture of the propagation properties, we

excite the under-investigating structures with a 2D dipole magnetic source as well as with a

TM plane wave source. In particular, the 40-layered structure is excited by a 2D magnetic

dipole source, which is positioned close to one of its two interfaces and oriented parallel to

them, denoted by a white dot in Figure 7(a)–(c). On the other hand, the 100-layered configura-

tion is excited by a plane source, which is located below the multilayer and is rotated by 20o
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with respect to the interface; the blue arrow in Figure 7(d) indicates the direction of the

incident wave. The normalized to one spatial distribution of the magnetic field value is shown

in Figure 7 in color representation, where the volume containing the graphene multilayers is

between the dashed blue lines. To minimize the reflections, the background region is filled

with a medium of the same dielectric properties as MoS2. In Figure 7(a and d), the system is in

the critical case (d ¼ Re½ξ�), where the waves propagate through the graphene sheets without

dispersion as in an ENZ medium. In Figure 7(b and e), the interlayer distance is d ¼ 0:7Re½ξ�

(strong plasmon-coupling regime) and the system shows negative (anomalous) diffraction. In

Figure 7(c and f) d ¼ 1:5Re½ξ� (weak plasmon-coupling regime) and the EM wave show

ordinary diffraction through the graphene planes [9].

4. Conclusion

In summary, we have studied volume and surface plasmons beyond the classical plasma

model. In particular, we have described electronic excitations in solids, such as plasmons and

their damping mechanism, viz. electron-hole pairs excitation, in the context of the quantum

approach random phase approximation (RPA), a powerful self-consistent theory for determin-

ing the dielectric function of solids including screening non-local effect. The dielectric function

and, in turn, the plasmon dispersion relation have been calculated for a bulk metal, a two-

dimensional electron gas (2DEG) and for graphene, the famous two-dimensional semi-metal.

Figure 7. Spatial distribution of the magnetic field (color map) of graphene-MoS2 multilayer structure located between

the blue dashed lines and embedded in MoS2 background. In (a)–(c), the metamaterial consists of 40 graphene sheets and

excited by a magnetic dipole (white dot). In (d)–(f), the structure is composed by 100 graphene layers and excited by a TM

plane wave source located at y ¼ 0 and rotated 20o with respect to the interface. (a), (d) d ¼ Re½ξ� (ENZ behavior). (b), (e)

d ¼ 0:7Re½ξ� hyperbolic metamaterial. (c), (f) d ¼ 1:5Re½ξ� elliptical medium, where Re½ξ� ¼ 20:8 nm. Due to high reflec-

tions in (d), (e), we observe pattern formation of stationary waves below the metamaterial.
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The completely different dispersion relation between plasmon in three- and two-dimensional

metals has been pointed out. Furthermore, we have highlighted the fundamental difference

between plasmons in a regular 2DEG and in doped graphene, indicating that plasmons in

graphene are purely quantum modes, in contrast to plasmons in 2DEG, which originate from

classical laws. Moreover, the propagation properties of surface plasmon polariton (SPP), a

guided collective oscillation mode, have been also investigated. For the completeness of our

theoretical investigation, we have outlined two applications. First, we have examined SPPs

properties along an interface consisting of a bulk metal and an active (gain) dielectric. We have

found that there is a gain value for which the metallic losses have been completely eliminated

resulting in lossless SPP propagation. Second, we have investigated a plasmonic metamaterial

composed of doped graphene monolayers. We have shown that depending on operating

frequency, doping amount, and interlayer distance between adjacent graphene layers, the

wave propagation properties present epsilon-near-zero behavior, normal, and negative refrac-

tion, providing a metamaterial with tunable optical properties.
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